
Computational Geometry 22 (2002) 99–118
www.elsevier.com/locate/comgeo

LOOK:
A Lazy Object-Oriented Kernel design for geometric computation

Stefan Funke∗,1,2, Kurt Mehlhorn1

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Communicated by S. Fortune; received 1 July 2000; accepted 10 October 2000

Abstract

In this paper we describe and discuss a new kernel design for geometric computation in the plane. It combines
different kinds of floating-point filter techniques and a lazy evaluation scheme with the exact number types provided
by LEDA allowing for efficient and exact computation with rational and algebraic geometric objects.

It is the first kernel design which uses floating-point filter techniques on the level of geometric constructions.
The experiments we present—partly using the CGAL framework—show a great improvement in speed and—

maybe even more important for practical applications—memory consumption when dealing with more complex
geometric computations. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Computational geometry; Exact computation; Software design

1. Introduction

Geometric algorithms are usually designed for the so-called Real RAM, a random access machine
that can handle real numbers at unit cost. Theexact computation paradigm[15] advocates to give the
implementer of a geometric algorithm the illusion of a real RAM by providing exact number types and
exact geometric predicates. The geometric kernels of the popular libraries CGAL [4] and LEDA [14] are
based on the exact computation paradigm.

The evaluation of a geometric predicate amounts to the computation of the sign of an arithmetic
expression. The naive way to compute the sign of an expression is to compute the value of the expression
(using exact arithmetic) and to read off the sign from the value. A much more efficient technique is the use
of floating-point filters[10,13]. A floating-point filter computes an approximate value of an expression
and a bound for the maximal deviation from the true value. If the error bound is smaller than the absolute

* Corresponding author.
E-mail addresses:funke@mpi-sb.mpg.de (S. Funke), mehlhorn@mpi-sb.mpg.de (K. Mehlhorn).
1 This research was partially supported by ESPRIT LTR project 28155 (GALIA).
2 This research was partially supported by a scholarship ‘Graduiertenkolleg’ by the Deutsche Forschungsgesellschaft.

0925-7721/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(01)00046-3

100 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

value of the approximation, approximation and exact value have the same sign and hence the sign of the
approximation may be returned. In this way the true sign can be obtained quickly. The geometry kernels
of CGAL and LEDA use floating-point filters. The advocates of floating-point filters claim that filters
at the predicate level realize the exact computation paradigm at little cost; the running time is claimed
to be no more than twice the running time of a pure floating-point implementation for most practical
applications (see for example [6]).

This is true as long as the algorithms do not construct new geometric objects. The class of such
algorithms is limited: convex hulls and Delaunay diagrams belong to the class, but already line
segment intersection does not. What is the problem with the construction of new objects? In the
kernels mentioned, points (and all other geometric objects) are represented by their coordinates (either
cartesian or homogeneous) and hence the construction of an object requires theexactcomputation of its
coordinates.

The exact computation of object coordinates has two undesirable consequences. On one hand the
running time increases dramatically when operating with constructed objects due to the increased
numerical complexity, but maybe even more importantly, the space consumption grows rapidly. So in
practice, users either write their own routines to allow for filtering on construction level (which can be
supported by tools like EXPCOMP [6]) or use rounding schemes after every construction to keep the
numerical complexity and space requirements low, see [9] for example. Note though, that these rounding
schemes actually require a proof that they do not affect the final result considerably. These proofs are
non-trivial and usually cannot be generalized. So each application has to be considered separately.

In this paper we present a new kernel design called LOOK (Lazy Object-Oriented Kernel for geometric
computation) which supports filtering also for geometric constructions. The main idea is that geometric
objects are not represented by their coordinates, but by the geometric operation that produced them.
Hence exact computation of the coordinates is still possible, but does not have to be performed on
construction, and only if needed at all.

In Section 2 we will briefly survey the features of LOOK which are fairly standard and match existing
kernels for geometric computation. The third section is the core of this paper, as it discusses in detail the
concepts of the implementation that allow for filtering on geometric object level. Section 4 shows how to
use and extend the framework provided by LOOK. Finally, the last section gives extensive experimental
results, which show the benefits of using LOOK.

2. Features of LOOK

Like the LEDA RatKernel [14], the standard geometric kernel in LEDA, which builds upon exact
homogeneous integer representation, or the CGAL kernels, LOOK provides class representations for
2D points and many other 2D geometric objects that can be constructed from points, like circles, lines,
segments, etc. In LOOK they are calledOPOINT, OCIRCLE, OLINE, OSEGMENT, etc.

Similar to the CGAL kernels when parameterized withleda_realas representation type [5], LOOK
also provides support for computation with algebraic geometric objects as they occur for example when
intersecting circles. (Actually we only allow geometric objects created by a subset of the algebraic
numbers, namely the numbers that can be generated as the result of an expression involving+, −, ·,
/ andkth root.)

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 101

The geometric constructions supported by LOOK currently include line (segment) intersection,
computing the center of the circumscribing circle of a triangle, intersection of circles, etc. Of course,
all common geometric predicates like orientation test, incircle test etc. are also available.

Programmers can easily replace the default LEDA RatKernel in LEDA’s geometric algorithms by
LOOK. Due to the genericity of CGAL, it is also no problem to use LOOK as a kernel implementation
for the algorithms in CGAL.

3. Implementation concepts

What distinguishes our kernel from other existing kernels is the idea of ‘bookkeeping’ on object level.
This approach was already suggested in [10] as ‘lazy constructor evaluation’, but so far if a programmer
wanted to use it, he had to hand-code everything—from the object representations to the predicates.
We have developed a tool called EXPCOMP [6] which supports implementations with lazy constructor
evaluation but it does not provide a general framework for geometric computation; the programmer still
has to implement all predicates and constructions from scratch.

The main idea of our implementation is the following: when we construct a geometric object, we do
not compute its coordinates exactly, but only their floating-point approximations and also store references
to the objects which were involved in the construction. If later a more precise or exact coordinate
representation of the object is required, we can compute this using this history of the object. So with every
geometric object we have a so calledobject dependency graphassociated, which is a directed acyclic
graph recording the construction of the object. Every node of this directed acyclic graph corresponds to
a geometric construction. Fig. 1 shows the object dependency graph for a point object resulting from a
line segment intersection of two segmentsPQ andRSfollowed by a circumcenter computation of the
intersection point andS andT .

The same approach, but on the level of operators in arithmetic expressions is taken in the number type
leda_real. First, one not only computes a floating-point approximation for the expression, but also
builds an acyclic directed graph recording its construction with the nodes corresponding to arithmetic
operators. If the current floating-point approximation of an expression value does not suffice, e.g., for
a sign determination, one can recompute a better approximation using this history information. But as

Fig. 1. Object dependency graph for a line segment intersection followed by a circumcenter computation.

102 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

it was already mentioned in [10] and can be seen in [5], this bookkeeping on arithmetic operator level
has its cost. An overhead factor of around 10–50 compared to pure floating-point computation can be
expected just for computing the floating-point approximation and storing the history information.

When performing bookkeeping on object level, the overhead occurs only once for every geometric
construction instead of every arithmetic operation, so we can expect a considerable gain in running time.
But what can we expect when comparing with the present kernels for rational geometric objects like the
LEDA RatKernel or the parameterized kernels of CGAL? Clearly there is a potential for improving
the performance, too, as theyalways perform geometric constructions exactly using a datatype for
exact/arbitrary precision arithmetic; only the predicate evaluations are tuned using floating-point filter
mechanisms. Especially when we deal with deeply nested geometric constructions, where the exact
constructions get very expensive, our approach should pay off.

When designing a geometric kernel, it is very important to wrap these techniques as transparently
as possible to the programmer. In the following we will touch upon the main issues in our kernel
implementation and how it is wrapped up. Note that the core object of our kernel is the point (we call it
OPOINT), since all other geometric objects in our kernel are represented by tuples of points. This does
not always seem very natural, for example when a line is given by its line equationax + by = 1, but
observe that in this case, one can obtain a point-based representation of the same numerical complexity,
namely the pointsP1(0,1, b), P2(1,0, a). Things get more difficult, though, when it comes for example
to the representation of circles. They can be represented by three points on the circle, one centerpoint
and one point on the circle, or by a centerpoint and the radius. Switching between these representations
might increase the numerical complexity, so care has to be taken when choosing the most appropriate
representation for the given application. Of course, one might consider adding other core objects to the
kernel if the necessity arises.

3.1. Floating-point filters

The use of floating-point filters to speed up the exact evaluation of predicates has become standard
when implementing geometric algorithms. If a predicate is expressed as the sign of an arithmetic
expression, the idea is first to evaluate this expression using floating-point arithmetic but also to compute
an error bound to determine whether the outcome is reliable.

According to the way this error bound is computed, we can classify floating-point filters intostatic
(error bound is computed completely before runtime),semi-static(the error bound is partly computed
before runtime) anddynamic(the error bound is computed completely at runtime). Obviously, static
error bounds incur the least overhead at runtime but tend to be not very tight, especially when the actual
input values are not in the range used for the static error estimation, whereas the dynamic bounds are
typically pretty tight but incur a larger overhead. Examples for these techniques can be found in [3,6,7,
10,13].

As we are dealing with possibly nested computations, using static filters seems to be not the best idea
because after few levels of computation their error bounds get very imprecise. So we decided to apply
dynamic filtering techniques for all constructions and predicates, but also use semi-static filters as the
very first step in predicate evaluations. In the actual implementation, we use the new LEDA datatype
INTERVAL which is the interval arithmetic implementation from [3] making use of the IEEE rounding
modes to keep the overhead compared to floating-point computation relatively low (around a factor of 4–
6). For some predicates we also use the preprocessing tool EXPCOMP [6] which automatically generates

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 103

semi-static filter code (which usually has an overhead of only about 1–2). For this purpose, we had
to slightly modify the original version of EXPCOMP presented in [6] to make it compatible with the
INTERVAL datatype.

3.2. Cartesian and homogeneous representations

When designing a geometric kernel, one can choose between a representation of the points in the plane
usingcartesianor homogeneouscoordinates. With cartesian coordinates, a point is represented by two
(integer, rational or algebraic) valuespx , py . With homogeneous coordinates, the point is represented by
three valuespX, pY , pW wherepx = pX/pW andpy = pY /pW .

One advantage of the homogeneous representation is the fact that if we restrict ourselves to rational
objects, we can perform all computations using integer arithmetic without divisions. This is the
approach taken in the LEDA RatKernel. There is one problem, though: if the computation is nested,
the homogeneous coordinates tend to get very large. Consider the following example:

Given three pointsp, q, r represented using homogeneous integer coordinates of bitlength 16.
Compute the centerc of these points. The expressions for computing the homogeneous coordinates ofc

have degree 6, so the bitlength ofcX, cY , cW will be around 96.
This becomes especially a problem if we use this homogeneous representation for the floating-point

approximation ofc as well. Since an incircle test expressed in homogeneous coordinates has a degree
of 12, we would get a value of bitlength more than 1100! Remembering that a variable of typedouble
according to the IEEE standard [12] can have a value of at most 21024, we see that in these cases, a
floating-point filter will alwaysfail. Note that this failure is not due to geometric difficulty but only due
to the numerical representation.

For this reason we decided to compute the floating-point approximation of a point using cartesian
coordinates first (together with an error bound), and only if necessary compute its homogeneous floating-
point coordinates (as in some cases they allow for detection of degenerate cases with the floating-point
filter, which is not as easy with the cartesian representation). With the cartesian representation, only
predicates difficult in ageometricsense (i.e., almost or exactly collinear, cocircular, etc.) cannot be
decided by the filter.

For the exact representations we decided to store either homogeneous coordinates of typeleda_
integer (if no roots have been used in the course of the computation) or cartesianleda_real
coordinates (if roots have been used). Accessing the homogeneousleda_integer coordinates of
a non-rational object is of course not allowed and is detected by the system at runtime. Cartesian
leda_real coordinates of a rational object can easily be obtained by division of the homogeneous
leda_integer coordinates. Furthermore, remember that—as for the homogeneous floating-point
approximations—memory for these representations is only allocated if their value is actually requested
and computed. We will go into more detail how this works in Section 3.4.

3.3. Reference counting and handles

Before we define an actual object representation for our points, we have to think about some
requirements. It is clear that the points we are dealing with may be defined by input data, but they
also might be the result of some geometric construction. Nevertheless, when we use a point later on, we
shouldn’t have to care about that. Current geometry kernels solve this problem by simply computing the

104 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

coordinates of the point using exact arithmetic; then there is no difference to a point defined by input data
with the same coordinates. But as we do not want to perform the constructions exactly, we have to think
about something differently.

A first approach would be to write an abstract base classbase_point which defines the properties
of a point. Then for every possible construction, we derive a specialized class frombase_point. For
example a classdoubleC_point representing points initialized by cartesian double coordinates fills
in the necessary functionality based on the double precision input data it is initialized with, another
example would be a classIntersection_Point, also derived frombase_point, which fills in
the functionality using the data computed by the intersection of two lines.

With this scheme, we could write all predicates in terms of pointers or references to the abstract base
classbase_pointand still plug in pointers/references to different derived instances into the predicates.
There are some caveats when using the pointer- or reference-based scheme, though, in particular one has
to be very careful when allocating and deallocating memory for the objects.

One possible solution for this problem is the use ofreference counting. For every distinct point object
there exists exactly onerepresentativeand the programmer can access this representative only via a so
called handle. If an assignment takes place (which is between handles, then), only the pointer to the
representative is copied and a reference counter associated with it is incremented. The representative
lives as long as it is referenced by at least one handle. The advantage of this scheme, apart from faster
assignments of large objects, is the simplification in memory handling. And, of course, if the same object
is copied frequently, the memory consumption is also much lower.

In our concrete implementation, we have a handle classOPOINT, which basically just contains a
pointer of typebase_point which itself is the abstract base class for all point types. Fig. 2 gives an
overview of the class scheme in LOOK.

So if one wants to add a construction to LOOK (for example, computing the midpoint of two points),
one has to derive from the abstract base classbase_pointand implement the necessary virtual member
functions. As we will see in Section 4, these member functions basically describe how this midpoint is
computed using different arithmetic datatypes.

Fig. 2. Object classes in LOOK.

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 105

3.4. Lazy evaluation

3.4.1. Constructions
As mentioned, we use a lazy evaluation scheme for all geometric objects in our kernel. This implies

that on construction of a geometric object, we only compute its floating-point approximation and
store references to its defining objects. Only if later on, the exact coordinates asleda_real or
leda_integer are requested, they are computed using the information about the defining objects.
Of course, this triggers an exact evaluation of these defining objects as well.

To wrap the lazy-evaluation functionality in a transparent manner, we allow the programmer to access
the coordinates of a geometric object only using member functions. The member function for the exact
integer X-Coordinate looks as follows:

leda_integer base_point::X()
{
if (!(Status&COMPUTED_HEXACT))
SharpenHEXACT();

return Ext->_XCoord;
}

It is first checked, whether we already have computed the exact homogeneous coordinates, and if not, we
compute them by calling theSharpenHEXACT()member function.SharpenHEXACT() again is a
wrapper function:

void base_point::SharpenHEXACT()
{
if (Ext==NULL) // memory allocation necessary ?
Ext=new ExtendedBlock;

ComputeHExact();

// sharpen homog. FP-APX
Ext->_XCoordAPX=INTERVAL(Ext->_XCoord);
Ext->_YCoordAPX=INTERVAL(Ext->_YCoord);
Ext->_WCoordAPX=INTERVAL(Ext->_WCoord);

// sharpen cart. FP-APX
leda_rational xR(Ext->_XCoord,Ext->_WCoord),

yR(Ext->_YCoord,Ext->_WCoord);
_xCoordAPX=IHTERVAL(xR);
_yCoordAPX=IHTERVAL(yR);

Status|=(COMPUTED_HAPX|COMPUTED_HEXACT
|COMPUTED_CAPX);

Birthday++;
}

106 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

We first check if we have to allocate the memory for the extended datastructure, since by default we only
store (and allocate memory for) the cartesian double approximation of an object. Then we call the actual
function computing the coordinates and use this exact value to sharpen the floating-point approximations
of the current object. Finally we increment the ‘birthday’ of the current object. The next section will
explain the purpose of that in more detail.

Note that the code for triggering the lazy evaluation mechanism is completely encapsulated in the
::X() and::SharpenHEXACT()member functions. If a new class is derived frombase_point,
the programmer only has to provide the member functions which actually compute the coordinates (here:
ComputeHExact()).

To sum it up, every point object derived frombase_point in our kernel provides the following
member functions for accessing the coordinates in different formats and types:

Name Type Format

::x() ::y() leda_real cartesian

::xAPX() ::yAPX() INTERVAL cartesian

::X() ::Y() ::W() leda_integer homog.

::XAPX() ::YAPX() ::WAPX() INTERVAL homog.

Keep in mind that because of the lazy evaluation mechanism, the corresponding values are only
computed when requested by a call to one of these member functions. Only the cartesian floating-point
approximations are computed on instantiation to save a redirection in this case.

3.4.2. Predicates
Of course, the predicates must also know about the lazy evaluation mechanism in the objects they

are working on. We will briefly sketch how we implemented the very common orientation test. Note
that this code fragment includes special statements which are preprocessed by EXPCOMP [6]—a tool
for automatically generating efficient floating-point filter code. In this example we use EXPCOMP
to generate a first filter stage which uses a semi-static floating-point filter based on the cartesian
representation.

int orientation(const OPOINT &a, const OPOINT &b,
const OPOINT &c)

{
int sgn_res=NO_IDEA;
BEGIN_FILTER // 1st stage generated by EXPCOMP
{
DECLARE_ATTRIBUTES real_apx_type FOR a.x() a.y()

b.x() b.y() c.x() c.y();
exact AX=a.x(); exact AY=a.y();
exact BX=b.x(); exact BY=b.y();
exact CX=c.x(); exact CY=c.y();
exact D=(AX-BX)*(AY-CY)-(AY-BY)*(AX-CX);

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 107

sgn_res=sign(D);
}
END_FILTER

if (sgn_res==NO_IDEA) // 2nd stage
{
INTERVAL AX=a.xAPX(); INTERVAL AY=a.yAPX();
INTERVAL BX=b.xAPX(); INTERVAL BY=b.yAPX();
INTERVAL CX=c.xAPX(); INTERVAL CY=c.yAPX();
fpu::round_up();
INTERVAL D=(AX-BX)*(AY-CY)-(AY-BY)*(AX-CX);
sgn_res=msign(D);
fpu::round_nearest();
}
if (sgn_res==NO_IDEA) // 3rd stage
{
if ((a.RatType() && b.RatType() && c.RatType())
{
/*homogeneous test using */
/*interval-arithmetic */
/*accessing a.XAPX() c.WAPX() */
if (sgn_res==NO_IDEA)
/*homogeneous test using exact */
/*exact integer arithmetic */

}
else // 4th stage
sgn_res=sign((a.x()-b.x())*(a.y()-c.y())

-(a.y()-b.y())*(a.x()-c.x()));
}
return sgn_res;

}

The evaluation strategy is as follows:
(1) Cartesian evaluation using a fast filter implementation generated by EXPCOMP (this accesses the

::xAPX() and::yAPX()member functions).
(2) Cartesian evaluation using interval arithmetic (tighter error bounds, but slower; accesses the

::xAPX() and::yAPX()member functions).
(3) If the involved objects are all of rational type:

(a) homogeneous evaluation using interval arithmetic (accesses the member functions::XAPX(),
::YAPX() and::WAPX());

(b) homogeneous evaluation using exactleda_integer arithmetic (accesses the::X(),::Y()
and::W() member functions).

(4) If they are of algebraic type:
(a) cartesian evaluation using exactleda_real arithmetic (accesses the::x() and ::y()

member functions).

108 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

So only if a predicate cannot be decided by the earlier stages, additional time and space is spent on a
more accurate computation of the involved objects and the predicate itself.

3.5. Progressive exact evaluation

Using the lazy evaluation scheme, we first try to evaluate the predicate using floating-point arithmetic
and if the outcome cannot be proved to be correct, we trigger an exact computation for all objects involved
in that predicate (which in turn triggers exact computations of their defining objects) and then evaluate
the predicate using exact arithmetic. But can we do better?

Let us first extend the definition of the object dependency graph and also allow geometric predicates
as nodes (actually we only allow them as the root of an object dependency graph). Consider the object
dependency graph in Fig. 3. Let us define the depth of an object in the object dependency graph as the
maximum length of a path from the root to that object.

So far, if the floating-point evaluation of the orientation test fails, exact arithmetic computations
of all objects involved (P,Q,R,S,T ,U,V , intersection point, centerpoint) are triggered. But it may
help to evaluate the coordinates of the objects at depth 2 (here: the intersection point) exactly,
improve their floating-point approximations using the exact values and then recompute the floating-point
approximations of the ‘higher’ objects (here: the centerpoint). Since we get better error bounds now, this
may suffice to decide the orientation predicate. Hence, if the floating-point evaluation of a predicate fails,
we proceed as follows:
(1) determine the deepest node in the object dependency graph which has not been evaluated exactly;

assume its depth isd; if d = 1, evaluate the predicate exactly,
(2) evaluate all objects with depthd exactly and improve their floating-point approximations,
(3) reevaluate the floating-point approximations of all objects with distance less thand to the root,
(4) if no decision could be made, start from (1) again.
Note that actual ‘exact evaluation’ is possible only for rational objects. For algebraic objects, ‘exact
evaluation’ means computing the value using theleda_real datatype and ‘improving the floating-

Fig. 3. Object dependency graph for an orientation test.

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 109

point approximations’ means sharpening the numerical representation inside theleda_real datatype
to double precision.

To allow for an efficient implementation, we store abirthday for every object. Objects built of input
data have birthday 0. When a new geometric object is constructed (and its floating-point approximation is
computed), it gets as birthday the sum of the birthdays of its defining objects. When theleda_integer
or leda_real representations of the coordinates of an object are triggered and the floating-point
approximation are improved accordingly, its birthday is incremented by one. Then, in the process of
progressive exact evaluation, if an object realizes that the sum of the birthdays of its defining objects
is greater than its own birthday, it knows that it can improve its floating-point approximation by just
recomputing using the improved floating-point approximations of its defining objects.

We skip this additional code in the predicate evaluation, but it only adds a few lines to the code given
for the orientation test.

3.6. Conservative memory management

So far our strategy is to perform exact computation only on demand, but once computed keep the
result such that if later the same result is required, no recomputation is necessary. For some applications,
though, where memory consumption is an issue, it may be more appropriate not to keep the exact
results, i.e., after a predicate evaluation which possibly triggered a sequence of arbitrary arithmetic
computations, we discard the arbitrary precision results but of course keep the refined floating-point
approximations.

We have incorporated a simple toggle in the LOOK kernel to switch between discarding and
keeping results computed using arbitrary precision arithmetic. If a predicate evaluation required arbitrary
precision arithmetic and the ‘discard’ toggle is set, it recursively frees all extended blocks allocated
during the evaluation of the predicate.

As it turns out, there are cases where discarding the computed results results in a better runtime than
keeping them. This is probably due to the cache getting less effective, if memory consumption is very
high.

3.7. Storing nested geometric constructions

We are currently implementing input/output routines which allow storing geometric constructions
on external storage devices like harddisks. This basically means to store all dependency graphs of the
geometric objects currently in memory. To keep space consumption low, only the approximations are
stored with the graph.

4. How to use it as a programmer

4.1. ‘Normal’ use

The nice thing about LOOK is the fact that it encapsulates and hides all of the above mechanisms from
the programmer. If he does not want to introduce new geometric constructions or predicates, he can use
the geometric object representations provided by LOOK in exactly the same manner as if he was using a
geometric kernel of LEDA or CGAL.

110 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

4.2. Extending LOOK

Nevertheless, adding functionality to LOOK is not hard either. For instance adding additional
predicates is very easy, given the examples already present in LOOK. They show how the different
floating-point filter stages are combined to get best performance. For very efficient code, we also
recommend using EXPCOMP for the first filter stage as it was done in case of the orientation predicate.

But even if she wants to extend LOOK beyond the geometric constructions already provided, the effort
is not much more than writing these constructions for another kernel, for example the LEDA or CGAL
kernels. Basically she only has to derive a new point class from the abstract classbase_point and
implement the member functions which actually compute the coordinates of the new point. With little
more effort, she can also support the progressive exact evaluation code. In the following we will consider
the simple example of line intersections.

4.2.1. Example: intersection of lines
For sake of simplicity, we neglect the case where the lines are parallel or identical. Of course, in the

actual implementation these cases are treated as well.
We first derive a new class from the abstract representation classbase_point_rep. An instance

of this new classline_intersection upon instantiation stores the defining lines, determines its
type (either rational or algebraic), triggers the computation of its approximated cartesian coordinates and
stores its ‘birthday’ which is needed for the progressive exact evaluation mechanism.

class line_intersection : public base_point_rep
{
OLINE L1, L2;

public:
line_intersection(const OLINE &l1,

const OLINE &l2)
{ L1=l1;L2=l2; SharpenCAPX();
if (L1.RatType() &&

L2.RatType())
Status|=RAT_TYPE;

Birthday=L1.Birthday()+L2.Birthday();
}

private:
virtual int ComputeHExact();
virtual int ComputeHApprox();
virtual int ComputeCExact();
virtual int ComputeCApprox();

virtual void Reincarnate(); //optional
virtual int DeepestInexact(); //optional
virtual void SharpenAtDepth(int d); //optional

};

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 111

The programmer only has to implement the virtualComputeXXX() member functions as they are
called from the lazy evaluation mechanism of the parentbase_point_rep class. Optionally, if the
new class should also make use of the progressive exact evaluation scheme, implementations for the
Reincarnate(), Deepest Inexact() and SharpenAtDepth() member functions can be
given, though these implementations are almost generic and only depend on the number and type of
defining objects.

As we neglect the degenerate cases of identical or parallel lines, the implementation of our
IntersectLines()3 function is trivial. We just initialize a newOPOINT handle with the
representative of the line intersection:

int IntersectLines(const OLINE &l1,
const OLINE &l2,
OPOINT &s)

{
s=OPOINT(new line_intersection(l1,l2));
return 1;

}

Of course, what is really interesting now are the implementations of the virtualComputeXXX()member
functions.

int line_intersection::ComputeCExact()
{
OPOINT S1=L1.Source(), T1=L1.Target(),

S2=L2.Source(), T2=L2.Target();

leda_real dx1=T1.x()-S1.x();
leda_real dy1=T1.y()-S1.y();
leda_real dx2=T2.x()-S2.x();
leda_real dy2=T2.y()-S2.y();
leda_real w=dy1*dx2-dx1*dy2;
leda_real c1=T1.x()*S1.y() -

S1.x()*T1.y();
leda_real c2=T2.x()*S2.y() -

S2.x()*T2.y();

_xCoord()=(c2*dx1-c1*dx2)/w;
_yCoord()=(c2*dy1-cl*dy2)/w;
return 1;

}

and

3 The only thing of this section a ‘normal’ programmer will ever see.

112 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

int line_intersection::ComputeCApprox()
{
OPOINT S1=L1.Source(), T1=L1.Target(),

S2=L2.Source(), T2=L2.Target();

INTERVAL t1x=T1.xAPX(), t1y=T1.yAPX();
INTERVAL s1x=S1.xAPX(), s1y=S1.yAPX();
INTERVAL t2x=T2.xAPX(), t2y=T2.yAPX();
INTERVAL s2x=S2.xAPX(), s2y=S2.yAPX();

fpu::round_up();
INTERVAL dx1=t1x-s1x, dy1=t1y-s1y;
INTERVAL dx2=t2x-s2x, dy2=t2y-s2y;
INTERVAL w=dy1*dx2-dx1*dy2;

INTERVAL c1=t1x*s1y-s1x*t1y;
INTERVAL c2=t2x*s2y-s2x*t2y;

_xCoordAPX()=(c2*dx1-c1*dx2)/w;
_yCoordAPX()=(c2*dy1-c1*dy2)/w;
fpu::round_nearest();
return 1;

}

The code for the pairComputeHExact()/ComputeHApprox() is analogous. In fact, the code for
computing the approximation is in most cases just a copy of the ‘exact’ code with the arbitrary precision
number type replaced by the interval type.

Note that in the code for computing the approximations, we have to switch rounding mode of the
floating-point unit before doing any calculations as the interval typeINTERVAL relies on the correct
IEEE rounding mode when determining upper and lower bounds of the intervals (there is also a version,
where the switch of the rounding mode is done implicitly, but it is considerably slower as it has to be
done before and after every arithmetic operation), see [3] for more details.

By just providing the above code, points generated by intersection of lines can benefit from all
advantages of our framework; in particular, anOPOINT constructed usingIntersectLines(...)
can be plugged into any predicate within the LOOK kernel. If the predicate turns out to be difficult the
exact evaluation of the intersection point is automatically triggered. The code allowing for that is all
inherited fromclass base_point_rep, so the programmer does not have worry about that.

To be complete we state the missing code for the optionalReincarnate(), DeepestInexact()
andSharpenAtDepth()member functions.

virtual int line_intersection::Reincarnate()
{
if (Status&COMPUTED_HEXACT)
return 0;

L1.Reincarnate(); L2.Reincarnate();

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 113

int NewBirthday=L1.Birthday()+L2.Birthday();

if (NewBirthday>Birthday)
{
Birthday=NewBirthday;
ComputeCApprox();
return 1;

}
else return 0;

}

virtual int line_intersection::DeepestInexact()
{
if (Status&COMPUTED_HEXACT) return 0;
int l1=L1.DeepestInexact();
int l2=L2.DeepestInexact();

return MAX(l1,l2)+1;
}

virtual void line_intersection::SharpenAtDepth(int d)
{
if (d==1) SharpenHEXACT();
else if (d>1)
{
L1.SharpenAtDepth(d-1);
L2.SharpenAtDepth(d-1);

}
}

Just as a remark, the implementation of theIntersectSegments() function is trivial when reducing
it to the line intersection:

int IntersectSegments(const OSEGMENT &s1,
const OSEGMENT &s2, OPOINT &p)

{
int s1_s, s1_t, s2_s, s2_t;
s1_s=orientation(s1,s2.Source());
s1_t=orientation(s1,s2.Target());
s2_s=orientation(s2,s1.Source());
s2_t=orientation(s2,s1.Target());

if ((s1_s!=s1_t) && (s2_s!=s2_t))
{
p=OPOINT(new line_intersection(s1,s2));

114 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

return 1;
}
return 0;

}

Note that the orientation tests called from this function are, of course, fully filtered.

5. Experiments

In this section we compare implementations of geometric algorithms using our LOOK kernel with
implementations based on the LEDA RatKernel and the CGAL kernel. The test platform was a Sun
UltraSparc 333 MHz with 128 MB RAM running Solaris 2.7. We usedg++ 2.95.3, LEDA 4.0, and
CGAL 2.2.

5.1. LOOK compared to LEDA’s RatKernel

In our first example, we examine how different geometry kernels behave when we increase the nesting
depth of geometric constructions.

We have tested seven different implementations of Dwyer’s divide-and-conquer algorithm for comput-
ing the Delaunay triangulation of a set of points in the plane [8]. First one using the floating-point kernel
of LEDA (FPKernel), then two variants using the rational kernel of LEDA. In both variants, constructions
are always performed using exact integer arithmetic; in the first variant (which is the one in the current
LEDA version), though, predicates are filtered using a floating-point filter based on homogeneous co-
ordinates, whereas the second variant additionally incorporates a floating-point filter based on cartesian
coordinate representation to overcome the problem of overflow as discussed in Section 3.2.

Finally there are four variants using the LOOK kernel. The first one keeps all results computed using
arbitrary arithmetic and uses the progressive evaluation scheme (MaxMem/PEE); the second one also
keeps all results but does not use the progressive evaluation scheme (MaxMem/no PEE). The third one
deletes all results computed using arbitrary precision arithmetic after each predicate evaluation and uses
the progressive evaluation scheme (MinMem/PEE) whereas the fourth variant neither keeps exact results
nor uses the progressive evaluation scheme (MinMem/no PEE).

As a benchmark we iterated Voronoi diagram computations. Starting with a point setS0, in iterationi

we determinedSi+1 from Si by computing the Delaunay triangulation ofSi and adding the circumcenters
of all triangles. By this procedure, the number of elements inSi roughly tripled in each iteration. Note
that about 2/3 of the elements inSi are created in the(i − 1)th iteration, so most predicate evaluations
involve data points constructed in the previous stage.

As S0 generated a set ofN randomly distributed points on a 32 bit integer grid such that the final
iteration computes the Delaunay triangulation of about 8000 points. To keep the comparison between
lazy construction in LOOK and the immediate exact arithmetic construction in the RatKernels fair, we
always skipped the construction of the circumcenters in the last iteration. Tables 1 and 2 show the
results for different numbers of iterations. We give both, the total running time and the time spent for
constructing the circumcenters. Of course, the variants using LOOK use very little time for construction
as they only store the involved objects and compute a floating-point approximation. But if later, during the

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 115

Table 1
Iterated Voronoi computations (1); time in secs. (construction/total)

of Initial FPKernel RatKernel

Iter. N cart. FP no cart. FP

1 8100 (0/0.56) (0/0.58) (0/0.56)

2 2700 (0.09/0.76) (0.42/1.11) (0.43/1.22)

3 900 (0.11/0.81) (0.75/1.84) (0.83/73.1)

4 300 (0.11/0.85) (3.63/103) (3.95/836)

5 100 (0.12/0.80) (33.6/1009) (37.6/8065)

Table 2
Iterated Voronoi computations (2); time in secs. (construction/total)

of Initial LOOK

Iter. N MaxMem/PEE MaxMem/no PEE MinMem/PEE MinMem/no PEE

1 8100 (0/1.12) (0/1.11) (0/1.21) (0/1.26)

2 2700 (0.11/1.61) (0.13/1.60) (0.12/1.91) (0.14/1.98)

3 900 (0.15/2.07) (0.16/2.03) (0.14/2.91) (0.14/2.99)

4 300 (0.15/3.93) (0.14/7.67) (0.16/6.51) (0.14/12.0)

5 100 (0.15/24.23) (0.17/51.8) (0.16/21.6) (0.15/78.5)

computation of the Delaunay triangulation in the next iteration, the coordinates are requested in arbitrary
precision arithmetic, the arbitrary precision computation is triggered.

We now look in more detail at the MaxMem/PEE instance where we initially start with 100 points and
perform 5 iterations of Voronoi computations. Table 3 shows how many of the extended blocks (which
store the coordinates of typeleda_integer) are allocated after theith iteration. Note that for any
‘MinMem’ scheme, the number of extended blocks will be at most 100 after every predicate evaluation.
Of course, during a predicate evaluation some extended blocks have to be allocated temporarily.

To compare the running time for ‘easy’ examples, we computed 2 iterations on a set of 10000 randomly
generated points with 32 bit integer coordinates. This computation is basically thecrustcomputation as
described in [1]. See Table 4 for the results. It turns out, that if the computation does not involve more
than one level of construction, LOOK is about 2–3 times slower than the (tuned) LEDA RatKernel. With
increasing nesting depth of the constructions, LOOK performs better and better compared to the LEDA
RatKernel.

One reason for that is the use of the lazy evaluation scheme. As can be seen in Table 3, only some of
the constructed points have been evaluated exactly during the algorithm, whereas the RatKernelsalways
perform the constructions using exact arithmetic. If we get to higher nesting depths than 5, though, exact
arithmetic evaluation of almost all point objects has been triggered. A closer examination of the results

116 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

Table 3
Memory allocation

Iter. # Point objects # Extended blocks

2 299 0

3 848 245

4 2528 788

5 7562 4865

Table 4
Crust computation of 10000 points

FPKernel RatKernel(1) RatKernel(2) LOOK

3.06 5.47 4.47 6.68

showed that this is due to degeneracies which lead to difficult predicate evaluations triggering the exact
evaluations of constructions. But nevertheless, the LOOK implementations are still much faster in these
cases than the RatKernel implementations due to the improved filtering techniques (interval filters which
yield closer error bounds than the semi-static filters used in the RatKernels).

Surprisingly, the LOOK variant using the memory saving scheme of deleting all arbitrary precision
results after a predicate evaluation together with the progressive exact evaluation performs very well,
especially with increasing nesting depth. Although the deletion of all intermediate arbitrary precision
computations requires some recomputations, the reduced memory allocation seems to lead to a more
efficient caching, so the overall running time is even better. Note that the progressive exact evaluation
scheme helps considerably for both memory management schemes.

5.2. LOOK as a CGAL kernel traits class

In the CGAL library [4] all algorithms and datastructures are generic in the sense that a programmer
can plug in any geometric kernel that meets certain requirements into the algorithms provided by CGAL.
But CGAL also provides templates for geometric kernels where the user only has to plug in a number type
that is used for the coordinate representation. For example, by plugging in the number typeleda_real
for exact arithmetic with algebraic numbers into the cartesian kernel template, we get a kernel for exact
computation with algebraic geometric objects.

We have accommodated LOOK to be compatible with CGAL’s algorithms by wrapping it in a so-
called kernel-traits class. In the following we will compare the performance of the LOOK kernel with
other kernels when plugged into the CGAL algorithms. We have tested the following kernels:
• LOOK: the LOOK kernel as CGAL plugin;
• RatKernel: the LEDA RatKernel as CGAL plugin;
• C〈leda_real〉: the CGAL cartesian kernel withleda_real representation;
• C〈double〉: the CGAL cartesian kernel with double representation.4

4 Note that this kernel does not guarantee exact computation.

S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118 117

Table 5
Convex hull of 50000 32 bit integer points

RatKernel LOOK C〈leda_real〉 C〈double〉
0.38 1.00 3.02 0.16

Table 6
Convex hull of the intersections of 500 circles;
cartesian integer coordinates

LOOK C〈leda_real〉 C〈double〉
Intersection 0.52 7.51 0.11

Total 1.08 10.1 0.17

As the first example we computed the convex hull of 50000 random points with 32 bit integer coordinates
using the default convex hull algorithm of CGAL. Note that this computation does not involve any
geometric constructions, so we expect the RatKernel to perform best of the exact kernels. See Table 5 for
the results.

A more complex example is the computation of the convex hull of points which are not available as
input data, but computed as the intersection of circles. Note that this computation involves square roots
and hence we cannot use the RatKernel for this experiment. Table 6 shows the result for the intersections
of 500 circles (they have about 26000 intersection points). Also compare with the experimental results
in [5].

As we have seen in the previous section, we have to pay a little bit for the more involved filtering
techniques, so for very simple examples, where no constructions take place, we lose about a factor
of 2–3 compared to the RatKernel, but are still 3 times faster than the cartesianleda_real kernel.
If constructions take place, though, as in the example for the convex hull of circle intersections, we
gain a factor of about 10 compared to the cartesianleda_real kernel. As we have predicted in our
discussion in the previous sections, this is due to reducing the bookkeeping overhead from expression
level to geometric construction level.

6. Conclusion

We have presented LOOK, a Lazy Object-Oriented Kernel design for exact geometric computation.
In contrast to previous kernels, LOOK supports various kinds of floating-point filter techniques both on
predicate level as well as on construction level. If a problem involves many geometric constructions,
LOOK performs about 3–40 times better than the LEDA RatKernel or CGAL kernels for exact
computation.

The technique of bookkeeping on object level also allows for many evaluation strategies. If memory
consumption is a big issue, one can keep this very low—even close to pure floating-point computation,
as the arbitrary precision representation of at most one predicate evaluation is present in memory at
any given time. To our very surprise, this approach of discarding all arbitrary precision results after a
predicate evaluation performed quite well, especially for more complicated examples. So it seems as if
memory allocation is not the main difficulty for deeply nested exact constructions.

Of course, LOOK is not a panacea for exact implementations of geometric algorithms. Although the
advanced filtering techniques allow the decision of most predicates without resorting to exact arithmetic
computations, the evaluation of really difficult predicates which require exact arithmetic, getsvery
expensive with increasing nesting depth. Here is a point where algorithmic changes may help. There is the
idea to design algorithms with only low-degree predicates and thus reducing the numerical complexity,

118 S. Funke, K. Mehlhorn / Computational Geometry 22 (2002) 99–118

for example [2]. On the other hand one could try to reduce the number of arbitrary precision evaluations
even further by allowing some of the predicates to err. Of course, as we want a correct final result,
it all depends onwhich predicates we allow to err. In [11] we show that a very simple but powerful
idea can reduce the number of arbitrary precision evaluations considerably, in particular in (almost)
degenerate cases. Part of our future work will be devoted to combining this approach with LOOK to
improve performance for deeply nested computations.

Furthermore we want to increase the number of algebraic constructions in our kernel, e.g., the
constructions for Voronoi nodes in the Voronoi diagram of points and line segments. Of course it may be
also interesting to apply these ideas to construct a kernel for higher-dimensional geometric computation.

References

[1] N. Amenta, M. Bern, D. Eppstein, The crust and theβ-skeleton: Combinatorial curve reconstruction, in: Proc.
14th Annual ACM Symposium on Computational Geometry, 1998.

[2] J.-D. Boissonat, J. Snoeyink, Efficient algorithms for line and curve segment intersection using restricted
predicates, in: Proc. 15th Annual ACM Symposium on Computational Geometry, 1999.

[3] H. Brönnimann, C. Burnikel, S. Pion, Interval analysis yields efficient arithmetic filters for computational
geometry, in: Proc. 14th Annual ACM Symposium on Computational Geometry, 1998.

[4] The CGAL project http://www.cs.uu.nl/CGAL/.
[5] C. Burnikel, R. Fleischer, K. Mehlhorn, S. Schirra, Efficient exact geometric computation made easy, in: Proc.

15th Annual ACM Symposium on Computational Geometry, 1999.
[6] C. Burnikel, S. Funke, M. Seel, Exact geometric computation using cascading, preliminary version in:

Proc. 14th Annual ACM Symposium on Computational Geometry, 1998; also: International Journal on
Computational Geometry and Applications, to appear.

[7] O. Devillers, P. Preparata, Further results on arithmetic filters for geometric predicates, Computational
Geometry: Theory and Applications 13 (2) (1999) 141–148.

[8] R.A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay triangulations, Algorithmica 2
(1987) 137–151.

[9] S. Fortune, Vertex-rounding a three-dimensional polyhedral subdivision, in: Proc. 14th Annual ACM
Symposium on Computational Geometry, 1998.

[10] S. Fortune, C. van Wyk, Static analysis yields efficient exact integer arithmetic for computational geometry,
ACM Trans. Graphics 15 (3) (1996) 223–248.

[11] S. Funke, K. Mehlhorn, S. Näher, Structural filtering—A paradigm for efficient and exact geometric programs,
in: Proc. 11th Canadian Conference on Computational Geometry, 1999.

[12] IEEE standard 754-1985 for binary floating-point arithmetic; reprinted in SIGPLAN 22 (2) (1987) 9–25.
[13] M. Karasick, D. Lieber, L. Nackmann, Efficient Delaunay triangulation using rational arithmetic, ACM

Transactions on Graphics 10 (1) (1991) 71–91.
[14] The LEDA homepage http://www.mpi-sb.mpg.de/LEDA/.
[15] C.K. Yap, T. Dube, The exact computation paradigm, in: D. Du, F. Hwang (Eds.), Computing in Euclidean

Geometry, 2nd edition, World Scientific Press, Singapore, 1995, pp. 452–492.

