
Las Vegas is better than Determinism in VLSI

and Distributed Computing

(Extended Abstract)

Kurt Mehlhorn
Fachbereich Io

Universit~t des Saarlandes
66 Saarbr~cken, West-Germany

I. Introduction

In this paper we describe a new method for

proving lower bounds on the complexity of

VLSI - computations and more generally

distributed computations. Lipton and

Sedgewick observed that the crossing se-

quence arguments used to prove lower bounds

in VLSI (or TM or distributed computing)

apply to (accepting) nondeterministic com-

putations as well as to deterministic com-

putations. Hence whenever a boolean func-

tion f is such that f and f (the complement

of f, f = I - f) have efficient nondeter-

ministic chips then the known techniques

are of no help for proving lower bounds on

the complexity of deterministic chips.

In this paper we describe a lower bound

technique (Thm 1) which only applies to

deterministic computations. More specif-

ically, we will show that in order to com-

pute f(x,y), x6X, y6Y deterministically

using two computing agents, one of which

knows x and one of which knows y,

log rank k f bits have to be exchanged be-

tween the two computing agents. Here

rank k f denotes the rank of 0-I matrix

(f(x,Y))x6X,y6Y over the field k; k is

Permission to copy without ~ e all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publi~tion and i~ date ap~ar , and notice is given that copying is by
~rmission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a ~e and/or specific permission.

© 1982 ACM0-89791-067-2/82/005/0330 $00.75

Erik M. Schmidt
Dep. of Computer Science

Aarhus University
Aarhus, Denmark

arbitrary.

In the application to VLSI, we cut the

chip in half with respect to the inputs,

and let the two halves of the chip be the

two computing agents.

The lower bound technique is strong enough

to distinguish the complexity of nondeter-

ministic and deterministic computations.

Even more is true. It is strong enough to

distinguish Las Vegas and deterministic

computations, i.e. we will exhibit a'spe-

cific function f such that

AT~det (f), AT~det (f),

T 2 AT~e t (f) ALas Vegas (f) <<

Here, AT 2 denotes the complexity measure

area x time 2 of where-oblivious chips.

ALas Vegas chip uses internal randomiza-

tion. However, the output does not depend

on the chance events in the algorithm, i.e.

Las Vegas algorithms have zero probability

of error. The running time of a Las Vegas

algorithm is the expected running time av-

eraged over all possible outcomes of the

chance events.

Similarly, we exhibit a language L such

that

S-Tndet (L), S.Tndet (L),

S'TLas Vegas (L) << S-Tde t (L)

Here, S-T denotes the complexity measure

space x time of multi-tape Turing machines.

330

II. A Lower Bound on Deterministic Two-Way

Communication Complexity

Following Yao [Yao I and Yao 2] we make the

following definitions. Let X and Y be sets

and let f : X x y ~ {O,1} be a O-I valued

function. We are interested in the follow-

ing problem. Let x6X and y6Y be known to

persons L and R respectively. For L and R

to determine cooperatively the value

f(x,y), they send information to each other

alternately, one bit at a time, according

to some algorithm. The quantity of interest,

which measures the information exchange

necessary for computing f, is the minimum

number of bits exchanged in any algorithm.

A deterministic algorithm is given by two

response functions h L : X x B • ~ B and

h R : Y × B ~ ~ B and the partial output

function a : B ~ ~ B, where B = {0,1}. The

computation on input (x,y) proceeds as fol-

lows. L starts the computation and sends

bit hL(X,¢) = w I to R; R returns

w 2 = hR(Y,Wl); L returns w 3 = hL(X,WlW2) ,

... until Wl...Wk(x,y) 6 dom a. At this

point the computation stops with the result

a(wl...Wk(x,y)) = f(x,y), k(x,y) is the

length of the computation.

The deterministic two-way communication

complexity of f is defined by

Cdet(f, I<->2) = min max kA(X,y)

A x6X

y6Y

where the minimum is taken over all deter-

ministic algorithms which compute f and

kA(X,y) is the length of the computation

on input x,y when algorithm A is used.

The model described above was introducted

by Yao. Yao related Cde t (f, I<->2) with

the decompositon number of 0-I matrices and

determined the communication complexity of

almost all functions in the deterministic

and the probabilistic model. However, he

obtained results about only a few concrete

functions; e.g. the identity function. In

theorem I below, we describe a more gener-

ally useful lower bound technique.

Definition: Let k be a ring and let k (n'm)

be the set of n by m matrices with entries

in k. The rank of A 6 k (n'm) over k is de-

fined by

rankk(A) =

min{p; 3 C 6 B (n'p), D 6 B (p'm) : A = C-D}

We can now state the main theorem of this

section.

Theorem I: Let f : X × Y ~ {O,I} be a func-

tion, let F = (f(x,Y))x£X,y6Y be the O-I

matrix associated with f, let ~be the ring

of integers and let k be any field. Then

Cdet(f, I<->2) ~ log rank~F)

log rankk(F)

Proof: (sketch). The second inequality is

based on the fact that rank~ F ~ rankkF

for any field k and any 0-I matrix F.

For the proof of the first inequality we

need one more concept : one-way nondeter-

ministic unambiguous computations. This

concept was studied previously by the sec-

ond author in the context of finiteautcmata

A nondeterministic one-way algorithm is given

by a set HL(X) ~ B ~ for every x6X and a re-

sponse function b : Y x {0,1} ~ ~ {0,1}. On

input (x,y), L sends some w 6 HL(X) to R

and then R outputs b(y,w). We assume that

U HL(X) is prefix-free because only this
x6X

will alow R to know when L has completed

transmission. The algorithm computes f if

f(x,y) = I iff Hw W6HL(X) and b(y,w) = I.

The complexity of a nondeterministic al-

gorithm is defined as usual by

max min{lwl;W6HL(X) and b(y,w) = I}
x6X,y6Y
f(x,y)=1

A nondeterministic algorithm is unambiguous

if accepting computations are unique, i.e.

331

for all x,y

3w w ,£ HL(X) and b(y,w) = I

~3! w w £ HL(X) and b(y,w) = I

We use Cunamb(f, I ~ 2) to denote the com-

plexity of f with respect to one-way unam-

biguous nondeterministic computations. Our

proof of the first inequality is based on

the following two lemmas.

Lemma I: Cde t (f, I<->2) ~ Cunam b (f, I ~ 2)

Lemma 2: Cunam b (f, I ~ 2) a log ranklNF.

Proof of lemma I: Let (hL, hR, a) be a de-

terministic algorithm for f. We simulate it

by a nondeterministic one-way algorithm as

follows. L sends bit w I = hL(X,S), then it

guesses and sends the response w 2 of R,

then it sends w 3 = HL(X,WlW2) , ... until

Wl...w k £ dom a. Upon Receiving Wl...w k R

checks whether L guessed correctly, i.e.

w2i = hR(Y,Wl...w2i_1) for 2i~ k, and if so

R outputs b(y,wl...w k) := a(wl...Wk). If

not, R outputs O.

The simple but crucial observation is that

the algorithm described above is unambigu-

ous, since for every x and y there is at

most one w, namely the deterministic compu-

tation on (x,y), such that L can send w and

R outputs I after receiving w. []

Proof of lemma 2: Let k = Cunam b (f, I ~ 2)

and let (HL(X))x6 x and b be an unambiguous

one-way algorithm for f with complexity k.

Let W = (U HL(X)) n (U Bi). Then
x6X i~k

IWI ~ 2 k since U HL(X) is prefix-free.
x6X

Claim I: for all x6X,y6Y

f(x,y) = E [w 6 HL(X)] • b(y,w)
w£W

(here [w 6 HL(X)] = I if w 6 HL(X) and 0

othe]~ise).

Proof of claim I: If f(x,y) = 0 then there

is no w such that w 6 HL(X) and b(y,w) = I.

If f(x,y) = I then there is exactly one w

such that w 6 HL(X) and b(y,w) = I. Further-

more, this w has length at most k.

The claim above immediately gives rise to

a matrix equation, namely

F = H • K

where

6 B (IXi'IWl)
H = ([w 6 H L(x)])x6X,w6W

and

6 B (Iwl' IYI)
K = (b(y,W))w6W,y6y

Hence rank F <_ IWl or

Cunam b (f, 1 ~2) = k >_ log rank~ F. []

We note in passing that lemma 2 holds true

with equality and that lemma I holds true

with equality if Cdet(f, I<->2) is replaced

by Cunam b (f, I<->2).

The second inequality in theorem I is im-

portant because the standard tricks of lin-

ear algebra can be used to determine the

rank of a matrix over a field k.

Finally, note that the claim in the proof

of lemma 2 is false for general nondeter-

ministic computations. It can be replaced

by: for all x6X

{y; f(x,y) = I} = U {y; b(y,w) = I].
W6HL(X)

This equality can be used to prove

Cndet (f, I<->2) ~ log log nrow F

where nrow F is the number of different

rows in matrix F.

We close this section with a brief outline

of an alternate proof of theorem I due to

M. Paterson.

Alternate proof of theorem I: The alternate

proof of theorem I is based on the follow-

ing fact.

332

Fact: Let k be a ring, A 6 k (n'm)

and C 6 k (q'm). Then

, B 6 k (n'p)

rankk((A B)) S rankk(A) + rankk(B)

and

rankk((~)) ~ rankk(A) + rankk(C),

here (A,B) denotes the matrix obtained by

writing A and B side by side.

Proof: If A = Ei.D I and B = E2-D 2

D I 0
(A B) = (E I E2). (O D2)

then

Consider any two-way deterministic algo-

rithm (g,h,a) for computing f. We define

matrix Fw, w 6 {0,1] ~, by induction of lwl

as follows:

I) F = F
E

2) if IWE = 2Z then Fwo(Fwl) is obtained

from F w by selecting rows x with

g(x,w) = O (g(x,w) = I).

3) if aWl = 2£ + I then Fwo(Fwl) is ob-

tained from F w by selecting columns y with

h(y,w) = O (h(y,w) = I).

Note that

max(rank~ (Fwo),ranklN (Fwl)) Z ranklN (F~

by the fact above and that w 6 dom a im-

plies that F is a constant matrix and
w

hence rankiN (F w) ~ I. Thus the complexity

of any deterministic algorithm for f is at

least log ranklN (F). []

III. Las Vegas is better than Determinism

for Communication Complexity

We exhibit a function f such that

Cndet(f, I<->2), Cndet(f , I<->2),

CLa s Vegas(f, I<->2) << Cdet(f , I<->2)

denotes the complement of f, i.e.

f(x,y) = I - f(x,y). Las Vegas algorithms

use internal randomization, i.e. persons L

and R use coin tosses in order to compute

their responses. Las Vegas algorithms are

required to always produce the correct re-

sult, i.e. the probability of error is

zero. The complexity is the expected num-

ber of bits exchanged (maximized over all

inputs (x,y)).

Our result shows that in the realm of dis-

tributed computing (and VLSI and TM) not

only nondeterminism but even Las Vegas is

provably better than determinism.

Definition: Let n 6 IN and let X =

Y = [0..2n-I] n. For x = (x I ,Xn)£ X and

y = (yl,...Yn)6 Y let

I if 3i

f(x,y) = {
O if Vi

xi = Yi

xi # Yi

X and Y can be thought of n numbers of n

bits each. L and R are each given a list

of n numbers. They have to find out wheth-

er the two lists agree in at least one po-

sition.

Theorem 2:

2
a) Cde t (f, I<->2) ~ n

b) Cndet(f , 1<->2) = O(n+log n)

c) Cndet(f , I<->2) = O(n log n)

d) CLa s Vegas(f, I<->2) = O(n(log n) 2)

Proof: (sketch). a) Note that

IXl = IYl = 2 (n2). Let F be the 0-I matrix

associated with f. In view of theorem I,

it suffices to show rankGF(2) F ~ 2 (n2)

where GF(2) is the field of characteristic

two. We use • to denote addition mod 2. We

transform F into the identity matrix by

means of linear transformations.

Lemma: Let w I ,Wn,Y I ,yn 6 [O...2n-I].

Define g(w I ,Wn,Y1,...,yn) :=

-.- ~ f(Xl Xn,Yl Yn)
Xl x n

Xl@W1 Xn@W n

333

Then

1 i f V i w i = Y i

g(w1'''''Wn'Y1'''''Yn) = O otherwise

Proof: Note that

g(w I Wn,Y I yn) = i {(x I, x n) ;

x I ~ [Yl,Wl},...,Xn ~ {Yn,Wn}} Imod 2

n
= T7 (2 n - { {Yi,Wi} imod 2

i=I

Matrix G = (g(w,Y))w6X,y6Y is obtained

from F by adding rows. Hence

rankGF(2). (G) ~ rankGF(2 ~. . F. Also G is the

identity matrix and hence
2(n 2)

rankGF(2) (G) =

b) L guesses an i E [1...n] and sends i

and x i to R. If x i = Yi then R outputs I.

c) For every i 6 [1...n], L guesses

Ji 6 [1...n] and sends Ji and the Ji -th bit

of x i to R; O(n.log n) bits altogether. R

outputs I if the Ji -th of x i and Yi differ

for all i.

d) The algorithm is based on the known ran-

dom algorithms for inequality testing (cf.

Freivalds). Whilst these algorithms have

non-zero probability of error, we can

achieve zero probability of error for our

problem as follows. We recall the follow-

ing fact.

Fact: Let pl,...,pm be the primes ~ n.

Then u,v 6 [O...2n-I], u * v, implies

I {j; u ~ v rood pj} I _> m/2

The algorithm is as follows. Both L and R

have the list pl,...,pm.

for i from I to n

do

L selects r (to be determined later)

primes ,. . at random from the
(A) PJl "''P3r

list and sends jl,...,jr and

x i mod pjl,...,xi mod PJr to R.

R checks whether x i = Yi mod pj for
£

all Z 6 [1...r].

(B)

If this is the case then R asks

for and gets the complete x. from
1

L. If x i = Yi then R stops and

outputs I.

od

Stop and Output O.

It is obvious that this algorithm computes

f(x,y) with zero probability of error. In

part (A) O(r-log n) bits are sent for every

i 6 [1...n], in part (B) O(n) bits are sent.

If x i = Yi then part (B) is always executed;

but the case x i = Yi occurs only once dur-

ing the execution of the algorithm. If

xi # Yi then part (B) is reached with prob-

ability 2 -r. Hence if x i # Yi then the ex-

pected number of bits sent in (A) and (B)

is r log n + 2-r-n. Thus the total number

of bits exchanged is bounded by

n(r log n + 2-r,n) + n

Choosing r = log n proves part d). o

It is worth noting that the Las Vegas algo-

rithm described above never exchanges more

than O(n 2) bits.

Theorem 2 is readily transfered to multi-

tape TM under the complexity measure S.T.

Let

L = {x I ~'''~ Xn ~(n2)yl ~'''~ Yn;

lyil = ixii = n and x i ~ Yi for all i]

Theorem 3: Let L as above. Then

a) S.Tde t (L) = ~(N 2)

(L) = O(N(log N) 2) b) S'TLas Vegas

, here N is the length of the input.

Proof: Omitted.

3 3 4

IV. Las Vegas is Better than Determinism

in VLSI

Proof: (sketch). We only sketch proofs for

a) and d), b) and c) being simpler than d).

In this section we will transfer the result

of the previous section to VLSI computa-

tion under the complexity measure AT 2. We

will have to overcome one problem. Whilst

the partition of the inputs into sets X

and Y was predefined so far, this is not

the case for VLSI computations. It is up

to the chip designer where he wants to

read in inputs. We overcome this difficulty

by modifying our function somewhat.

Consider f1(zl Z2n,S I S2n,k I %/4)

where Zl,...,Z2n 6{0, I} n are bitstings of

length n, Sl,...,S2n 6 {O,1,X} are selec-

tion inputs and kl,...,kn/4 6 [O...n-1]

are shift inputs (fl can be considered as

a function of 2n.n+2n.2+n/4.1og n = O(n 2)

binary inputs). We will assume that exactly

n/4 of the selection inputs are set to O,

say si1'''''Sin/4' and exactly n/4 are set

to I, say sjl ,s. . Then
3n/4

fl = liff zil = s~ift(zj£,k Z)

for some £611...n/4]

Here shift (zfz,k Z) denotes the cyc~lic

shift of bitstring z3z. by k£ positions.

We use ATxy z2 ,XYZ6{det, Las Vegas, nondet},

to denote the complexity measure AT 2 for

where-oblivious XYZ-Chips.

Theorem 3: Let N be the number of binary

inputs of f1" Then

2
a) A. Tde t (fl

b) A.T 2
ndet (fl

c) A-T 2
ndet (fl

= ~(N 2)

= O(N 3/2 poly (log N))

= O(N 3/2 poly (log N))

d) A.T 2 Las Vegas (fl) = O(N3/2 poly (log N))

a) Consider any where-oblivious determin-

istic chip for fl; say the chip has area A

and time T. Consider a cut of length O(/A)

which cuts the chip in half according to

the 2n 2 input bits which comprise the z's.

Let L and R be the two halves of the chip.

Let 11 = {i 6 [I...2n]; at least n/3 of

the bits of z. come through ports in L]and
1

12 = {j 6 [I...2n]; at least n/3 of the

bits of z. come through ports in R}.
3

Claim 3: IIii, II21 ~ n/2

Choose i I in/4 6 11 and Jl in/4 6

such that these n/2 numbers are pairwise

different. Set s. = ... = s. = O,
11 in/4

s. = ... = s. = I. This choice of the
31 3n/4

s-inputs will make sure that the z's which

have to be compared are read in (at least

partly) at different sides of the cut. We

will use the shift inputs to make sure that

many bits have to be transported across the

cut.

For every i, I ~ £ S n/4, let Az(B Z)

[O...n-1] be the set of bit positions in

zi£ (z 4J£) which come through ports in L(R).

Claim 4: 3k£ £ [O...n-1]:

I {t; t 6 A~ and (t+kz) mod n 6 B£} I ~ n/9

D

Set kl,...,kn/4 as given by claim 4. What

will that do for us? The chip has to decide

whether there is an i such that z i =

shift (zj ,kz). But by claim 4 at least n/9

of the corresponding input bits of z.

and shift (zj ,k£) come through ports at

opposite sides of the cut. Hence ~(n 2)

bits have to flow across the cut by theorem

2 and hence T = ~(n2/~). This shows AT 2 =

~(n 4) = ~(N2).

335

d) We describe a Las Vegas chip for fl with

area O(n 2) and time O()Tn poly (log n)).

Thus A.T 2 Las Vegas (fl) = O(n3 poly (logn))=

O(N 3/2 poly (log N)).

For every i 6 [I...2n] the chip has a

n-bit register to store zi, a shifter, a

divider, a table of the primes S n and a

randomizer. The randomizer generates ran-

dom numbers in [1...n] which are used to

select primes from the table. It assumed

that a randomizer with area A = O(n) and

T = ¢~ exists (This is part of the Las

Vegas model of VLSI; if one assumes that a

random bit can be generated in A = 0(I) and

T = 0(I) then a randomizer with A =O(logn)

and T = 0(I) would exist. So our assump-

tion is very weak). Shifters and Multipli-

ers can be done in A = O(n) T = O(n I/2)"

[Preparata/Vuillemin] and the use of New-

ton Iteration will turn a Multiplier into

a Divider with A = O(n), T = 0(ni/2)." Also

the table of primes has area O(n) and

access time O(log n).

The 2n registers are connected in two ways

with one another. Firstly of all, via a

permutation network with 2n inputs

(A = O(n2), T = poly (log n)) and second

of all, the 2n registers are used as a ran-

dom access memory. (A = O(n2), access time=

poly (log n)).

The chip operates as follows. First, the s

and k inputs are read in and are distrib-

uted to the 2n registers for the z's. Time

poly (log n) certainly suffices for this.

Next the required shifts are carried out

in parallel (T = ~n). Next we go through

the following cycle (log n) times. The ran-

domizer + the table of primes generate a

random prime (T = /n poly (log n) suffices

by our assumption), the divider modul is

used to compute the moduli (T = /~ suffices)

and the moduli are sent one bit at a time

over the permutation network

(T = poly (log n)). Note that the n/4 sub-

problems can be all worked on simultaneous-

ly. At this point 0(I) pairs (iz,j£) with

zli. % shift (z3 , . k~) w i l l s u r v i v e a l l t h e

tests (on the average). Using the random

access memory the pairs z. and shift

(zj ,k Z) will be compared for actual equal-

ity one after the other (T =O(1)poly(log n)

on average).

Altogether, the chip operates in area

A = O(n 2) and expected time

T = O()~n poly (log n)).

V. Concluding Remarks

We described a new proof method for proving

lower bounds on deterministic information

transfer and applied this method to TM and

VLSI computations. The method is strong

enough to distinguish deterministic and

Las Vegas computations.

Furthermore, the lower bound technique of

theorem I can be applied to more problems.

For example, it can be used to show lower

bounds for matching problems in bipartite

graphs. These lower bounds are of a higher

order than the corresponding nondetermin-

istic upper bounds.

References

R. Freivalds; Probabilistic machines can

use less running time, Information Process-

ing 1977, IFIP, North Holland, 1977,

839-842.

R.J. Lipton, R. Sedgewick; Lower Bounds for

VLSI, 13th ACM Symposium on Theory of Com-

puting, 1981, 300-307.

F.P. Preparata, J.E. Vuillemin; Area-Time

Optimal VLSI Networks for Computing Integer

Multiplication and Discrete Fourier Trans-

form, ICALP 81, LNCS 115, 29-4o.

336

E.M. Schmidt; Succinctness of Description

of Context Free, Regular and Unambignous

Languages, Ph. D. thesis, Cornell Universi-

ty, 1978.

A.C. Yao; Some complexity questions relat-

ed to distributive computing, 11th ACM Sym-

posium on Theory of Computing, 1979, 209-

213.

A.C. Yao; The Entropic Limitations on VLSI

computations, 13th ACM Symposium on Theory

of Computing, 1981, 3o8-311.

337

