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I. Introduction 

In this paper we describe a new method for 

proving lower bounds on the complexity of 

VLSI - computations and more generally 

distributed computations. Lipton and 

Sedgewick observed that the crossing se- 

quence arguments used to prove lower bounds 

in VLSI (or TM or distributed computing) 

apply to (accepting) nondeterministic com- 

putations as well as to deterministic com- 

putations. Hence whenever a boolean func- 

tion f is such that f and f (the complement 

of f, f = I - f) have efficient nondeter- 

ministic chips then the known techniques 

are of no help for proving lower bounds on 

the complexity of deterministic chips. 

In this paper we describe a lower bound 

technique (Thm 1) which only applies to 

deterministic computations. More specif- 

ically, we will show that in order to com- 

pute f(x,y), x6X, y6Y deterministically 

using two computing agents, one of which 

knows x and one of which knows y, 

log rank k f bits have to be exchanged be- 

tween the two computing agents. Here 

rank k f denotes the rank of 0-I matrix 

(f(x,Y))x6X,y6Y over the field k; k is 
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arbitrary. 

In the application to VLSI, we cut the 

chip in half with respect to the inputs, 

and let the two halves of the chip be the 

two computing agents. 

The lower bound technique is strong enough 

to distinguish the complexity of nondeter- 

ministic and deterministic computations. 

Even more is true. It is strong enough to 

distinguish Las Vegas and deterministic 

computations, i.e. we will exhibit a'spe- 

cific function f such that 

AT~det (f), AT~det (f), 

T 2 AT~e t (f) ALas Vegas (f) << 

Here, AT 2 denotes the complexity measure 

area x time 2 of where-oblivious chips. 

ALas Vegas chip uses internal randomiza- 

tion. However, the output does not depend 

on the chance events in the algorithm, i.e. 

Las Vegas algorithms have zero probability 

of error. The running time of a Las Vegas 

algorithm is the expected running time av- 

eraged over all possible outcomes of the 

chance events. 

Similarly, we exhibit a language L such 

that 

S-Tndet (L), S.Tndet (L), 

S'TLas Vegas (L) << S-Tde t (L) 

Here, S-T denotes the complexity measure 

space x time of multi-tape Turing machines. 

330 



II. A Lower Bound on Deterministic Two-Way 

Communication Complexity 

Following Yao [Yao I and Yao 2] we make the 

following definitions. Let X and Y be sets 

and let f : X x y ~ {O,1} be a O-I valued 

function. We are interested in the follow- 

ing problem. Let x6X and y6Y be known to 

persons L and R respectively. For L and R 

to determine cooperatively the value 

f(x,y), they send information to each other 

alternately, one bit at a time, according 

to some algorithm. The quantity of interest, 

which measures the information exchange 

necessary for computing f, is the minimum 

number of bits exchanged in any algorithm. 

A deterministic algorithm is given by two 

response functions h L : X x B • ~ B and 

h R : Y × B ~ ~ B and the partial output 

function a : B ~ ~ B, where B = {0,1}. The 

computation on input (x,y) proceeds as fol- 

lows. L starts the computation and sends 

bit hL(X,¢) = w I to R; R returns 

w 2 = hR(Y,Wl); L returns w 3 = hL(X,WlW2) , 

... until Wl...Wk(x,y ) 6 dom a. At this 

point the computation stops with the result 

a(wl...Wk(x,y)) = f(x,y), k(x,y) is the 

length of the computation. 

The deterministic two-way communication 

complexity of f is defined by 

Cdet(f, I<->2) = min max kA(X,y) 

A x6X 

y6Y 

where the minimum is taken over all deter- 

ministic algorithms which compute f and 

kA(X,y) is the length of the computation 

on input x,y when algorithm A is used. 

The model described above was introducted 

by Yao. Yao related Cde t (f, I<->2) with 

the decompositon number of 0-I matrices and 

determined the communication complexity of 

almost all functions in the deterministic 

and the probabilistic model. However, he 

obtained results about only a few concrete 

functions; e.g. the identity function. In 

theorem I below, we describe a more gener- 

ally useful lower bound technique. 

Definition: Let k be a ring and let k (n'm) 

be the set of n by m matrices with entries 

in k. The rank of A 6 k (n'm) over k is de- 

fined by 

rankk(A) = 

min{p; 3 C 6 B (n'p), D 6 B (p'm) : A = C-D} 

We can now state the main theorem of this 

section. 

Theorem I: Let f : X × Y ~ {O,I} be a func- 

tion, let F = (f(x,Y))x£X,y6Y be the O-I 

matrix associated with f, let ~be the ring 

of integers and let k be any field. Then 

Cdet(f, I<->2) ~ log rank~F) 

log rankk(F) 

Proof: (sketch). The second inequality is 

based on the fact that rank~ F ~ rankkF 

for any field k and any 0-I matrix F. 

For the proof of the first inequality we 

need one more concept : one-way nondeter- 

ministic unambiguous computations. This 

concept was studied previously by the sec- 

ond author in the context of finiteautcmata 

A nondeterministic one-way algorithm is given 

by a set HL(X) ~ B ~ for every x6X and a re- 

sponse function b : Y x {0,1} ~ ~ {0,1}. On 

input (x,y), L sends some w 6 HL(X) to R 

and then R outputs b(y,w). We assume that 

U HL(X) is prefix-free because only this 
x6X 

will alow R to know when L has completed 

transmission. The algorithm computes f if 

f(x,y) = I iff Hw W6HL(X) and b(y,w) = I. 

The complexity of a nondeterministic al- 

gorithm is defined as usual by 

max min{lwl;W6HL(X) and b(y,w) = I} 
x6X,y6Y 
f(x,y)=1 

A nondeterministic algorithm is unambiguous 

if accepting computations are unique, i.e. 
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for all x,y 

3w w ,£ HL(X) and b(y,w) = I 

~3! w w £ HL(X) and b(y,w) = I 

We use Cunamb(f, I ~ 2) to denote the com- 

plexity of f with respect to one-way unam- 

biguous nondeterministic computations. Our 

proof of the first inequality is based on 

the following two lemmas. 

Lemma I: Cde t (f, I<->2) ~ Cunam b (f, I ~ 2) 

Lemma 2: Cunam b (f, I ~ 2) a log ranklNF. 

Proof of lemma I: Let (hL, hR, a) be a de- 

terministic algorithm for f. We simulate it 

by a nondeterministic one-way algorithm as 

follows. L sends bit w I = hL(X,S), then it 

guesses and sends the response w 2 of R, 

then it sends w 3 = HL(X,WlW2) , ... until 

Wl...w k £ dom a. Upon Receiving Wl...w k R 

checks whether L guessed correctly, i.e. 

w2i = hR(Y,Wl...w2i_1) for 2i~ k, and if so 

R outputs b(y,wl...w k) := a(wl...Wk). If 

not, R outputs O. 

The simple but crucial observation is that 

the algorithm described above is unambigu- 

ous, since for every x and y there is at 

most one w, namely the deterministic compu- 

tation on (x,y), such that L can send w and 

R outputs I after receiving w. [] 

Proof of lemma 2: Let k = Cunam b (f, I ~ 2) 

and let (HL(X))x6 x and b be an unambiguous 

one-way algorithm for f with complexity k. 

Let W = ( U HL(X)) n ( U Bi). Then 
x6X i~k 

IWI ~ 2 k since U HL(X) is prefix-free. 
x6X 

Claim I: for all x6X,y6Y 

f(x,y) = E [w 6 HL(X) ] • b(y,w) 
w£W 

(here [w 6 HL(X) ] = I if w 6 HL(X) and 0 

othe]~ise). 

Proof of claim I: If f(x,y) = 0 then there 

is no w such that w 6 HL(X) and b(y,w) = I. 

If f(x,y) = I then there is exactly one w 

such that w 6 HL(X) and b(y,w) = I. Further- 

more, this w has length at most k. 

The claim above immediately gives rise to 

a matrix equation, namely 

F = H • K 

where 

6 B (IXi'IWl) 
H = ([w 6 H L(x) ])x6X,w6W 

and 

6 B (Iwl' IYI) 
K = (b(y,W))w6W,y6y 

Hence rank F <_ IWl or 

Cunam b (f, 1 ~2) = k >_ log rank~ F. [] 

We note in passing that lemma 2 holds true 

with equality and that lemma I holds true 

with equality if Cdet(f, I<->2) is replaced 

by Cunam b (f, I<->2). 

The second inequality in theorem I is im- 

portant because the standard tricks of lin- 

ear algebra can be used to determine the 

rank of a matrix over a field k. 

Finally, note that the claim in the proof 

of lemma 2 is false for general nondeter- 

ministic computations. It can be replaced 

by: for all x6X 

{y; f(x,y) = I} = U {y; b(y,w) = I]. 
W6HL(X) 

This equality can be used to prove 

Cndet (f, I<->2) ~ log log nrow F 

where nrow F is the number of different 

rows in matrix F. 

We close this section with a brief outline 

of an alternate proof of theorem I due to 

M. Paterson. 

Alternate proof of theorem I: The alternate 

proof of theorem I is based on the follow- 

ing fact. 
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Fact: Let k be a ring, A 6 k (n'm) 

and C 6 k (q'm). Then 

, B 6 k (n'p) 

rankk((A B)) S rankk(A) + rankk(B ) 

and 

rankk((~)) ~ rankk(A) + rankk(C), 

here (A,B) denotes the matrix obtained by 

writing A and B side by side. 

Proof: If A = Ei.D I and B = E2-D 2 

D I 0 
(A B) = (E I E2). ( O D2 ) 

then 

Consider any two-way deterministic algo- 

rithm (g,h,a) for computing f. We define 

matrix Fw, w 6 {0,1] ~, by induction of lwl 

as follows: 

I) F = F 
E 

2) if IWE = 2Z then Fwo(Fwl ) is obtained 

from F w by selecting rows x with 

g(x,w) = O (g(x,w) = I). 

3) if aWl = 2£ + I then Fwo(Fwl ) is ob- 

tained from F w by selecting columns y with 

h(y,w) = O (h(y,w) = I). 

Note that 

max(rank~ (Fwo),ranklN (Fwl)) Z ranklN (F~ 

by the fact above and that w 6 dom a im- 

plies that F is a constant matrix and 
w 

hence rankiN (F w) ~ I. Thus the complexity 

of any deterministic algorithm for f is at 

least log ranklN (F). [] 

III. Las Vegas is better than Determinism 

for Communication Complexity 

We exhibit a function f such that 

Cndet(f, I<->2), Cndet(f , I<->2), 

CLa s Vegas(f, I<->2) << Cdet(f , I<->2) 

denotes the complement of f, i.e. 

f(x,y) = I - f(x,y). Las Vegas algorithms 

use internal randomization, i.e. persons L 

and R use coin tosses in order to compute 

their responses. Las Vegas algorithms are 

required to always produce the correct re- 

sult, i.e. the probability of error is 

zero. The complexity is the expected num- 

ber of bits exchanged (maximized over all 

inputs (x,y)). 

Our result shows that in the realm of dis- 

tributed computing (and VLSI and TM) not 

only nondeterminism but even Las Vegas is 

provably better than determinism. 

Definition: Let n 6 IN and let X = 

Y = [0..2n-I] n. For x = (x I .... ,Xn)£ X and 

y = (yl,...Yn)6 Y let 

I if 3i 

f(x,y) = { 
O if Vi 

xi = Yi 

xi # Yi 

X and Y can be thought of n numbers of n 

bits each. L and R are each given a list 

of n numbers. They have to find out wheth- 

er the two lists agree in at least one po- 

sition. 

Theorem 2: 

2 
a) Cde t (f, I<->2) ~ n 

b) Cndet(f , 1<->2) = O(n+log n) 

c) Cndet(f , I<->2) = O(n log n) 

d) CLa s Vegas(f, I<->2) = O(n(log n) 2) 

Proof: (sketch). a) Note that 

IXl = IYl = 2 (n2). Let F be the 0-I matrix 

associated with f. In view of theorem I, 

it suffices to show rankGF(2 ) F ~ 2 (n2) 

where GF(2) is the field of characteristic 

two. We use • to denote addition mod 2. We 

transform F into the identity matrix by 

means of linear transformations. 

Lemma: Let w I .... ,Wn,Y I .... ,yn 6 [O...2n-I]. 

Define g(w I .... ,Wn,Y1,...,yn) := 

-.- ~ f(Xl ..... Xn,Yl ..... Yn) 
Xl x n 

Xl@W1 Xn@W n 
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Then 

1 i f  V i  w i = Y i  

g(w1'''''Wn'Y1'''''Yn) = O otherwise 

Proof: Note that 

g(w I ..... Wn,Y I .... yn ) = i {(x I, .... x n) ; 

x I ~ [Yl,Wl},...,Xn ~ {Yn,Wn}} Imod 2 

n 
= T7 (2 n - { {Yi,Wi} imod 2 

i=I 

Matrix G = (g(w,Y))w6X,y6Y is obtained 

from F by adding rows. Hence 

rankGF(2 ). (G) ~ rankGF(2 ~. . F. Also G is the 

identity matrix and hence 
2(n 2 ) 

rankGF(2 ) (G) = 

b) L guesses an i E [1...n] and sends i 

and x i to R. If x i = Yi then R outputs I. 

c) For every i 6 [1...n], L guesses 

Ji 6 [1...n] and sends Ji and the Ji -th bit 

of x i to R; O(n.log n) bits altogether. R 

outputs I if the Ji -th of x i and Yi differ 

for all i. 

d) The algorithm is based on the known ran- 

dom algorithms for inequality testing (cf. 

Freivalds). Whilst these algorithms have 

non-zero probability of error, we can 

achieve zero probability of error for our 

problem as follows. We recall the follow- 

ing fact. 

Fact: Let pl,...,pm be the primes ~ n. 

Then u,v 6 [O...2n-I], u * v, implies 

I {j; u ~ v rood pj} I _> m/2 

The algorithm is as follows. Both L and R 

have the list pl,...,pm. 

for i from I to n 

do 

L selects r (to be determined later) 

primes ,. . at random from the 
(A) PJl "''P3r 

list and sends jl,...,jr and 

x i mod pjl,...,xi mod PJr to R. 

R checks whether x i = Yi mod pj for 
£ 

all Z 6 [1...r]. 

(B) 

If this is the case then R asks 

for and gets the complete x. from 
1 

L. If x i = Yi then R stops and 

outputs I. 

od 

Stop and Output O. 

It is obvious that this algorithm computes 

f(x,y) with zero probability of error. In 

part (A) O(r-log n) bits are sent for every 

i 6 [1...n], in part (B) O(n) bits are sent. 

If x i = Yi then part (B) is always executed; 

but the case x i = Yi occurs only once dur- 

ing the execution of the algorithm. If 

xi # Yi then part (B) is reached with prob- 

ability 2 -r. Hence if x i # Yi then the ex- 

pected number of bits sent in (A) and (B) 

is r log n + 2-r-n. Thus the total number 

of bits exchanged is bounded by 

n(r log n + 2-r,n) + n 

Choosing r = log n proves part d). o 

It is worth noting that the Las Vegas algo- 

rithm described above never exchanges more 

than O(n 2) bits. 

Theorem 2 is readily transfered to multi- 

tape TM under the complexity measure S.T. 

Let 

L = {x I ~'''~ Xn ~(n2)yl ~'''~ Yn; 

lyil = ixii = n and x i ~ Yi for all i] 

Theorem 3: Let L as above. Then 

a) S.Tde t (L) = ~(N 2) 

(L) = O(N(log N) 2) b) S'TLas Vegas 

, here N is the length of the input. 

Proof: Omitted. 
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IV. Las Vegas is Better than Determinism 

in VLSI 

Proof: (sketch). We only sketch proofs for 

a) and d), b) and c) being simpler than d). 

In this section we will transfer the result 

of the previous section to VLSI computa- 

tion under the complexity measure AT 2. We 

will have to overcome one problem. Whilst 

the partition of the inputs into sets X 

and Y was predefined so far, this is not 

the case for VLSI computations. It is up 

to the chip designer where he wants to 

read in inputs. We overcome this difficulty 

by modifying our function somewhat. 

Consider f1(zl .... Z2n,S I ..... S2n,k I .... %/4 ) 

where Zl,...,Z2n 6{0, I} n are bitstings of 

length n, Sl,...,S2n 6 {O,1,X} are selec- 

tion inputs and kl,...,kn/4 6 [O...n-1] 

are shift inputs (fl can be considered as 

a function of 2n.n+2n.2+n/4.1og n = O(n 2) 

binary inputs). We will assume that exactly 

n/4 of the selection inputs are set to O, 

say si1'''''Sin/4' and exactly n/4 are set 

to I, say sjl .... ,s. . Then 
3n/4 

fl = liff zil = s~ift(zj£,k Z) 

for some £611...n/4] 

Here shift (zfz,k Z) denotes the cyc~lic 

shift of bitstring z3z. by k£ positions. 

We use ATxy z2 ,XYZ6{det, Las Vegas, nondet}, 

to denote the complexity measure AT 2 for 

where-oblivious XYZ-Chips. 

Theorem 3: Let N be the number of binary 

inputs of f1" Then 

2 
a) A. Tde t (fl 

b) A.T 2 
ndet (fl 

c) A-T 2 
ndet (fl 

= ~(N 2 ) 

= O(N 3/2 poly (log N)) 

= O(N 3/2 poly (log N)) 

d) A.T 2 Las Vegas (fl) = O(N3/2 poly (log N)) 

a) Consider any where-oblivious determin- 

istic chip for fl; say the chip has area A 

and time T. Consider a cut of length O(/A) 

which cuts the chip in half according to 

the 2n 2 input bits which comprise the z's. 

Let L and R be the two halves of the chip. 

Let 11 = {i 6 [I...2n]; at least n/3 of 

the bits of z. come through ports in L]and 
1 

12 = {j 6 [I...2n]; at least n/3 of the 

bits of z. come through ports in R}. 
3 

Claim 3: IIii, II21 ~ n/2 

Choose i I ..... in/4 6 11 and Jl ..... in/4 6 

such that these n/2 numbers are pairwise 

different. Set s. = ... = s. = O, 
11 in/4 

s. = ... = s. = I. This choice of the 
31 3n/4 

s-inputs will make sure that the z's which 

have to be compared are read in (at least 

partly) at different sides of the cut. We 

will use the shift inputs to make sure that 

many bits have to be transported across the 

cut. 

For every i, I ~ £ S n/4, let Az(B Z) 

[O...n-1] be the set of bit positions in 

zi£ (z 4J£) which come through ports in L(R). 

Claim 4: 3k£ £ [O...n-1]: 

I {t; t 6 A~ and (t+kz) mod n 6 B£} I ~ n/9 

D 

Set kl,...,kn/4 as given by claim 4. What 

will that do for us? The chip has to decide 

whether there is an i such that z i = 

shift (zj ,kz). But by claim 4 at least n/9 

of the corresponding input bits of z. 

and shift (zj ,k£) come through ports at 

opposite sides of the cut. Hence ~(n 2) 

bits have to flow across the cut by theorem 

2 and hence T = ~(n2/~). This shows AT 2 = 

~(n 4) = ~(N2). 
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d) We describe a Las Vegas chip for fl with 

area O(n 2) and time O()Tn poly (log n)). 

Thus A.T 2 Las Vegas (fl) = O(n3 poly (logn))= 

O(N 3/2 poly (log N)). 

For every i 6 [I...2n] the chip has a 

n-bit register to store zi, a shifter, a 

divider, a table of the primes S n and a 

randomizer. The randomizer generates ran- 

dom numbers in [1...n] which are used to 

select primes from the table. It assumed 

that a randomizer with area A = O(n) and 

T = ¢~ exists (This is part of the Las 

Vegas model of VLSI; if one assumes that a 

random bit can be generated in A = 0(I) and 

T = 0(I) then a randomizer with A =O(logn) 

and T = 0(I) would exist. So our assump- 

tion is very weak). Shifters and Multipli- 

ers can be done in A = O(n) T = O(n I/2)" 

[Preparata/Vuillemin] and the use of New- 

ton Iteration will turn a Multiplier into 

a Divider with A = O(n), T = 0(ni/2)." Also 

the table of primes has area O(n) and 

access time O(log n). 

The 2n registers are connected in two ways 

with one another. Firstly of all, via a 

permutation network with 2n inputs 

(A = O(n2), T = poly (log n)) and second 

of all, the 2n registers are used as a ran- 

dom access memory. (A = O(n2), access time= 

poly (log n)). 

The chip operates as follows. First, the s 

and k inputs are read in and are distrib- 

uted to the 2n registers for the z's. Time 

poly (log n) certainly suffices for this. 

Next the required shifts are carried out 

in parallel (T = ~n). Next we go through 

the following cycle (log n) times. The ran- 

domizer + the table of primes generate a 

random prime (T = /n poly (log n) suffices 

by our assumption), the divider modul is 

used to compute the moduli (T = /~ suffices) 

and the moduli are sent one bit at a time 

over the permutation network 

(T = poly (log n)). Note that the n/4 sub- 

problems can be all worked on simultaneous- 

ly. At this point 0(I) pairs (iz,j£) with 

zli. % shift (z3 , .  k~)  w i l l  s u r v i v e  a l l  t h e  

tests (on the average). Using the random 

access memory the pairs z. and shift 

(zj ,k Z) will be compared for actual equal- 

ity one after the other (T =O(1)poly(log n) 

on average). 

Altogether, the chip operates in area 

A = O(n 2) and expected time 

T = O()~n poly (log n)). 

V. Concluding Remarks 

We described a new proof method for proving 

lower bounds on deterministic information 

transfer and applied this method to TM and 

VLSI computations. The method is strong 

enough to distinguish deterministic and 

Las Vegas computations. 

Furthermore, the lower bound technique of 

theorem I can be applied to more problems. 

For example, it can be used to show lower 

bounds for matching problems in bipartite 

graphs. These lower bounds are of a higher 

order than the corresponding nondetermin- 

istic upper bounds. 
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