
Certifying Algs for
3-Connectivity
Kurt Mehlhorn
Adrian Neumann

Jens Schmidt

11. November 2014



k -Connectivity

A (multi-)graph is k -edge-connected if removal of any k − 1
edges does not disconnect it.

A (multi-)graph is k -vertex-connected if removal of any k − 1
vertices does not disconnect it.

today’s talk: certifying algorithms for 3-connectivity

3-edge- and 3-vertex connected

2



k -Connectivity

A (multi-)graph is k -edge-connected if removal of any k − 1
edges does not disconnect it.

A (multi-)graph is k -vertex-connected if removal of any k − 1
vertices does not disconnect it.

today’s talk: certifying algorithms for 3-connectivity

2-edge-connected, but not 3-
edge-connected

2-vertex-connected, but not 3-
vertex-connected

2



Sources

Kurt Mehlhorn, Adrian Neumann, Jens M. Schmidt:
Certifying 3-Edge-Connectivity, available in arxive

Jens. M. Schmidt: Contractions, Removals and Certifying
3-Connectivity in Linear Time, SIAM Journal on Computing,
2013, 494-535

N. Linial, L. Lovász, A. Wigderson: Rubber bands, convex
embeddings and graph connectivity, Combinatorica, 1988

R. M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer:
Certifying algorithms, Computer Science Review, 2011

Alkassar, E., Böhme, S., Mehlhorn, K.,Rizkallah, C.:
Verification of certifying computations, Journal of Automated
Reasoning, to appear

3



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1

C1

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C1

C2

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C3

C1

C2 C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C3

C4

C1

C2

C4

C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C3

C4
C5

C1

C2

C4

C3 C5

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C3

C4
C5C6

C1

C2

C4

C3 C5

C6

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.

4



Two Edge and Vertex Connectivity

Two-edge-connectivity:

No: exhibit a bridge (= a cut consisting of a single edge)
Yes: exhibit an ear decomposition

Two-vertex-connectivity:

No: exhibit a cut-vertex (= a vertex-cut consisting of a single
vertex)

Yes: exhibit an open ear decomposition

All of this is easily done in linear time using the
chain-decomposition (Jens Schmidt)

5



Two Edge and Vertex Connectivity

Two-edge-connectivity:

No: exhibit a bridge (= a cut consisting of a single edge)
Yes: exhibit an ear decomposition

Two-vertex-connectivity:

No: exhibit a cut-vertex (= a vertex-cut consisting of a single
vertex)

Yes: exhibit an open ear decomposition

All of this is easily done in linear time using the
chain-decomposition (Jens Schmidt)

5



Three Edge and Vertex Connectivity

3-edge-connectivity and 3-vertex-connectivity are well studied
problems. Many linear time solutions known, e.g.:

1973: Hopcroft and Tarjan with a correction by Gutwenger
and Mutzel
1992: Nagamochi and Ibaraki
1992: Taoka, Watanabe, and Onaga
2007, 2009: Tsin
Italiano and Galil: reduce edge-connectivity to
vertex-connectivity

None of these algorithms is certifying.

They exhibit 2-cuts in the negative case and state
3-connectedness otherwise.

For a user, it is a bit like saying: “I tried hard to find a 2-cut and
could not find one. Therefore, I now believe that the graph is
3-connected”.

6



Three Edge and Vertex Connectivity

3-edge-connectivity and 3-vertex-connectivity are well studied
problems. Many linear time solutions known, e.g.:

1973: Hopcroft and Tarjan with a correction by Gutwenger
and Mutzel
1992: Nagamochi and Ibaraki
1992: Taoka, Watanabe, and Onaga
2007, 2009: Tsin
Italiano and Galil: reduce edge-connectivity to
vertex-connectivity

None of these algorithms is certifying.

They exhibit 2-cuts in the negative case and state
3-connectedness otherwise.

For a user, it is a bit like saying: “I tried hard to find a 2-cut and
could not find one. Therefore, I now believe that the graph is
3-connected”.

6



Three-Edge-Connectedness in Time O(m2).

For every edge e: certify that G \ e is 2-edge-connected.

In order to do better, we need structural insight.

7



Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.

8



Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.

8



Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.

8



Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.

8



Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.

8



Content

In This Talk
How to find a construction sequence for a given 3-connected
graph in time O((n + m) log(n + m).

In the paper:
Correctness proof.
Linear time algorithm.
How to verify the certificate.
A certifying algorithm for 3-edge-connected components.

9



Content

In This Talk
How to find a construction sequence for a given 3-connected
graph in time O((n + m) log(n + m).

In the paper:
Correctness proof.
Linear time algorithm.
How to verify the certificate.
A certifying algorithm for 3-edge-connected components.

9



Mader Constructions and Subdivisions

A construction sequence for the graph on the right, once in
terms of graphs and once in terms of subdivisions.

It is more convenient to work with subdivisions (a graph whose
edges are subdivided by additional vertices), i.e., when we add
an edge, we also introduce all vertices that will ever be placed
on the edge.

10



Mader Constructions and Subdivisions

branch vertex

non-branch vertex
Link

10



A First Algorithm

1. Find a K 3
2 subdivision. Initialize Gc = K 3

2

2. Find a path P in G −Gc from a node u to a node v , such
that
a) at least one of {u, v} has degree at least three, or
b) u and v lie on different links

3. Add P to the current subgraph
4. If the current subgraph is not G, goto 2.

11



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1

C1

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C1

C2

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C1

C2 C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4

C1

C2

C4

C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4
C5

C1

C2

C4

C3 C5

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4
C5C6

C1

C2

C4

C3 C5

C6

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4
C5C6

C1

C2

C4

C3 C5

C6

Lemma: If G is 3-edge-connected then there is a Mader
construction that adds the chains parent-first.

12



An Improved Algorithm

Observations
If G is 2-vertex-connected: C1 ∪ C2 = K 3

2

We start with Gc = C1 ∪ C2; current graph
Chains become visible as soon as both endpoints belong to
Gc

A visible chain can be added (is addable) to Gc , if its
endpoints lie on different links or one is a branch vertex.
Conversely: a visible chain is not addable if its endpoints
are on the same link.
Adding a chain makes its endpoints branch vertices (if not
already branching); this may make other chains addable. It
also makes the children of the chain visible.

13



An Improved Algorithm

1. Initialize graph to C1 ∪ C2 ∼ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with
the link C.

3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).

14



An Improved Algorithm

1. Initialize graph to C1 ∪ C2 ∼ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

C

link L

C

L1 L2

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with
the link C.

3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).

14



An Improved Algorithm

1. Initialize graph to C1 ∪ C2 ∼ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

L1 L2

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with

the link C.
3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).

14



An Improved Algorithm

1. Initialize graph to C1 ∪ C2 ∼ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with
the link C.

3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).

14



An Improved Algorithm

1. Initialize graph to C1 ∪ C2 ∼ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with
the link C.

3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).

14



Analysis of Improved Algorithm

All steps except 2b are certainly linear.

In 2b we have to look at all chains having both endpoints on
L; some become addable and some will have both
endpoints on L1 or L2. We will look at those again.
How to process L?

process all chains incident to the new branching vertex.
work on L from both sides; switch between working on L1 and
L2: an elementary step is to look at the endpoint of a chain.
stop, if either L1 or L2 is completely processed, say L1: for
each chain having both endpoints on L and at least one
endpoint on L1, we have seen two or one endpoint. If seen
one, the chain is addable. Otherwise, now both endpoints on
L1.
cost = # addable ch. + 2 ·mini=1,2 # chains only incident to Li
charge the latter cost to the non-addable chains moved to
Lj=argmin mini=1,2... and observe: whenever a chain is charged,
it is moved to a set of half the size.

15



Analysis of Improved Algorithm

All steps except 2b are certainly linear.

In 2b we have to look at all chains having both endpoints on
L; some become addable and some will have both
endpoints on L1 or L2. We will look at those again.
How to process L?

process all chains incident to the new branching vertex.
work on L from both sides; switch between working on L1 and
L2: an elementary step is to look at the endpoint of a chain.
stop, if either L1 or L2 is completely processed, say L1: for
each chain having both endpoints on L and at least one
endpoint on L1, we have seen two or one endpoint. If seen
one, the chain is addable. Otherwise, now both endpoints on
L1.
cost = # addable ch. + 2 ·mini=1,2 # chains only incident to Li
charge the latter cost to the non-addable chains moved to
Lj=argmin mini=1,2... and observe: whenever a chain is charged,
it is moved to a set of half the size.

15



A Linear Time Algorithm

see paper

also: a linear time certifying alg for computing cactus
representation of 2-cuts.

open problem: our O((n + m) log(n + m)) algorithm is
considerably simpler than the O(n + m) algorithm. The
linear time algorithm for vertex-connectivity is considerably
more complex that the linear time edge-connectivity alg.
Can it be simplified by accepting a log-factor?

16


	Introduction
	The Certificate
	Chain Decompositions
	Chain Decompositions
	A Linear Time Algorithm

