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Lower Bounds for Set Intersection Queries 

P. Dietz, 1 K. Mehlhorn,  1 R. Raman,  1 and C. Uhr ig  1 

Abstract. We consider the following set intersection reporting problem. We have a collection of initially 
empty sets and would like to process an intermixed sequence of n updates (insertions into and deletions 
from individual sets) and q queries (reporting the intersection of two sets). We cast this problem in 
the arithmetic model of computation of Fredman IF1] and Yao [Ya2] and show that any algorithm 
that fits in this mode/must take time ~'/(q + nx/q) to process a sequence of n updates and q queries, 
ignoring factors that are polynomial in log n. We also show that this bound is tight in this model of 
computation, again to within a polynomial in log n factor, improving upon a result of Yellin [Ye]. 
Furthermore, we consider the case q = O(n) with an additional space restriction. We only allow the 
use of m memory locations, where m < n 3/2. We show a tight bound of O(n2/m 1/3) for a sequence of 
n operations, again ignoring the polynomial in log n factors. 

Key Words. Algorithms, Arithmetic model, Data structures, Intersection reporting, Lower bounds, 
Memory restriction, Set handling, Upper bounds. 

1. Introduction. We consider the complexity of  maintaining a collection of sets 
with a very simple but  fundamental  set of operat ions:  we would like to support  
updates, which are insertions into and deletions from individual sets and intersec- 
tion queries report ing the intersection of  two sets. Other  variations could include 
returning the size of  the intersection, or  retrieving some values associated with the 
elements in the intersection. A unifying way of studying these problems is as 
follows: we are given a universe q / o f  keys, a set M of  information items that  will 
be associated with elements of  q/, a function I :  q / ~  M that  associates values f rom 
M with keys in q/, and a collection cg of  initially empty  subsets of  q/. Assume 
further that  M = (M, + ,  0) is a monoid, i.e., that  M is closed under  some 
associative and commutat ive  opera tor  + and that  0 is the identity element for + .  

We want  to maintain (g while processing a sequence of  update  operat ions of  
the form insert(x, A) and delete(x, A), for x ~ q /  and A ~ (g, so as to answer 
efficiently queries of  the form intersect(A, B), A, B ~ cg, which returns ~x~a~B l(x), 
where the sum is taken with respect to + .  We also consider a variant  of 
the problem, where the number  of  m e m o r y  locations available is restricted. It  is 
easy to cast the intersection problem and its variants in this framework.  The basic 
problem defined above can be obtained by letting M = (2 ~u, u ,  { }) and I(x) = {x} 
for all x, and the problem where one merely has to report  the size of  the intersection 
can be obtained by setting M = (N, + ,  0) and I(x) = 1 for all x, where here + 
is arithmetic addition. 
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The arithmetic model of computation was proposed by Fredman I-F1] and Yao 
[Ya2] as a framework for studying "information retrieval" problems of the above 
kind. A set of data points is to be stored, each with some associated information; 
queries return some combination of the values associated with some subset of the 
data points which matches some query specification. Many geometric retrieval 
problems have been previously studied in this framework (se~, [C], [F1], [F2], 
and Section VII.2.3 of [M]). One of the assumptions made in this framework is 
that the algorithm must be general enough to work for any choice of the combining 
operator, provided only that the associated values form a monoid under this 
operator. In particular, the algorithm is not permitted to assume that the 
combining operation is invertible (a more detailed description of this framework 
is given in Section 2). This makes it easier to prove lower bounds and is justified 
by the fact that the best known algorithms for most problems of interest do not 
effectively make use of the potential invertibility of the combining operator. 

Yellin [Ye] gives a data structure for the set intersection problem which fits in 
the arithmetic model of computation. Yellin's algorithm processes a series of n 
insert and delete operations and q intersect operations in time O(n. n 1/k + qn Cx -l/k~) 
time for any fixed k, where O(f(n))= U~=o O(f(n)log c n), i.e., polylogarithmic 
factors are ignored (a similar convention is used for the ~ notation, with inverse 
polylogarithmic factors being ignored). 

In order to process a sequence of n updates and q queries, the value of k that 

yields the smallest running time of O(q + nw/q ) is defined by n 1/k = min{x//q, n}. 
We prove that this bound is tight; i.e., any algorithm that fits within the arithmetic 

model must take ~)(q + nv/q) time to process a sequence of n updates and q 
queries. This is true even for the expected running time of randomized algorithms 
for this problem. Further, we prove that this bound can be achieved on-line by 
an algorithm that does not know either n or q in advance. Yellin obtains a weaker 
bound of O(n~/2(n + q)) by using a "doubling" technique. We refer to this 
problem in the following as Problem 1. 

Our lower bound applies to  algorithms that know the values of n and q, as well 
as the series of queries and updates, in advance, and do not handle deletions; the 
upper bound can be achieved by an algorithm that knows neither parameter in 
advance and handles on-line an intermixed sequence of queries and updates (both 
insertions and deletions). That is, the semidynamic off-line version of this problem 
is not easier than the general case within this model of computation. 

We also consider a variant of the problem which we call Problem 2. Here we 
want to process a sequence of n operations (updates as well as queries). The number 
of memory locations available is limited by m, m < n ~/2. For this variant we show 
a lower bound of ~(nZ/m 1/3) time to process the sequence. Again we show that 
this bound is tight by giving an algorithm that needs time O(n2/m~/3). 

2. The Lower bounds. We now give a somewhat simplified description of the 
lower-bound model which conveys the essential aspects: the interested reader is 
referred to Section VII.2.3 of [M] for further details. The data structure is modeled 
as a collection of variables Vo, vl . . . . .  which take values in M, and initially contain 
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0. In Problem 1 this collection is considered to be unlimited whereas in Problem 
2 the number of variables is at most m. After receiving the input to each opera- 
tion, the algorithm executes a sequence of operations of the form vg ~ INPUT,  
v~ ~ v~ + v k, or O U T P U T  ~ v~. Here I N P U T  refers to the information associated 
with a key that is the argument to an insert or delete operation. The algorithm 
must be correct for all choices of M, thus in particular it cannot assume that the 
operator + is invertible. The cost of an algorithm in processing a sequence of 
operations is the total number of such instructions executed by it. All other 
computation is given for free. 

The intuition for the lower bounds for the two problems considered is essentially 
as follows. We consider the problem where the elements in the intersection are to 
be reported, i.e., we take M = (2 ~u, u ,  { }) and I(x) = {x}. We construct a collection 
of sets the (sums ol) sizes of whose pairwise intersections are large, and query all 
possible intersections of the sets. If the answers to all the queries were to be 
obtained by unioning together singleton sets, then the lower bound would follow. 

However, this is too simplistic: subsets obtained as temporary values during the 
computation of one answer may be reused to answer another query. An important 
observation to make at this point is that a subset that is used to compute the 
answer to several intersection queries must lie in the common intersection of all 
the sets involved. Therefore, we also ensure that the common intersection of 
sufficiently many (this is still a small quantity) of the sets we construct is small, 
from which it follows that no large subset obtained during the computation of 
one answer can be used to answer very many different queries. 

In the proof to Problem 2 we destroy the useful subsets by some deletions and 
afterward perform hard queries where we have to compute the answers from 
scratch. 

Now we flesh out the above arguments. 

2.1. Problem 1. Let n and q denote the number of updates and queries, respec- 

tively, and assume that q < n 2 (otherwise a lower bound of f~(q) = f~(q + n~//q) 

is trivial). We construct a family ~ of xfq subsets, each a subset of q / =  

{1 . . . . .  2n/w/q }. Let u = Jq/I and f = Io~1. 
We want to construct this family of sets with the following properties: 

(a) JS~ c~ Sjl is f~(u) for all i ,j  with 1 < i < j < f  
L (b) For  any pairwise distinct indices i l , . . . ,  iL, I(-]j=l S~j[ < L, if L is sufficiently 

large. 

We call such a family of sets acceptable. If an acceptable family of sets can be 
found, then the theorem can be proved as follows. We first build up the sets by 
insertions. Note that this requires at most fu = | update operations, since the 
size of each set is at most u. We then query the pairwise intersections of all the 
sets; i.e., we query Si c~ Sj for 1 < i < j < f There are 

queries in all. 
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Firstly, note that the sizes of all the output sets sum to ~'~(uf 2) by (a) above. 
The output to each query is conceptually obtained by a binary union tree in 
which each internal node combines the answers from its children; the external 
nodes represent singleton sets. Each node can be labeled with a set in the 
obvious way. Consider the entire forest; we wish to count the number of distinct 
nodes in the forest (that is, nodes labeled with distinct sets). Since each distinct 
set corresponds to at least one instruction that is not counted elsewhere, counting 
the number of distinct sets is a lower bound on the number of instructions 
executed. 

We consider only nodes that correspond to sets of size L or larger. Clearly, the 
number of such sets is f~(uf2/L). Furthermore, no such set can be used to answer 

more than ( L )  different queries. To see this, suppose that any such set B is used 

to answer intersection queries involving L or more different sets, say Si, . . . . .  S w 
L Then, as discussed above, it must be the case that B ~_ (']j = 1 Sir However, [BI > L, 

which contradicts (b) above. 
Thus there can be at most L -- 1 distinct sets such that B can answer queries 

posed involving these sets, from which it follows that there are less than ( 2 )  

queries that B can be used to answer. Thus, f~(fZu/L3) distinct sets can be counted, 
giving us a lower bound of this magnitude. Now we show that sets with the 
required properties exist. The argument is an application of the "probabilistic 
method" pioneered by Erdrs I-S], that is, we prove the existence of such a family 
by a counting argument couched in probabilistic terms. We first consider a discrete 
sample space and postulate a distribution on it; then we show that the conjunction 
of the properties we are interested in occurs with nonzero probability, from which 
we conclude that some sample point must indeed satisfy the conjunction of the 
properties. 

The sample space we consider is all possible families of sets that are subsets of 
q/, i.e., [2~u] I, and the distribution is obtained as follows: xeSj holds with 
probability 1/2 independently of all other such events, for all 1 < x < u and 
1 < j < f. We now verify that properties (a) and (b) hold wit h positive probability 
in the above distribution. 

(a) Consider sets Si and S j, i # j. The probability that x e S~ n Sj = 1/4. Further- 
more, IS~ c~ Sil is a binomially distributed variable with parameters (u, 1/4). It 
follows from the Chernoff bounds (Lemma 19 in the Appendix) that 

Pr[ISi c~ Sjl < u/8] < (0.962) u < 1/2f 2, 

provided u is at least c log f for some sufficiently large c. (If not, this implies that 

q=~(n2)andthelowerboundistrivialanyway.)Summingoverthe(f)possible 

values for i, j we get 

Pr[3i, j: ISic~ Sj] < u/8] < 1/4. 
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(b) Fix a set of pairwise distinct indices it . . . . .  iL. For any x E q/, the prob- 
ability that x belongs to all of Sil, .- . ,  SiL is 2 -L. Thus, the size of the common 
intersection of Sil . . . . .  S~L is a binomially distributed variable with parameters 
(u, 2-I). Let L = 2 max{log f,  log u}. Then the expected size of the intersection is 
min{uf -2, u-l}.  It follows from the Chernoff bounds (Lemma 19) that 

Pr[lOJ~=x S~jl > L] < 
exp(L) 

(L max{f2/u, u}) L" 

Summing over the 

choices for the indices we get that, for all indices i 1 < i 2 < " ' "  < iL, 

( I )L Pr[l(-]~=l Sijl > L] < -L max{f2/u, u} < 1/4. 

Thus, we see that both properties (a) and (b) hold with probability > 1/2, and so 
there is a family of sets ~- satisfying (a) and (b). 

From the discussion above, we can now infer that at least ~(f2u/L3) operations 
are needed to process this sequence of queries, from which the lower bound follows 

since f = x//q, u = O(n/x/q), and L = O(log n). We have just proved: 

THEOREM 1. In the Fredman-Yao arithmetic model of  computation, any algorithm 
for the set intersection problem requires O(q + nx//q) time to process a sequence of 
n updates and q queries. 

This lower bound can be extended to the expected run-time of randomized 
algorithms b y  invoking Yao's corollary [Yal] to von Neumann's minimax 
principle IN], which can be stated as follows: 

LEMMA 2. Let T~ be the expected run-time of any randomized algorithm for solving 
a problem P. Let D be any distribution over the inputs to problem P, and Let T a be 
the minimum average-case time (under distribution D) of any deterministic algorithm 
for P. Then T~ >_ To. 

We note that given the above class of inputs and the above distribution, any 

deterministic algorithm requires ~)(q + nx//q) time for at least half the possible 
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inputs. This impfies (since run-times are nonnegative) that the average-case 
running time for any deterministic algorithm on the above distribution is also 

~(q + nw/q). We can thus conclude: 

COROLLARY 3. In the Fredman-Yao arithmetic model of  computation, any ran- 
domized algorithm for the set intersection problem requires ~(q + n~qq) expected 
time to process a sequence of n updates and q queries. 

2.2. Problem 2. Now let q / =  {1 . . . . .  u} be the universe of elements, let Ml 
be the set of memory locations, and let m =  IMI[ be the number of 
variables. The number of operations (insertions, deletions, and queries) will be 
O(n). 

If x ~ Ml is a memory location and A is a subset of q/, then x is said to be 
relevant to A if it contains the sum over some subset o f t h e  elements of A. The 
size of a memory location (or a variable) is the number of elements which have 
been summed to produce its contents. A memory location x is called major if its 
size is at least L. 

As shownin  Section 2.1 a major memory location is relevant to at most ( L ) 

distinct intersections S i n  Sj of an acceptable family of sets. Informally the strategy 
for the lower bound proof is as follows. We choose f to be ml/3L 2 and u = n/f. 
Each set of the acceptable family has size O(u) = | 

After building the family we choose an appropriate set S of O(f) elements of 
q / a n d  delete these elements from all Sis; this amounts to O(f  2) delete operations 
The set S has the property that it contains at least one element of each 
memory location of size > 2mL2/f 2, i.e., deletion of the elements of S makes all 
memory locations of size > 2mL2/f 2 irrelevant. The existence of S will be shown 
by a probabilistic argument. As a consequence we show that for half of the 
intersections the sum over the sizes of the major memory locations which are still 
relevant to such an intersection is at most half of its size. Hence, answering all 
O(f z) intersection queries will have cost f~(fu2/L 3) as in the previous section. We 
now reinsert the deleted elements and thus reestablish the original situation. 
Altogether, we have identified a sequence of O(f  2) operations with total cost 
~(fu2/L3), i.e, the amortized cost per operation is ~(u/L  3) ---- f~((n/ml/a)/LS). 

We now give the details. Assume that m < na/2/(log n) 7. (The lower bound 
~(n/m 1/3) for the amortized cost of an operation follows from Theorem 1 for 
m > n3/2/(log n) 7. Note that Theorem 1 implies an t2(n 3/2) lower bound for a 
sequence of n updates and n queries even without any restriction of the memory 
size.) Let L = 2 log 2n, f = Fml/3L2-], and u = In / f  _J, and let Sx . . . . .  S I be an 
acceptable family of subsets of ~ = {1 , . . . ,  u). Let ri,j be the number of major 
memory locations that are relevant to S~ c~ Sj. 

LEMMA 4. ~.l<i<j<fri, j <_ mL2/2. 
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PROOF. There are at most m major memory locations and none of them is 

 e,e an  to mor  t an' S,   'ova t to mo e ( 1 )  

of their intersections. []  

LEMMA 5. I f  variables a 1 . . . . .  a k are nonnegative, and ~, ai = B, then, for any 
z > 1, 1{i1 ai > zB/k}[ < k/z. 

PROOF. Obvious. []  

These lemmas imply the following. Let T = 2 m L 2 / f  2, and let Z be the set 
{(i, J) l i <_ i < j <_ f ,  r,,~ <_ T}, then 

LEMMA 6. I Zl ~ f ( f -  2)/4. 

Thus we have shown that for at least a constant part of the intersections the 
number of relevant major memory locations is limited by T. 

LEMMA 7. Let  A be a nonempty subset o f  ell. The probability that none o f  
2Lu/[ A [ randomly chosen elements (with replacement) of  ql is in A is less than 1/n 2. 

PROOF. A randomly chosen element of q / h a s  probability I Al/u of being in A. 
Therefore, the probability that k independent choices from q/will  not all be in A 
is (1 - IZl/u) k. Since (1 - 1/x) ~ < 1/e, (1 - IZl/u) k < e -klAI/". For k = 2Lu/lhl ,  this 
is e -41~ < 1/n 2. [] 

Call a memory location large if its size is at least (u/16)/T. We show next that 
all large memory locations can be made irrelevant by a small number of deletions. 

LEMMA 8. A set of  32L T elements of  ql exists such that each large memory location 
contains an element from the set. 

PROOF. Choose 3 2 L T  = 2Lu/((u/16)/T) elements from q/ at random (with re- 
placement). Then the probability that a particular large memory cell contains none 
of the chosen elements is bounded by 1In 2 according to Lemma 7 and hence the 
probability that one of the at most m large memory cells contains none of the 
chosen elements is bounded by m/n 2 < 1. The required set therefore exists. []  

LEMMA 9. L T f  = O(f2), f2  = o(n), and L T  = o(u). 

PROOF. We have L T  = m L a / f  2 = mL6 / ( f2L  3) = O(f3/( f2L3))  = O(f).  Thus 
L T f  = O(f2). Also f 2  = o(m2/3L 4) = 0((mL6)2/3) = o(n), since m <_ na/2/(log n) 7. 
Finally, L T  = O( f )  = O ( f Z / f )  -= o(n/ f)  = o(u). [] 
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Let S be the set of 32LT elements chosen according to Lemma 8. Delete all 
elements of S from all sets $1 . . . .  , S I of our acceptable family. This amounts to 
at most 32LTf  = O( f  2) delete operations. After these delete operations all large 
memory cells are irrelevant, i.e., cannot be used to answer any intersection query. 
Moreover, the major memory cells that are not large cover at most half of the 
intersections St n Sj for (i, j)  ~ Z as we show next. 

LEMMA 10. Let (i, j) ~ Z. After the deletions of the elements of S, the major memory 
locations relevant to St c~ S t have a total size of  at most u/I6. Moreover, ]Si c~ Sj[ > 
u/8 - o(u). 

PROOF. There are at most T relevant major memory locations for Si c~ Sj, each 
of size at most (u/16)/T. Their total size is therefore at most u/16. We have deleted 
at most 32LT elements from St n Sj, so [Si c~ S~[ _> u/8 - 32LT = u/8 - o(u). [] 

LEMMA 11. After performing these deletions, it requires f~(fZu/L3) time to perform 
the queries S t c~ Ss, for (i, j) in Z. 

PROOF. Note that [Z[ = | Now we must compute the sum of at least 
u / 1 6 -  o(u) elements for each query. Conservatively, assume that all sums of 
at most L variables ate charged no cost. Since sums of more than L variables are 
useful for computing fewer than L 2 of the intersections (because the original St 
were acceptable), we can conclude that we require at least O(f2u/L 3) time to 
perform the queries (this includes time spent during the deletions leading up to 
the queries). []  

We can now summarize. The cost of a cycle of O(f  2) delete, query, and insert 
operations is f~(f2uL3). Moreover, the cycle reestablishes the original acceptable 
family $1 , . . . ,  S s. Consider now the following sequence of O(n) operations: O(n) 
insert operations to build up an acceptable family S 1 . . . . .  S s followed by Ln/ f  21 
repetitions of the cycle. This sequence has cost f~(nu/L 3) = f~(n2/(fL3))= 
n(n2/(ml/3Ls)) = f i ( n 2 / m l / 3 ) .  

THEOREM 12. There is a sequence of O(n) insert, delete, and intersect operations 
which takes time O(n2m - 1/3) with m memory locations, in the monoid model. 

3. The Upper Bounds. In this section we prove the following two theorems: 

THEOREM 13. Any intermixed sequence of n updates and q queries can be performed 

in O(nx/~ + q) time using O(min{nx/q, n2}) space. 

THEOREM 14. Any intermixed sequence of O(n) updates and queries can be per- 
formed in O(n2/m 1/3) time and O(m) space. 
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Theorem 13 generalizes Yellin's upper bound [Ye]. YeUin showed how to 
process n updates and q queries in time O(nn 1/k + qn/n l/k) for any fixed k with 
k > 1, i.e., the parameter k needs to be fixed when his algorithm is started. Thus 

k can be set to its optimal value (where n 1/k = min{x/~, n}), only when n and q 

are known in advance; the optimal value of k gives a time bound of O(nx/q + q). 
We show that the bound O(nx/~ + q) can be achieved without prior knowledge 
of n and q. We believe that our construction is not only more general than Yellin's 
but also simpler. We remark that the output of an intersection query Query(S, S') 
is not only the monoid value ~x~sns' I(x) but also a persistent search tree for S ~ S'; 
this is also true for Yellin's algorithm. 

In Theorem 14 we do not distinguish between updates and queries but use n 
to denote the total number of operations. For this situation, Theorem 13 yields 
an O(n 3/2) time and space bound. Theorem 14 deals with the situation that 
the available space is o(n3/2). We remark that the algorithm underlying Theorem 
14 only computes the monoid value ~x~sns' I(x) as the answer of an inter- 
section query; it does not produce a search tree representation of the 
intersection. 

3.1. Problem 1. Let t denote the number of time steps and let n(t) and q(t) be 
the number of updates and queries, respectively, up to and including time t. Let 

f(t) = 1 + v/q(t) and u(t) = n(t)/f(t). 
A set S _ ~//is called small (at time t) if IS{ < u(t), medium if u(t) < IS[ < 2u(t), 

and laroe if ]SI > 2u(t). The algorithm marks some subsets of a// using the 
following rule: 

MARKING RULE. Initially all subsets are unmarked. When a subset becomes large 
it is marked and stays marked until it becomes small again at which point it is 
unmarked. 

The marking rule implies that large sets are always marked and small sets are 
never marked. Medium sets may be marked or not. In particular, a marked set 
has cardinality at least u(t) and hence there can never be more than f(t) marked 
sets. 

Let ~z' be the collection of marked sets. For every pair (Si, S~) Qf marked sets 
we maintain a persistent balanced binary tree for the intersection S i n  Sfi each 
internal node of this tree contains the sum of the monoid values associated with 
the leaves of the subtree rooted at this node. For every set Si (marked or not) we 
maintain a balanced binary tree of its elements. We also maintain for each integer 
i a list of the sets of cardinality i (call such a list a block) and a sorted list of the 
nonempty blocks. In the sorted list of blocks we also maintain pointers to the 
blocks corresponding to sizes Lu(t)_J and [_2u(t)_J. 

LEMMA 15. The space requirement of the data structure is O(min(n(t) 2, n(t)f(t))). 
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PROOF. First note that in the case that q(t) > n(t) 2 it holds that n(t)f(t) > n(t) 2. 
Then there are at most n(t) different large sets and the space requirement to store 
all intersections is | So it suffices to show that N : =  ~,s,.s~vg ISi n $il = 
O(n(t)f(t)). For  every element x ~ q /  let a(x) be the .number of marked sets 
containing x. Then ~x  a(x)< n(t) since the total size of all sets is at most 
n(t), a(x) < f( t)  for all x since there are at most f ( t )  marked sets, and N = ~x a(x) 2. 
The sum ~x a(x) 2 is maximized subject to the two constraints above if exactly 
n(t)/f(t) values a(x) are equal to f( t)  and the remaining values are zero. Thus 
N = n(t)f(t). [] 

We can now describe the various operations. 

Mark(S). To mark a set S we build for each S'E J /  the intersection tree for 
S n S' by checking for each element x e S whether x belongs to S'. This takes 
time O(u(t)f(t)log n(t)). 

Unmark(S). To unmark a set S we delete all trees S n S' for S ' s  ,g .  This 
takes time O(u(t)f(t)). 

Insert(x, S). Add x to the tree for S, increase n(t), and change u(O. Unmark 
all marked sets which became small. If S is/marked, then insert x into the 
appropriate intersection trees S n S', S' ~ d/l, and if S is unmarked and became 
large, then mark S. All of this takes time O(f( t ) log n(t)) plus the time for the 
marking and unmarking. 

Delete(x, S). Delete x from the tree for S and, if S is marked, also from all 
intersection trees. Increase n(t) and change u(t). Unmark all marked sets which 
became small. All of this takes time O(f(t) log n(t)) plus the time for the unmarking. 

Query(S, S'). Increase q(t) and change f ( t )  and u(t). Mark all unmarked sets 
which became large. If S and S' are both marked, then answer the query in time 
O(1) using the intersection tree for S n S'. If one is unmarked, say S, then check 
each element of S for membership in S'. All of this takes time O(u(t) log n(t)) plus 
the time for the marking. 

To complete the analysis we define a potential function �9 and show that the 
amortized cost of mark and unmark is nonpositive and that the amortized cost 
of the other operations is within a constant factor of their actual cost. Let 

�9 (t) = ~ (ISI - -  u(t))f(t) log n(t) 
S medium and unmarked 

+ ~ (2u(t) - I SI)f(O log n(t). 
S medium and unmarked 

With this potential function the amortized cost of mark and unmark is dearly 
nonpositive. Let us turn to the operations insert, delete, and query next. Let S' be 
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the set involved in the operation.  Assume first that  the operat ion at t ime t is an 
insert or delete. Then  

n(t) = n(t - 1) + 1, 

q(t) = q(t - 1), 

f ( t )  = f ( t  - 1), 

and 

n(t) n(t - 1) + 1 
u ( t )  - - 

f ( t )  f ( t -  1) 

N ow we distinguish several cases: 

Case 1: S' was unmarked at t ime t - 1 and is not  marked in step t. Then 

tI)(t) - -  ~ ( t  - -  1) <_ ~, (ISI - -  u ( t ) ) f ( t ) l o g  n( t )  
S medium and unmarked  

+ ~ ( 2 u ( t )  - -  I S t ) f ( t )  log n(t )  
S medium and marked 

- -  ~ ( I S [  - u( t  - 1 ) ) f ( t  - 1 ) l o g  n(t - 1) 
S medium and unmarked  

(1) - ~ ( 2 u ( t -  1 ) -  I S I ) f ( t -  1)log n ( t -  1) 
S medium and marked 

_< ~ ( 2 u ( t )  - -  ] S [ ) f ( t )  l o g  n( t )  
S medium and marked  

(2) - ~ ( 2 u ( t -  1 ) -  I S I ) f ( t -  1)log n ( t , -  1) 
Smed ium and marked 

<_ ~, (2u(t) f( t)  log n( t )  - -  2 u ( t  - 1 ) f ( t  - -  1) log n(t - -  1)) 
S medium and marked  

= Z 
S medium and marked 

(2n(t)) log n(t) -- 2n(t -- 1) log n(t -- 1)) 

= ~ ( 2 n ( t - 1 )  l~  n(t) ) 
Smedi . . . .  d marked n(t -- 1---~ + log n(t) 

(3) --- O(f ( t )  log n(t)), 

where (3) follows from the fact that  there are at most  f ( t )  medium sets and that 
n(t - 1)log(n(t)/n(t - 1)) = o(1). 

Case 2: S' is medium at t ime t -  1 and becomes large or small at t ime t. Then 
IS'[ < u(t) or I S'l > 2u(t) and 

@(t) -- ~(t  - 1) _< O(f ( t )  log n(t)), 

where this is computed  analogously to case 1. 
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Case 3: S' becomes medium at t ime t. Then I S'l = 2u(t) or [S'[ = u(t). In each case 

~ ( 0  - ~ ( t  - 1) < O(f(t)log n(t)). 

Case 4: The  operation is an insert or delete and S' is medium (and marked  or 
unmarked).  Then  

(I)(t) -- (I)(t -- 1) < f ( t ) l o g  n(t) + O(f ( t )  log n(t)), 

where the first term follows from the possibly new element of S' and the second 
term is comPuted analogously to case 1. 

Thus,  in all cases the potential  increase is bounded  by a constant  factor of the 
actual cost. 

Assume next  that  the operat ion at time t is a query operation.  Then  

n(t) = n(t - 1), 

(4) u(t) f ( t )  = u(t -- 1)f(t  -- 1), 

q(t) = q(t - 1) + 1, 
and 

f ( t )  - f ( t  -- 1) = x / ~  -- x / / ~ -  1 

(5) 

Hence 

q)(t) - q~(t - 1) < 

0 1 

(ISlf(t)logn(t)- [Slf(t-  1)log n( t -  1)) 
S medium and unmarked  

+ ~ (u(t -- 1)f( t  -- 1) log n(t --  1) -- u( t ) f ( t )  log n(t)) 
S medium and marked 

+ ~ ([S[f(t- 1)log n( t -  1 ) -  [ S l f ( t ) l o g n ( t ) )  
S medium and unmarked  

+ ~ (2u(t) f ( t )  log n ( t ) -  2u( t - -  1 ) f ( t -  1) log n(t - 1)) 
S medium and marked 

(6) 

(7) 

(8) 

<_ ~ ( [ S J f ( t ) l o g n ( t ) -  [ S [ f ( t -  1) log n ( t -  1)) 
S medium and unmarked  

<_ n(t)( f( t)  -- f ( t  - 1))log n(t) 

- -  

\ \ J t t ) /  

= O(u(t) log n(t)), 
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where (6) follows since the contribution of all the other terms is nonpositive (see 
(4)). For  (7) note that ~Smedium I SI < n(t). Finally (8) follows from (5). 

Thus, the potential increase is within a constant factor of the actual cost. We 
have thus shown: 

THEOREM 16. Any intermixed sequence of n updates and q queries can be performed 

in O((nx//qq + q)log n) time using O(min{nx//q, n2}) space. 

3.2. Problem 2. We assume that an a priori bound m < n 3/2 on the number of 
memory locations is given. We show how to process a sequence of n updates and 
queries in time O(n/m 1/3) within O(m) memory space. 

We first fix a few constants. Let f = m 1/3, u = n/f, and c = nf/m = n/m 2/s. The 
algorithm to be described is a modification of the algorithm of the preceding 
section. We describe the differences. The quantities f ,  u, and n are used instead of 
f(t), u(t), and n(t). As before, each set S is stored in a balanced binary tree. In 
addition, we maintain a partition of S into blocks of between c and 2c contiguous 
elements. Each block knows the elements belonging to it and each element knows 
the block it belongs to. 

For  every pair S and S' of marked sets one of the two sets is designated as the 
leader of the pair. The cardinality of the leader must not exceed twice the 
cardinality of the other set in the pair. The intersection tree for S c~ S' is organized 
as follows: It has a leaf for each block B of the leader. The leaf corresponding to 
block B contains ~ x ~ s ~ s "  I(x), where I(x) is the monoid value associated with 
x. Each internal node of the intersection tree contains as before the sum of the 
monoid values of the leaves below it. The intersection tree for S c~ S' has at most 
2 min(ISI, I S'l)/c leaves and hence the total size of all intersection trees is at most 
nf/c  = O(m) as the next lemma shows. 

LEMMA 17. Let k be an integer and let u l , . . . ,  Uk be reals with ~.~ u~ < n and 
u i > n / f  for all i. Then ~,i<j min(ui, u j) < nf. 

PROOF. Let u* . . . . .  u* maximize N(u l , . . . ,  Uk)= ~ < j  min(ui, u)  subject to the 
constraints ~ i  u~ < n and u i > n / f  for all i; a simple compactness argument shows 
that u*, . . . ,  u* exists. Assume without loss of generality that u* < u* ' . .  < u*. Then 
N(u*, . . . ,  u*)= ~ i n i ( k - i ) .  Assume now that u* <u*+l  for some i. Let 
A = u*+ 1 - u*. Then N(u~, . . . ,  u*_ 1, u* + A/2, u*+ 1 - A/2, u*+ 2 . . . . .  U ~ )  = 

N(uT . . . . .  u~) + A/2, a contradiction. Thus u* . . . . .  u~' and hence 

N ( u L . . . , u ~ )  = 2 - 
[]  

We can now discuss the various operations. Besides the hidden operations mark 
and unmark, which stay unchanged, we also need a hidden operation change- 
leader. Assume that S and S' are marked sets with S being the leader. When 
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I S I > 21S'1 we make S' the leader and reconstruct the intersection tree for S n S' in 
time O(IS'[ log n). S was the leader of the pair for the last f ~ ( I s I )  = f~ ( IS ' l )  updates 
of one of the members of the pair and hence the amortized cost of change-leader 
per update is O(log n). 

We turn to the insert and delete alorithms next. They are as described above 
with the following three changes: 

--Suppose that x is inserted into (deleted from) the marked set S and that S' is 
another marked set. Let S" e {S, S'} be the leader of the pair. Locate the block 
B of S" containing x and recompute the value associated with B. Then update the 
intersection tree. All of this takes time O(c log n) for a single marked set S' and 
hence total time O(fc log n) = O(n/ml/3). 

~ I f  some block of set S becomes too large (> 2c elements) or too small (< c 
elements), then balance it with the neighboring block. This can also be done in 
time O(fc log n). 

- - I f  the leader of a pair of marked sets needs to be changed, then use change-leader 
to make the change. 

We conclude that an update operation takes time O(n/m l/a) plus the time for 
the mark and unmark operations. The query operation is as described above but 
note that it will not do any unmark operations. It thus takes time O(u log n)= 
O(n/ml/3). It remains to account for the mark and unmark operations. Each such 
operation takes O(uf log n) = O(n log n) time and there can be no more than O(n/u) 
of them (since two such operations on the same set are separated by u updates of 
the set); the total cost of all marks and unmarks is therefore O((nZ/u)log n)= 
O(nf) = O(nfc) = O(nZ/ml/3). 

We summarize in: 

THEOREM 18. Any intermixed sequence of O(n) updates and queries can be per- 
formed in O(n2/m 1/3) time and O(m) space. 

4. Diseussion. It would be very interesting to determine the complexity of these 
problems when the combining operation is known to be invertible. We should 
point out that Fredman [F2] shows tight bounds for the problem of maintaining 
partial sums of an array in the above framework, both when the combining 
operator is invertible and when it is not. In Fredman's paper allowing inverses 
leads to a constant factor improvement in the running time. 

We also want to point out that our lower bound does not rule out a solution 
with query time O(log n + k), where k is the size of the answer, and logarithmic 
update time. It would be interesting to find out if such a solution exists. For 

example, for the half-space reporting problem there is a lower bound of f~(x//n) 
in the arithmetic model I-C] and an upper bound of O(tog n + k) [CGL]. On the 
other hand, the best known upper bound for counting the number of points in the 

query region is O(x/~ log n) [CGL]. 
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In addition, Yellin's algorithm also solves the related problem of answering the 
yes-no query A ___ B? for sets A and B. Since decision problems such as these 
do not fit into the arithmetic framework, our lower bound does not apply, though 
the upper bound does. It would be interesting if matching upper and lower bounds 
could be found for the subset testing problem. 

Finally, we are interested in generalizing the proofs for the upper and lower 
bound of Problem 2 for arbitrary q. 

Appendix. Chernoff Bounds. We use the form of these bounds derived by Ragha- 
van [R]. Suppose that X is a binomial random variable with parameters n and 
p, i.e., it is the number of successes in n independent trials each with probability 
of success p. Then: 

LEMMA 19. 

(9) 

and, for any 5 > O, 

(10) 

Let # = np. Then, for any 5 e (0, 1], 

V-_exp(-5) l"  
Pr[X < (1 - 5)#] < k(1 - 5) (1-~)j  ' 

[ expI ) 7 
P r [ X > ( l + 6 ) # ] <  (l+6)(t+~) A" 

Ec] 

[CGL] 

[F1] 

[F2] 

[M] 
IN] 
[a l  

IS] 

[Val] 

[Ya2] 
lYe] 
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