
Can a Maximum Flow be Computed in o(nm) Time?

JOSEPH CHERIYAN, TORBEN HAGERUP~ AND KURT MEHLHORN

Fachbereich Informatik, Universi~t des Saarlandes
D-6600 Saarbrficken, West Germany

A b s t r a c t . We show that a maximum flow in a network with n vertices can be computed
deterministically in O(n3/logn) time on a uniform-cost RAM. For dense graphs, this improves
the previous best bound of O(n3).

The bottleneck in our algorithm is a combinatorial problem on (unweighted) graphs. The
number of operations executed on flow variables is O(nS/3(log n)4/3), in contrast with f~(nm) flow
operations for all previous algorithms, where m denotes the number of edges in the network. A
randomized version of our algorithm executes O(nal2rn 1/2 (log n) 312 + n 2 (log n) 2) flow operations
with high probability.

Specializing to the case in which all capacities are integers bounded by U, we show that a
maximum flow can be computed using O(n3/2ml/2 + n2{log U) ~/2) flow operations. Finally, we
argue that several of our results yield optimal parallel algorithms.

1. Introduction

The fastest deterministic and randomized algorithms for computing a maximum flow in a
network with n vertices and rn edges have running times of O{min{nrn log n, nrn + n s13 log n}}
(Alon's [A189] derandomization of [CH89] } and O(min{nm log n, nm + n ~'(log n)2}) (Warjan's
[Ta89] improved analysis of [CH89]), respectively. Despite intensive research for over three
decades, no algorithm with a running time of o(nrn) has ever been reported for any combination
of n and m. This is true even for networks with integer capacities, provided that the bound U
on the maximum capacity is moderately large, say, U = fl(n) [AOT89].

Our main result is a maximum-flow algorithm that runs in O(n3/logn) time. For dense
networks with m = w{n2/log n), this answers the question posed in the title in the affirmative.

Our algorithm is based on earlier work in [CH89], [GT88], and [A087], all of which in
turn uses the generic maximum-flow algorithm of Goldberg and Tarjan [GT88], which works
by manipulating a so-called preflow in the given network. We design an extension of the generic
algorithm~ called the incremental generic algorithm, which uses a new operation called add edge.
The new algorithm manipulates a preflow on a subnetwork and, as the execution progresses,
gradually adds the remaining edges to the current subnetwork.

Adding the edges in the order of decreasing capacities allows instances of the incremental
generic algorithm to save on the number of operations on flow variables. In particular, the
number of flow operations executed by our main algorithm is O(nS/3(tog n)4/3). All previous
algorithms execute fl(nm) flow operations. Using randomization, we can do even better: A
maximum flow can be computed using O(n3/2ml/2(log n) 3/~ + n~(log n) 2) flow operations with

This research was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract No. 3075 (project ALCOM}.

236

high probability. In fact, our deterministic algorithm is obtained from the randomized algorithm
by applying a derandomi~ation technique due to Alon [A189].

The bottleneck in our algorithms turns out to be a simple combinatorial problem on (un-
weighted) graphs, that of repeatedly identifying the so-called current edge of a given vertex.
Indeed~ given a sufficiently efficient solution to the current-edge problem, the running time of
each of our algorithms would match the number of flow operations. A straightforward solution
to the current-edge problem contributes O(nm) time to the running time of the maximum-flow
algorithm. The idea behind our improvement of this bound for dense networks, by a factor of
O(log n), is to represent the residual graph by its adjacency matrix and to partition the matrix
into 1 × [log nj submatrices. This enables us to process a submatrix in constant time by table
look-up while searching for a current edge. This method depends critically on the use of the
(standard) uniform cost measure for defining running time.

For networks with integer capacities, we give an incremental algorithm based on the excess
scaling algorithm of Ahuja and Orlin [AO87]. The algorithm is simple; however, its analy-
sis hinges on a nontrivial potential function. We show that the number of flow operations is
O(n3/2m 1/2 + n 2 log U). Using the wave scaling technique of [AOT89], the number of flow
operations can be reduced to O(n3/2rn 1/2 + n2(log U) 1/2) We mention that our use of "visible
excesses" in some ways is similar to the use of "available excesses" in [AOT89].

The generic incremental algorithm is introduced in Section 3, and the algorithm for integer
networks is described in Section 4. Section 5 discusses the current edge problem. The strongly
polynomial algorithm is presented in Section 6 and analyzed in Sections 7-9.

2. Definitions and notat ion

For any set V and any e = (v, w) E V x V, let tail(e) = v, head(e) = w, and rev(e) = (w, v).
v and w are the tail of e and the head of e, respectively. For any E C V x V, denote by E the
closure of E under reversal, i.e., E = E U {rev(e) : e E E}. Further, for any function ¢ : E --~ R,
let ¢ : E --* ~ be given by ¢(e) --= ¢(e) for e E E, ¢(e) = 0 for e E -E\E. A network is a tuple
G = (V, E, cap, s, t), where (V, E, cap) is an edge-weighted directed graph, cap : E --* ~+ W {0},
and s and t are distinct vertices in V. A preflow in G is a function f : E ~ [R with the following
properties:
(1) f(rev(e)) = - f (e) , for all e E E (antisymmetry constraint);
(2) f(e) < c--@p(e), for all e E E (capacity constraint);
(3) ~ee~ , he~d(e)=~ f(e) > 0, for all v E V\{s} (nonnegativity constraint).

A preflow f in G is a flow if ~ee~ , he~(~)=~ f(e) = 0 for all v E V\{s , t} (flow conservation

constraint). The value of f is ~ee~ , head(e)=t f(e), and a maximum flow in G is a flow in G of

maximum value. An edge e ~ E is residual (with respect to f) if f(e) < T@p(e). A push on e
of value c E ~ is an increase in f(e) by c. The push is saturating iff f(e) = c-"@p(e) afterwards.
A labeling of G is a function d : V ---* ~t U {0}. The labeling is valid for G and a preflow f in G
exactly if d(v) < d(w) + 1 for each edge (v, w) E E that is residual with respect to f .

We use what we consider to be the traditional model for the study of problems on net-
works. Capacities and flow values are represented by real numbers, on which the only allowed
arithmetical operations are addition and subtraction, and all other quantities are represented
by integers, on which we allow addition, subtraction, multiplication and integer division. In
addition, we assume for both data types standard operations for comparisons, data movement,
the constant 1, etc. For n-vertex input networks, we allow integers of absolute value n °(t),
and we charge constant time for each basic operation on real numbers or integers (uniform cost
measure). In keeping with common usage, we employ the term "flow operation" to mean any
operation on real numbers.

237

3. The incremental generic algorithm

In this section we generalize the generic maximum-flow algorithm of [GT88] by extending
it to include one additional operation, add edge.

The goal of the algorithm is to compute a maximum flow in a symmetric network G =
(V, E, cap, s,t). Let n = IVI and m = IEI . In order to avoid trivialities, we assume m > n > 3.
Let V + = V\{s , t}. The main variables used by the incremental generic algorithm are
(1) A network G* = (V, E*, cap*, s, ~), where E* C E and cap* is the restriction of cap to S*.

G* is the current network, on which the algorithm mostly operates. E* = ~ initially, and
edges in E axe gradually added to E*. Let G* = (V, E*, cap*, s, t).

(2) A preflow f : E ---7 ~ R, which gradually evolves into a maximum flow in ~-7.
(3) h labeling d : V -~ ~t U {0), valid for f and G --z.

An edge (v, w) E ~ is called eligible exactly if it is residual with respect to f and d(v) = d(w) + 1.
For all e E E*, the residual capacity rescap(e) of e is defined as cap(e) - fie), and for all v E V,
the excess e(v) and the visible excess e*(v) of v are given as follows:

eCv)= ~ f i e) e*(v)=max{e(v)- - ZcaPCe),O}.
~eE*--, he,d(~)=~ eel\E*, tail(~)=~

Although the functions e and e* in principle can be computed from f and E*, efficiency dictates
that they must he represented explicitly. In the description of the algorithm, however, we omit
this tr ivial elaboration.

Since f by definition is antisymmetric, low-level flow manipula t ion is carried out by the
procedure

p r o c e d u r e set flow(e : edge; c : real);
f(e) :---- c; f (mv(e)) := --C;

with the special case

p r o c e d u r e saturate (e : edge);
setZow(e, cap(e));

The main routines of the incremental generic algorithm and the algorithm itself follow.

p r o c e d u r e push(e: edge; c: real);
Precondit ion: e = iv, w) E -E -z, v E V +, e is eligible, and 0 < c < min{e*(v), rescapie)}.

set/~ow(e, f(e) + c);
procedure relabel (v : vertex);
Precondit ion: v E V +, e*(v) > O, and no edge in ~ with tail v is eligible.

div) := d(v) + I;

p r o c e d u r e add edge (e : edge);
Precondition: e E E\E*.

E* := E* U {e);
i f d(tail(e)) > d(head(e)) t h e n saturate(e);

procedure generic initialize;
for al l e E E d o setflow(e,O); (, zero flow is default for new edges *)
for al l v E V \ { s) do div) := 0; d(s) := n;
E* := O;
for all e E E with s e {tail(e), beadle)) do addedgeie);

Incremental generic algorithm:
generic initialize;
w h i l e max{e(v) :v E V +} > 0
d o execute some push, relabel or addedge operation

whose precondition is satisfied. (, there always is one *)

238

An execution of push(e, c) and of relabel(v) is called a push on e and a relabelin9 of v, respectively.
We next show the part ial correctness of the algorithm and give a few addit ional properties. In
stat ing invariants for the algorithm, we consider setflow and add edge to be atomic operations,
i.e., we ignore possible violations of the invariants while these routines are being executed. We
also implicitly restrict a t tent ion to the part of the execution that follows the initialization.

Fact 1: For v • V, let h(v) = ~eE\E*,tail(~)=~ cap(e). For all v • V, if e(v) > h(v) at some
time during the execution, then e(v) > h(v) forever after. In particular, for all v • V\{s} ,
e(v} < h (,) ~ d(v) -- 0.

L e m m a 3.1: At all times during an execution of the incremental generic algorithm,
(1) f is a preflow;
{2} d is a valid labeling.

P roo f : (1) and (2) hold initially, and they are not invalidated by calls of push or reIabel (cf.
Lemma 3.1 of [GTS8] }. Furthermore calls of add edge are easily seen to preserve (2). The only
remaining issue is that a saturat ing push over an edge (v, w) performed during a call of add edge
might invalidate the nonnegat ivi ty constraint e(v) > O. However, when the push takes place,
d(v) > d(w) > O, and it follows from Fact 1 that e(v} > 0 after the push. |

L e m m a 3.2: Suppose that the algorithm terminates. Then, at termination, the extension
] : E ~ R of f with](e) = 0 for all e • E\E* is a maximum flow in G.

P roo f : At termination, f is a flow in G*, so] is a flow in G. If / is not a maximum flow in G, it
follows from Theorem 3.2 of I'GT88] that there is a simple path p in G from s to t all of whose
edges are residual with respect to f . Let v be the last vertex on p reachable from s over a path
of edges on p belonging to E*. If v # t, the edge on p with tail v belongs to E\E*, and Fact 1
implies that d(v) = 0, which is true for v = t as well. But since d(s) = n and v is reachable from
s over a path of length < n - 1 all of whose edges are residual with respect to f , this contradicts
the validity of d. |

Fact 2: An ineligible edge (v, w) • E can become eligible only during a relabeling of v.

L e m m a 3.3: For all v • V and at all times during the execution, d(v) < 2n - 1. In particular,
the total number of relabelings executed by the algorithm is < 2n 2.

P r o o f : See Lemmas 3.7 and 3.8 of [GT88] . |

4. The incremental excess scaling algorithm

Because it illustrates our main ideas in a very simple setting, we describe in this section an
incremental excess scaling algorithm for the case where all edge capacities are integers bounded
by U. The algorithm is an adaptat ion of the excess scaling algorithm of Ahuja and Orlin [AO87]
to the incremental paradigm.

For each e • E*, define the undirected capacity of e as ucap(e} = cap(e) + cap(rev(e)).
The execution is divided into phases parameterized by the value of a scaling parameter A. The
algorithm repeatedly chooses a vertex v • V + with e* (v) > A and minimal d(v) and either pushes
flow on an edge (v, w) or relabels v. When there are no more vertices v • g + with e* (v) > A,
the current phase ends, A is replaced by A/2, all edges e • E\E* with ucap(e) > A / ~ are added
to E*, and the next phase begins. Here fl > 1 is an integer to be chosen later.

We assume E* to be represented by a set of adjacency lists. For all v • V, the first eligible
edge in the adjacency list of v (if any) is called the current edge of v. The complete program
follows.

f u n c t i o n ce(v: vertex): edge;
Return the current edge of v, or nil if v has no current edge;

239

Incremental scaling algorithm:
generic initialize;
A := 2Lios2 vJ;
wh i l e A > 1
d o b e g i n

for al l e e E\E* with ucap(e) >_ A/fl do addedge(e);
whi l e max{e*(v) : v e V +} > A
d o b e g i n

Among the vertices v E V + with e*(v) >__ A, choose v as one with minimal d(v);
i f ce(v) = nil
t h e n relabel(v)
else push(ce (v), min{A, rescap(ee (e))});

end ;
A := A/2;

end .

The algorithm is easily seen to be an instance of the incremental generic algorithm, and hence
to be partially correct. We now analyze its running time. Denote by ~pushes the total number
of pushes executed by the algorithm, and by Tee the total time spent in the routine ce. Tee will
be analyzed in the following section.

L e m m a 4.1: The algorithm uses O(q) flow operations and Tee + O(q) time, where q = ~pushes +
n l o g U + n 2 + mlog(nfl) .

P r o o f : Ahuja and Orlin [AO87] have described a simple implementation that allows the total
t ime spent in testing the condition of the inner loop of the program and in choosing v to be
bounded by O(~pushes + nlogU) . Each relabeling takes constant time, and the total number
of relabelings is O(n 2) by Lemma 3.3. A single update of E* following a decrease of A can be
time-consuming. However, if the edges are initially sorted by their undirected capacities, the
necessary time is O(1) per edge added to E*, for a total time of O(m). Finally, there are O(log U)
phases, each contributes O(1) time that has not yet been accounted for, and O(rn tog(nf~)) time
suffices for the initialization (O(mlogn) time for sorting the edges, and O(mlogf~) time for
multiplying their capacities by/7). I

For v E V and i = 1, 2 , . . . , denote by degi(v) the number of edges with tail v added to E*
between phase i - 1 and phase i (for i = 1: before the first phase). Further, for i = 1, 2 , . . . , let
m~ = ~ v e w degi(v) and denote by ~relabels i the number of relabelings carried out in phase i.
The following observations are immediate:

F a c t 3: Consider a push on an edge e = (v, w) carried out during a phase (i.e., not in a call of
addedge). At the time of the push, e is a current edge, the value of the push is < 2A, and if
w E V +, then e*(w) < A immediately before the push.

F a c t 4: For all v • V + and for i = 1 , 2 , . . . , e*(v) < 3A + 2deg~(v)A/f~ throughout phase i.

Using arguments similar to those of [GT88] and [AO87], it is easy to bound the number
of saturating pushes by O(nm) and the number of nonsaturating pushes by O(nm/f~ + n 2 log U).
In order to obtain a tighter bound on the number of saturating pushes, we define a push on
an edge (u,v) to be terminal if I{w • V : d(w) = d(v)} I < fi at the time of the push, and
we part i t ion the saturating pushes into three classes: (1) pushes of value < A/fl; (2) terminal
pushes of value ~ A//3; (3) nonterminal pushes of value >_ A/f~. The first two classes are easy
to handle, whereas the number of pushes in the third class is bounded using Lemma 4.2 below.
The lemma generalizes the potential function argument of [CH89, Lemma 2]. For V' C V and
7 >_ 1, call a push on an edge (u,v) a (Y',7)-push if I{w • Y ' : d(w) = d(v)}t >_ 7 at the time
of the push. A nonterminal push is just a (V, fl)-push; the more general form of the lemma is
needed in Sections 7 and 8. Compared with Lemma 2 of [CH89], which corresponds to the case

240

7 ~ I, the present lemma bounds the amount of flow moved by (V*,v)-pushes by a quantity
essentially inversely proportional to 7.

Lemma 4.2: For i ~ 1,2,... and for all V I C V and 7 ~ 1, the total value of all (Vt,7)-pushes
in phase i is at most (3nA~ + 2rn~Ai//3)IV~I/~ + 3Ai. |relabels i.
Proof : Let h -~ IV'I and V' = { v l , . . . ,Vh} and for all v E V, define the fooling height of v as

d'(v) = max [{j : 0 < j < d(v) and I(k : i~ = j}[> q,)[.
~1>a(~),...jL>~(,~) -

Intuitively, d~(v) counts the maximum number of "dense virtual distance levels" between v and
t, where a vertex vk E V ~ is allowed to occupy any one virtual distance level numbered at least
d(vt), and where a dense virtual distance level is one that contains at least V vertices in V t.

d' has the following properties:
(1) Yv E V : 0 < d'(v) < h/q;
(2) vu,, • v : d(u) > >_ a'(,);
(3) Vu, v • v : (d(u) > d(v) and I{w • Y' : d(w) = d(v)}l >_ 7) ~ d'(u) > d'(v);
(4) A relabeling of a vertex v • Y + increases d'(v) by at most 1 and does not increase d'(w)

for any • Y \ (.) .

Define the potent ial function

= : (, ,) . a ' (,) + e ' (v) • hl, .

At the start of phase i, ~ < (3nA~ + 2rn~Ad/3)h/q, (by Fact 4), and # > 0 always. ~ does
not increase due to push operations (by property (2) and Fact 3), and a relabeling increases

by at most 3A i (by property (4)). It follows that the total increase in ¢ during phase i
is at most 3A~ • ~relabels~. Consequently, the total decrease in • during phase i is at most
(3hAl + 2rn~Ad/3)h/v + 3A~. |relabels~. Finally note that each (V ~, "y)-push of value c causes ~)
to decrease by at least c (by property (3)). I

Lemma 4.3: lpushes = O (n m / f l + n2fl + n 2 log U).
Proof: Call a push small if its value is < A/ft. We prove the following claims:
(1) The total number of small saturating pushes is O(nm/~ % n 2 log U).
(2) The total number of terminal saturating pushes is 0(n2/3).
(3) For i = 1,2,..., the number of nonsmall nonterminal saturating pushes in phase i is

O(nmi / ,G 4- n 2 4- irelabels i . fl).
(4) For i -- I, 2 , . . . , the number of nonsaturat ing pushes in phase i is O(nm~/f l+n2+~relabels i) .

Each push is counted at least once. Since ~ i ~relabelsi = O(n2) by Lemma 3.3 and ~ i rr~ _< m,
the lemma follows by summing the contributions of (3) and (4) over all phases and adding those
of (1) and (2). We next prove (1)-(4).

(1) Each e E E* which is not incident on s has ucap(e) > A//3. Hence between any two
small sa turat ing pushes on an edge e • E*, there is a nonsa tura t ing push on one of the edges e
and rev (e). The claim now follows from (4) by summat ion over all phases.

(2) By Fact 2, each terminal push out of a vertex v • V is followed by fewer than/3 saturat ing
pushes out of v before the next relabeling of v. Summing over all v • V and all possible values
of d(v), this gives O(n2fl) pushes.

(3) Apply Lemma 4.2 with V ~ = V and 7 = ft.
(4) Note that the value of each nonsaturat ing push is at least A and that every push is a

(V, 1)-push and apply Lemma 4.2 as in (3), bu t with -~ = 1. I

Using the definition of Tc~, (n, q) given in the following section (for the t ime being, interpret
T~,(n,q) as T**), we can sum up the findings of this section as follows:

241

T h e o r e m 1: A maximum flow in a network with n vertices, m edges and integer capacities
bounded by U can be computed deterministically using O(q) flow operations and O(q + T" e (n, q))
time, where q = n3/2rn 1/2 + n 2 log U.

Proof : Put /3 = L ~] and combine Lemmas 4.1 and 4.3. I

R e m a r k : Using the wave scaling technique of [AOT89], the value of q in Theorem 1 can be
reduced to na/2rn 1/~ + nU(log U) 1/2.

5. F i n d i n g c u r r e n t e d g e s

This section discusses the implementation of the function ce. We consider the following
abstraction of the problem: Let n E ~I and V = {1 , . . . , n}. The task is to maintain two
functions r : V x V --* {0, 1} and d : V --* {0 , . . . , 2n - 1} and n permutations ~tl,...,/~,~ of V
under the operations specified below. Elements of V and of V × V are called vertices and edges,
respectively, and an edge (v, w) E V × V is eligible if r(v, w) -- 1 and d(v) = d(w} + 1. For v E V,
let E(v) = {w E V : (v, w) is eligible).

i~itM ~ ') .
Precondition: #~ , . . . , #~ are permutations of V.
Sets d(v) := 0 and #. := #; for all v E V and r(v ,w) := 0 for all (v,w) E V x V;

push((v, ~), b).
Precondition: (v, w) E V x V, b E {0, 1}, and (v, w) is eligible.
Sets , (~ , ,) := 1 and ,(v, ~) := b.
relabel(v).
Precondition: E(v) = 13 and d(v) < 2n - 1.
Executes d(v) := d(~) + 1.
add edge (v, w).
Precondition: (v, w) E Y × V and d(v) < d(w).
Sets r(v, w) := 1.

ce(,),
Precondition: v E V.
Returns (v,~t,(min{i E V : p~(i) E E(v)})) if E(v) # f3, nil otherwise.

The interpretation is as follows: Vertices and edges correspond to vertices and edges of G, #~
represents the ordering of the adjacency list of v, for all v E V, r(v, w) = 1 corresponds to
(v, w) being residual, for all (v, w) E E*, relabel, add edge and ce correspond to the routines of
the same names in the maximum flow algorithms, and push(e, 0) and push(e, 1) correspond to a
saturating push and a nonsaturating push on e, respectively.

For n, q E IN, denote by Tc~(n, q) the time needed to execute any legal sequence of one init
operation followed by q push, relabel, add edge and ce operations. Note that the symbol Tc~ is
used without arguments in a related, but different sense.

During the execution of a legal sequence of the above operations, starting with init, if
an edge (v,w) is ineligible at some time, then it remains ineligible until the next execution
of relabeI(v) (of. Fact 2). Hence we can implement ce(v) by letting a pointer z[v] sweep over
1 , . . . , n until an element of #: l (E(v)) is found, saving z[v] between calls of ce(v), and resetting
z[v] to 1 in each call of relabel(v). Since the total number of calls of relabel is O(n2), it follows
that Tce(n,q) = O(q + n 3) (another immediate bound is T¢¢(n,q} = O(q + n m) , where m is the
number of add edge operations).

We now give a faster solution for the special case in which the arguments #1' , . . . , #,~' of
init are all the identity permutation Idv of V. For n,q E IN, let T'c~(n,q) be the quantity
defined as T~ (n, q) for this special case. If we represent the function d not only directly, but

242

also through an array D : {0 2 n - 1} × V --* {0,1} such that for a l l 0 < k _< 2 n - 1
and all v e V, D[k,v] = 1 if and only if d(v) = k, the edge (v,z[vl) is eligible if and only if
r (v, ziv]). Did(v) - 1, z[v]] =~ 0. We combine this observation with the "four Russians' trick" (see
[AHU, Section 6.6]) to obtain a faster algorithm. Considering r and D as (two-dimensional)
bit matrices, note that for #1 #,~ = Idv, the search for an eligible edge with tai l v is a
left-to-right scan of one fixed row of r and one fixed row of D. Part i t ioning r and D into blocks,
i.e., 1 × [log 2 nJ submatrices, we can store the [log 2 nJ bits of each block in a single RAM word,
i.e., as one integer, and process the block in constant t ime using table look-up. This speeds up
the scan by a factor of O(logn) and allows q operations, s tar t ing with init, to be executed in
O(q + n3/logn) time. The necessary tables can be constructed in O(n 2) time. We hence have

L e m m a 5.1: T~ce(n,q) = O(q + n3/logn). II

6. The incremental strongly polynomial algorithm

In addition to the da ta structures of the generic algorithm, the incremental strongly poly-
nomial algori thm uses, as do several previous algorithms, an edge-weighted directed graph
F = (V, EF, val), where EF C E* and val : EF --* ~. F at all t imes is a directed forest,
i.e., an acyclic directed graph with maximum outdegree at most one. A vertex v C V is called a
root exactly if its outdegree in F is zero. The following operations are applied to F:

initF.
Sets EF = ~.
link(e, c).
Precondition: e C E*, c • JR, and (V, EF tO {e}) is a directed forest.
Replaces BE by EF U {e} and sets val(e) := c.

cut(e).
Precondition: e • EF.
Replaces EF by EF \ {e} .

find value(e).
Precondition: e • EF.
Returns val(e).
find bottleneck(v, c).
Precondition: v • V and c • IR.
Returns the first edge e wi th val(e) < c on the maximal path in F start ing at v, or nil if no such
edge exists.

add value (v, c).
Precondition: v • V and c • ~ .
Replaces val{e) by val(e) + c for each edge e on the maximal path in F start ing at v.

Using the dynamic trees da ta structure of Sleator and Tarjan [ST85], the six operat ions
defined above can be implemented to take O(logn) amortized t ime each, i.e., a sequence of q
operations on F , s tar t ing with initF, can be executed in O(qlogn) t ime (the find bottleneck
operation is nonstandard, but can be implemented within this t ime bound).

The preflow f is represented in one of two ways: For e • E*, while e ~ E~, and rev(e) ~ EF,
f(e) is stored directly as g[e], where g : E --* {R is an array. While e • EF , f(e) is given implici t ly
as cap(e)- val(e), and f(rev(e)) as - f (e) . Accordingly, we redefine the basic procedure set flow
and incorporate the conventions for the representation of f into new versions of link and cut.
p r o c e d u r e set flow(e : edge; c: real);

gle] : = c; glrev(e)l : - - - c ;

243

p r o c e d u r e Link(e: edge);
rink(e, rescap(d);

p r o c e d u r e Cut(e: edge);
sermon(e, cap(e) - ~nd value(d);
cut(e);

The procedure tree push defined below works as follows: A call tree push(e, e) first inserts e into
EF, if it is not already in E~-, and then sends c units of flow from the tail of e along the unique
path in F as far as possible without saturating any edge. If the flow does not reach a root, the
first edge e e on the path with rescap(e') < c is removed from EF and saturated.

p r o c e d u r e tree push(e: edge; c: real);
i f e ~ EF t h e n Link(e);
v := tail(e);
e I := find bottleneck(v, c);
if e' =~ nil t h e n Cut(e');
add value(v, c);
if e t # nil t h e n saturate(et);

As in Section 4, an execution of the algorithm is divided into phases parameterised by the value
of a variable A For i = 1, 2 , . . . , let Ai be the value of A in phase i. For i = 1, 2 , . . . , Ai satisfies
the following requirements:
(1) Ai < & i - l / 2 (take A0 = ~) .
(2) At the beginning of phase i, e*(v) < 2Ai + 2deg~(v)Ai/fl for all v E V +.
(3) At the beginning of phase i, e*(v) > Ai for at least one vertex v E V +.

If requirement (3) cannot be satisfied for any Ai > 0, the algorithm terminates.
The routine select returns a vertex v E V + with e*(v) >> A. If necessary, the current phase

is first ended, and a new phase is begun.

f u n c t i o n select : vertex;
while max{e*(v) :v E V +} < A
do beg in

A := min{A/2, max({e*(v):v E V +) U {~ • ucap(e): (e) E E\E*))} ;
if A = 0 t h e n stop;
(* V v E V + : e * (v) < 2 A ; V e e E \ E * : u c a p (e) < 2 A / f l *)
for all e E E\E* with ucap{e) > lX/fl do addedge(e);

end;
Among the vertices v E V + with e*(v) > A, return one with minimal d(v);

We finally extend the routine relabel and give the main program.

procedure relabel(v : vertex);
for all u E V with ce(u) = (u,v) E Ep do Cut(u,v);
d(v) := d(v) + 1;

Incremental strongly polynomial algorithm:
generic initialize;
Suitably permute the adjacency lists of G (see Section 9);
initF; A := co;
r e p e a t

v := select;
i f ce(v) = nil
t h e n relabel(v)
else treepush(ce(v), i f e*(v) > 2A t h e n A else e*(v));

forever.

244

7. Analysis of the strongly polynomial algorithm

Again, the algorithm is easily seen to be an instance of the incremental generic algorithm.
Note that F remains acyclic, as required, since EF at all times is a subset of the set of current
edges. This and the following sections investigate the running time of the algorithm. The
symbols ucap,/~, Tee, degi(v), rni, and ~relabels i are used with the same meaning as in Section 4.

Define a cycle to be one iteration of the main loop of the algorithm. An execution of Link(e}
and Cut(e) is called a link on e and a cut on e, respectively. A call of select will be called a select
step, and a v-select if it returns the vertex v. Let ~selects and ~cuts denote the total number of
select steps and cuts, respectively. Facts 1-4 and Lemma 4.2 still hold. In addition, we have

Fact 5: While v E V is not a root, e* (v) does not increase due to nonsatnrating pushes into v.

Fact 6: At the end of a cycle containing a v-select, either v is a root, e*(v} = 0, or e*(v) >_ A.
Fact 7: Following each cut on an edge e C E and in the same cycle, e becomes ineligible.

L e m m a 7.1: The algorithm uses O(Q) flow operations and Tee +O(Q) time, where Q = ~selects.
logn + rn log(hi3}.

Proof: In order to efficiently compute the maxima and minima needed in select, we maintain
two heaps, the d-heap, containing all vertices v C V with e*(v) > A, ordered according to the
key d(v), and the e-heap, containing all vertices v C V with e*(v) < A, ordered according to the
key -e* (v). We assume a standard heap implementation with a logarithmic time bound for each
operation. In particular, a push operation, which must update at most two values stored in the
heaps, can be executed in O(log n) time. Decreasing A is expensive, since possibly many vertices
must be transferred from the e-heap to the d-heap. However, only one vertex is removed from
the d-heap per select step, so that the total time spent in decreasing A is O((~seleets + n) log n).
The operations that modify E* can be executed in O(m log n) time. Altogether, hence, the total
time spent in calls of select is O((~selects + m)logn).

Each call of treepush executes O(1) operations on F, and the number of cut operations
executed in relabel cannot exceed the number of link operations executed in treepush. Hence the
total number of operations executed on F is O(~selects}, for a total time of O(~selects. logn).
The remaining parts of treepush and relabel can be executed in O(~selects.log n) time, provided
that a list of the edges in EF entering v is maintained for each v e V. Finally, O(mlog(n/3)}
time suffices for the initialization. |

L e m m a 7.2: ~selects = O(~cuts + n2).
Proof: Define a v-select to be decreasing if e*(v) decreases by at least A in the same cycle. A
nondecreasing v-select is followed in the same cycle by a relabeling of v or a cut on an edge with
tail v. By Lemma 3.3, it therefore suffices to count the number of decreasing select steps.

Call a vertex v E V + special if e*(v) > 3A, and call a select step special if it returns a
special vertex. Since no vertices become special during a phase and since e*(v) never increases
in a phase while v is special (by Fact 3), the total number of special decreasing v-selects in
phase i is seen by Fact 4 to be at most 2degi(v)/ft. Summing over all vertices and all phases
shows the total number of special decreasing select steps to be at most 2rn//~.

In order to count the remaining select steps, define a major event for a vertex v to be a
relabeling of v, a saturating push into v, a link or a cut on an edge leaving v, the addition to
E* of an edge with head v, or program initiMization or termination. We wilt count the number
of nonspecial decreasing v-selects in a particular period between two successive major events for
v. Either v is a root throughout the period (Case 1}, or v is a nonroot throughout the period
(Case 2).

Case 1: At most one decreasing v-select can occur during the period.
Case 2: By Fact 5, e*(v) never increases during the period. At the time of the first nonspecial

v-select in the period, e* (v) < 3A, and if A is changed during the period, e*(v) first decreases

245

to zero (by Fact 6). Hence there are at most 2 nonspecial decreasing v-selects during the period.
Summing over all periods and all vertices, we find that the total number of nonspecial decreasing
select steps is at most 2n plus twice the number of major events, which is O(~euts + n2). II

Define the status of an edge e E E as follows: While e E E\E*, e is absent. For e E E*, e
is medium if ueap(e) < 20n3A, and e is huge ff ueap(e) > 20nSA.

L e m m a 7.3: Let e E E be huge. Then at least one of the edges e and rev(e} is never again
saturated.

Proof: Applying Lemma 4.2 with V ~ = V and ~ = 1 shows the total value of all pushes in
phase i to be at most (3n 2 + 2ran+ 6n2}Ai < 5n3Ai, for i = 1 , 2 , . . . , and hence the increase in
f(e) in phase i and Ml subsequent phases to be at most 10n3Ai. II

Define a cut to be a PTR event if it happens during an execution of relabel, and denote
by |ptr the total number of P T R events during the execution. P T R events were introduced in
[CH89].

L e m m a 7.4 ([CH89] , Lemma 6): Over the whole execution, there are O(~ptr + rn) cuts on huge
edges. II

8. O p e r a t i o n s on m e d i u m edges

In order to bound ~euts, it turns out to be essential to count the number of certain pushes
of value > A//3 on medium edges. We next introduce some convenient terminology for speaking
about pushes. A push over an edge (u, v) happening while d(v) = k is represented by the triple
(~, v, k).

Define an event list to be a repetition-free sequence of triples of the form (u, v, k), where
(u, v) E E, 0 < k _< 2n - 1, and at some time during the execution, (u, v) is medium while
simultaneously d(v) = k. Given an event list • and triples Q and t2, we write t l -<~ t2 to
indicate that t l and tz both occur in ~, with t l preceding t~.

We also need to formalize the notion that a vertex is incident with a large number of
currently medium edges. For v E V, denote by deg(v) the number of edges in E with head v. A
phase (an integer k, respectively) is said to hit a vertex v if v is the head of at least deg(v}//3
edges that are medium in that phase (throughout that part of the execution in which d(v) = k,
respectively}. For i = 1, 2 , . . . , denote by Vi the set of vertices hit by phase i and let ni = IYil.
A push occurring in phase i is called regular if it is a (Vi,/3)-push and its value is at least A j / 3 .

Each push of interest will be either regular or associated with a terminal triple in a sui tably
defined event list, where a triple (u, v, k) in an event list ~ is called terminal (with respect to
•) if

[{w: {u, v, k) -<~ (u, w, k) and w is hit by k}i </~.

Hence our immediate objective is to count terminal triples and regular pushes.

L e m m a 8.1: The number of terminal triples in an event list is O(nm//3 + n2/3}.
Proof: Since an edge changes its status at most twice, ~ contains O(m) triples (u, v, k) such
that (u, v) changes its status while d(v) = k. Let ~ ' be the set of remaining triples in ~.

For each v E V and 0 < k < 2 n - 1 such that v is not hit by k, ~ contains less than
deg(v)//3 triples of the form (u, v, k). Summing over all v and k, this yields am~~3 triples. For
each u E V and 0 < k < 2n - 1, ~l contains less t han /3 terminal triples of the form (u, v, k),
where v is hit by k. Summing over all u and k gives 0(n2/3) triples. It is easy to see tha t each
terminal triple in • has been counted (at least once}. II

L e m m a 8.2: The total number of regular pushes is O{nrn//3 + n2/31ogn).

246

P r o o f : One easily shows that each vertex is hit by O(/3 log n) phases. Hence ~-~i n / = O(n~ log n).
By Lemma 4.2, applied with V' = Vi and 7 = ~, the total number of regular pushes is

o (~ (~ , ~ J Z + , ~ j : + g~,l~bels~). Z) = o(~m/Z + ~Zlog~). It
i

L e m m a 8.3: Over the whole execution, there are O{nm/fl + n2/3togn + gptr) cuts on medium
edges.

P roo f : Consider a cut on a medium edge e = (u, v). We can assume that the cut is not the
first cut on e and that both the previous cut on e and the cut under consideration happen in an
execution of treepush (i.e., they are not P T R events). Let 27 be the part of the execution between
the end of the cycle containing the previous cut on e and the end of the cycle containing the cut
under consideration. We consider two cases:

Case 1: reseap(e) < A//3 throughout 2;. In this case each of the >_ 1 cuts on rev(e) during
2: is a P T R event. Hence Case 1 contributes O(gptr) cuts.

Case 2: rescap(e) >_ A/~ at some time during 27. Associate with the cut one distinguished
push over e during 27 that changes rescap(e) from >_ A//3 to < A / ~ and note that the value
of this push is at least A//3. Furthermore, if d(v) = h at the t ime of the distinguished push,
associate with the push the triple (u,v, k> and append (u, v, h>, at the time of the push, to an
init ially empty sequence ~ .

The final value of k~ is an event list, and each push associated with a nonterminal triple in
is regular. It now follows from Lemmas 8.1 and 8.2 that Case 2 contributes O(nm/~+n2fllogn)
cuts. II

L e m l n a 8.4: The algorithm uses O(Q) flow operations and Tc~ + O(Q) time, where Q =
n312m 112 (log n) s12 + ~ptr • log n.

P roo f : Pu t fl = 1 + [mX/2n-1/2(logn)-~/2J and combine Lemmas 7.1, 7.2, 7.4 and 8.3. II

9. P T R events

The number of P T R events may depend on the ordering of the adjacency lists of G, which
defines ce. We need some technical definitions to discuss this dependence.

For every finite set A, denote by HA the set of all permutat ions of A, i.e., of all bijec-
tions 7r : { 1 , . . . , I A I } --* A. For every A' C A and every ~ @ HA, and a E HA, denote
by ~(~,a) the length of a longest (not necessarily contiguous) ascending subsequence of the
sequence c r - l (~ (1)) , . . . , ~ - l (~ (I A ' l)) or, equivalently, the length of a longest (not necessarily
contiguous) common subsequence of the sequences ~(1) , . . . ,~ (IA ' I) and a(1) ,a(IAI). Fi-
nally, for any set {~1,--. ,~n} of permutat ions of subsets of a finite set A, let A(~I ,~n) =
m ~ n ~ E%1 ~(~,, ~).

Let Y = {vt vn} and for i = 1 , . . . , n , let Fi --- {w e V : (vi,w) e E} and di = IFil. For
i -- 1 , . . . ,n , the ordering of the adjacency list of vi may be viewed as a permutat ion ~i of Fi,
i.e., (vi,~i(j)) is the j t h edge in the adjacency list of vi, for j = 1 , . . . ,di. The following fact was
essentially proved in [CH89] (Lemma 9 and Claim following Lemma 11):

L e m m a 9.1: If the adjacency list of vi is ordered according to ~i E Hr~, for i = 1 , . . . ,n , then
~ptr < 2n. A (G , . . . , &) . II

The fact below was also essentially proved in [CH89] and expressed there as Lemma 10
{put/3 = X / ~) .

L e m m a 9.2: Suppose that ~i is drawn randomly from the uniform distr ibut ion over Hr~, for i =
1 n, and that ~1, . . . ,~n are independent. Then for any r _> nv/-n--m + n l o g n , A(~I , . . . ,~n) =
O(r) with probabili ty at least 1 - 2 - r . II

247

Combining Lemmas 8.4, 9.1 and 9.2, we obtain

T h e o r e m 2: For any constant a > 0, a maximum flow in a network with n vertices and m edges
can be computed using O{Q) flow operations and O(Q + Tee(n, Q/logn)) time with probability

at least 1 - 2 - ~ , where Q = O(na/2m'/~(logn) 3/2 + n2(logn)~). !
Alon has given a deterministic construction of pseudo-random permutations with properties

similar to those exploited above.

L e m m a 9.3 ([A189], Theorem 2): For every two integers n and h with n > h > 1 and every set
V with IV 1 -- h, n permutations (1 , . . . ,~,~ of V with A(~I,... ,~,,) = O(nh 2/3) can be constructed
in O(nh) time. I

T h e o r e m 3: A maximum flow in a network with n vertices can be computed deterministically
using O(Q) flow operations and O(Q + Tc~ (n, Q/logn)) time, where Q = O(n s/3 log n). II

The fast solution to the current-edge problem described in Section 5 assumes identical
orderings of all adjacency lists. As we saw above, however, it is essential to order different
adjacency lists differently. Let B = {bl , . . . , b,~/x} be a partition of V into blocks bl , . . . , b,~/= of
size z = [log 2 nJ each and corresponding in the obvious way to the blocks defined in Section 5.
Different permutations of the blocks in different adjacency lists is easily accommodated, but
the association between vertices and blocks is fixed by the interpretation of D and must be the
same for all adjacency lists. Hence not all permutations of V represent possible adjacency list
orderings, and therefore Alon's scheme (Lemma 9.3) cannot be used without modification. Our
solution is to apply the scheme to the ordering of blocks instead of to the ordering of vertices.

For every block permutation ~ C IIB, define the induced full permutation as the permutation
E l iv obtained by first arranging the blocks according to ~, and then replacing each block by

the sorted sequence of its elements (i.e., for v E bi and w E bj, ~ - ' (v) < ~-l(w) ¢=~ (~-l(bi) <
~- l (bj) or (i = j and v < w))).

L e m m a 9.4: For any ~1 , . - . , ~ , ~ n s , A(~, ,~.) < =. A(~ ~.).
Proof: Fix a E Hv arbitrarily and let R _C IIB be the set of those block permutations p that
can be obtained as follows: For i = 1 , . . . ,n /z , select a representative ri E b~ from b~, and then
arrange the blocks in the order in which their representatives occur in a (i.e., for 1 <_ i, j <_ n/z ,
p-l(b~) < p - i (b) ~ ~ - 1 (~) < ~ -~ (~)) . We call ~ , . . . , ~ , Z ~ the de~nin9 vertices of p.
Now, for any block permutation ~ E liB,

>_
p E R

To see this, note that each element of a fixed longest common subsequence of ~(1) ~(~) and
a(1) ,a(n) contributes 1 to ~(~,p) ff it is a defining vertex of p, and that each v E V is a
defining vertex of exactly IRI/z permutations p E R. Summing the above inequality for ~ equal
to ~1 ~,~ produces

Z Z a(g,,~) _< ~ ~ a f f , , p) = a (e , , p)

i = l i = l pER - -

By Lemma 9.3, n block permutations ~l , ~,, E HB with A(~I, . . . , ~,,) = O(n(n/log n) 2/3) can
be constructed in O(n2/logn) time. By Lemmas 9.1 and 9.4, if the n adjacency lists of G are
ordered according to ~ ,~, , then ~ptr <_ nS/3(logn)I/3. As argued above, Lemma 5.1 can be
generalized to the case where the arguments #~,' • • •, #n' of init are arbitrary full permutations
induced by block permutations. Our main result follows by an appeal to Lemma 8.4.

248

T h e o r e m 4: A maximum flow in a network with n vertices can be computed deterministically
using O(ns/3(log n) 4/z) flow operations and O(nZ/logn) time. II

10. Additional results

The analysis of the PLED algorithm [CH893 can be improved using the approach of Sec-
tion 8. This yields the following result, which was first obtained by Tarjan [TAB9] using a
different method.

T h e o r e m 5: For any constant a > 0, the PLED algorithm finds a maximum flow in O(nm +
n2(logn) 2) time with probability at least 1 - n -~ '~ .

Since our solution to the bottleneck current-edge problem trivially parallelizes on most
parallel machines, it is possible to crank out a variety of parallel algorithms for the maximum-
flow problem that are optimal, as measured by the best currently known sequential algorithms.
We mention just one example. As is to be expected because of the P-completeness of the
maximum-flow problem [GSS82], the algorithms are optimal only for relatively long execution
times. No optimal parallel algorithm for the maximum-flow problem (using w(1) processors) was
previously known.

T h e o r e m 6: For p < nl/3(logn)-7/3~ a maximum flow in a network with n vertices can be
computed in (optimal) O(nZ/(plog n)) time on a network o fp processors interconnected to form
a complete binary tree.

Late note: Very recently we have discovered alternative algorithms that allow the value of Q in Theorem 2 to be
reduced, with a slightly weaker probability bound, to Q-.~O(nSl~m 1/2 logr*+n2(logn) :~) in the general case and to
Q=O((n~/~rn~/~+r* ~ log n)log(2+(n/m)log U)) in the case of integer capacities bounded by U.

References

[AHU74]

[AO87]

[AOT89]

[A189]

[CH89]

[GT88]

[GSS82]

[ST85]

[Ta89]

A. V. AHO, J . E . HOPCROFT AND J . D . ULLMAN, T h e Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

R. K . AHUJA AND J. B. ORLIN, A Fas t and Simple Algorithm for the Maximum Flow
Problem, Sloan W.P. No. 1905-87 (revised), MIT, October 1988.

a . K. AHUJA, ~. B. ORLIN AND R. E. TARJAN, Improved Time Bounds for the
Maximum Flow Problem, SIAM J. Comput. 18 (1989), pp. 939-954.

N. ALON, Generating Pseudo-P~ndom Permutations and Maximum Flow Algorithms,
manuscript, December 1989.

J. CH~RIYAN AND T. HAGERUP, A Randomized Maximum-Flow Algorithm, Pro-
ceedings, 30th Annual Symposium on Foundations of Computer Science (1989), pp.
118-123.
A. V. GOr.DBERG AND R. E. TARJAN, A New Approach to the Maximum-Flow Prob-
lem, J. ACM 35 (1988), pp. 921-940.

L. M. GOLDSCHLAGER, R. A. SHAW AND J. STAPLES, The Maximum Flow Problem
is Log Space Complete for P, Theor. Comp. Sci. 21 (1982), pp. 105-111.

D. D. SLEATOR AND R. E. TARJAN, Self-Adjusting Binary Search Trees, J. ACM 32
(1985), pp. 652-686.

R. E. TARJAN, personal communication, September 1989.

