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A b s t r a c t .  We show that  a maximum flow in a network with n vertices can be computed 
deterministically in O(n3/logn) time on a uniform-cost RAM. For dense graphs, this improves 
the previous best bound of O(n3). 

The bottleneck in our algorithm is a combinatorial problem on (unweighted) graphs. The 
number of operations executed on flow variables is O(nS/3(log n)4/3), in contrast with f~(nm) flow 
operations for all previous algorithms, where m denotes the number of edges in the network. A 
randomized version of our algorithm executes O(nal2rn 1/2 (log n)  312 + n 2 (log n) 2 ) flow operations 
with high probability. 

Specializing to the case in which all capacities are integers bounded by U, we show that  a 
maximum flow can be computed using O(n3/2ml/2 + n2{log U) ~/2) flow operations. Finally, we 
argue that several of our results yield optimal parallel algorithms. 

1. Introduction 

The fastest deterministic and randomized algorithms for computing a maximum flow in a 
network with n vertices and rn edges have running times of O{min{nrn log n, nrn + n s13 log n}} 
(Alon's [A189] derandomization of [CH89] } and O(min{nm log n, nm + n ~'(log n)2}) (Warjan's 
[Ta89] improved analysis of [CH89]), respectively. Despite intensive research for over three 
decades, no algorithm with a running time of o(nrn) has ever been reported for any combination 
of n and m. This is true even for networks with integer capacities, provided that  the bound U 
on the maximum capacity is moderately large, say, U = fl(n) [AOT89]. 

Our main result is a maximum-flow algorithm that runs in O(n3/logn) time. For dense 
networks with m = w{n2/log n), this answers the question posed in the title in the affirmative. 

Our algorithm is based on earlier work in [CH89], [GT88], and [A087],  all of which in 
turn uses the generic maximum-flow algorithm of Goldberg and Tarjan [GT88], which works 
by manipulating a so-called preflow in the given network. We design an extension of the generic 
algorithm~ called the incremental generic algorithm, which uses a new operation called add edge. 
The new algorithm manipulates a preflow on a subnetwork and, as the execution progresses, 
gradually adds the remaining edges to the current subnetwork. 

Adding the edges in the order of decreasing capacities allows instances of the incremental 
generic algorithm to save on the number of operations on flow variables. In particular, the 
number of flow operations executed by our main algorithm is O(nS/3(tog n)4/3). All previous 
algorithms execute fl(nm) flow operations. Using randomization, we can do even better: A 
maximum flow can be computed using O(n3/2ml/2(log n) 3/~ + n~(log n) 2) flow operations with 
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high probability. In fact, our deterministic algorithm is obtained from the randomized algorithm 
by applying a derandomi~ation technique due to Alon [A189]. 

The bottleneck in our algorithms turns out to be a simple combinatorial problem on (un- 
weighted) graphs, that of repeatedly identifying the so-called current edge of a given vertex. 
Indeed~ given a sufficiently efficient solution to the current-edge problem, the running time of 
each of our algorithms would match the number of flow operations. A straightforward solution 
to the current-edge problem contributes O(nm) time to the running time of the maximum-flow 
algorithm. The idea behind our improvement of this bound for dense networks, by a factor of 
O(log n), is to represent the residual graph by its adjacency matrix and to partition the matrix 
into 1 × [log nj submatrices. This enables us to process a submatrix in constant time by table 
look-up while searching for a current edge. This method depends critically on the use of the 
(standard) uniform cost measure for defining running time. 

For networks with integer capacities, we give an incremental algorithm based on the excess 
scaling algorithm of Ahuja and Orlin [AO87]. The algorithm is simple; however, its analy- 
sis hinges on a nontrivial potential function. We show that the number of flow operations is 
O(n3/2m 1/2 + n 2 log U). Using the wave scaling technique of [AOT89], the number of flow 
operations can be reduced to O(n3/2rn 1/2 + n2(log U) 1/2) We mention that our use of "visible 
excesses" in some ways is similar to the use of "available excesses" in [AOT89]. 

The generic incremental algorithm is introduced in Section 3, and the algorithm for integer 
networks is described in Section 4. Section 5 discusses the current edge problem. The strongly 
polynomial algorithm is presented in Section 6 and analyzed in Sections 7-9. 

2. Definitions and notat ion 

For any set V and any e = (v, w) E V x V, let tail(e) = v, head(e) = w, and rev(e) = (w, v). 
v and w are the tail of e and the head of e, respectively. For any E C V x V, denote by E the 
closure of E under reversal, i.e., E = E U {rev(e) : e E E}. Further, for any function ¢ : E --~ R, 
let ¢ :  E --* ~ be given by ¢(e) --= ¢(e) for e E E, ¢(e) = 0 for e E -E\E. A network is a tuple 
G = (V, E, cap, s, t), where (V, E, cap) is an edge-weighted directed graph, cap : E --* ~+ W {0}, 
and s and t are distinct vertices in V. A preflow in G is a function f : E ~ [R with the following 
properties: 
(1) f(rev(e)) = - f ( e ) ,  for all e E E (antisymmetry constraint); 
(2) f(e) < c--@p(e), for all e E E (capacity constraint); 
(3) ~ee~ ,  he~d(e)=~ f(e) > 0, for all v E V\{s}  (nonnegativity constraint). 

A preflow f in G is a flow if ~ee~ ,  he~(~)=~ f(e) = 0 for all v E V\{s ,  t} (flow conservation 

constraint). The value of f is ~ee~ ,  head(e)=t f(e), and a maximum flow in G is a flow in G of 

maximum value. An edge e ~ E is residual (with respect to f)  if f(e) < T@p(e). A push on e 
of value c E ~ is an increase in f(e) by c. The push is saturating iff f(e) = c-"@p(e) afterwards. 
A labeling of G is a function d : V ---* ~t U {0}. The labeling is valid for G and a preflow f in G 
exactly if d(v) < d(w) + 1 for each edge (v, w) E E that is residual with respect to f .  

We use what we consider to be the traditional model for the study of problems on net- 
works. Capacities and flow values are represented by real numbers, on which the only allowed 
arithmetical operations are addition and subtraction, and all other quantities are represented 
by integers, on which we allow addition, subtraction, multiplication and integer division. In 
addition, we assume for both data types standard operations for comparisons, data movement, 
the constant 1, etc. For n-vertex input networks, we allow integers of absolute value n °(t), 
and we charge constant time for each basic operation on real numbers or integers (uniform cost 
measure). In keeping with common usage, we employ the term "flow operation" to mean any 
operation on real numbers. 
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3. The incremental generic algorithm 

In this section we generalize the generic maximum-flow algorithm of [GT88] by extending 
it to include one additional operation, add edge. 

The goal of the algorithm is to compute a maximum flow in a symmetric network G = 
(V, E, cap, s,t). Let n = IVI and m = IEI . In order to avoid trivialities, we assume m > n > 3. 
Let V + = V\{s ,  t}. The main variables used by the incremental  generic algorithm are 
(1) A network G* = (V, E*, cap*, s, ~), where E* C E and cap* is the restriction of cap to S*. 

G* is the current network, on which the algorithm mostly operates. E* = ~ initially, and 
edges in E axe gradually added to E*. Let G* = (V, E*, cap*, s, t). 

(2) A preflow f : E ---7 ~ R, which gradually evolves into a maximum flow in ~-7. 
(3) h labeling d : V -~ ~t U {0), valid for f and G --z. 

An edge (v, w) E ~ is called eligible exactly if it is residual with respect to f and d(v) = d(w) + 1. 
For all e E E*, the residual capacity rescap(e) of e is defined as cap(e) - fie), and for all v E V, 
the excess e(v) and the visible excess e*(v) of v are given as follows: 

eCv)= ~ f i  e) e*(v)=max{e(v)- -  ZcaPCe),O}. 
~eE*--, he,d(~)=~ eel\E*,  tail(~)=~ 

Although the functions e and e* in principle can be computed from f and E*, efficiency dictates 
that  they must he represented explicitly. In the description of the algorithm, however, we omit  
this tr ivial  elaboration.  

Since f by definition is antisymmetric,  low-level flow manipula t ion  is carried out by the 
procedure 

p r o c e d u r e  set flow(e : edge; c : real); 
f(e)  :---- c; f (mv(e))  := --C; 

with the special case 

p r o c e d u r e  saturate (e : edge); 
setZow(e, cap(e)); 

The main  routines of the incremental  generic algorithm and the algorithm itself follow. 

p r o c e d u r e  push(e: edge; c: real); 
Precondit ion:  e = iv, w) E -E -z, v E V +, e is eligible, and 0 < c < min{e*(v), rescapie)}. 

set/~ow(e, f(e) + c); 
procedure relabel (v : vertex); 
Precondit ion:  v E V +, e*(v) > O, and no edge in ~ with tail  v is eligible. 

div ) :=  d(v) + I; 

p r o c e d u r e  add edge (e : edge); 
Precondition: e E E\E*.  

E* :=  E* U {e); 
i f  d(tail(e)) > d(head(e)) t h e n  saturate(e); 

procedure generic initialize; 
for  al l  e E E d o  setflow(e,O); ( ,  zero flow is default for new edges *) 
for  al l  v E V \ { s )  do div ) :=  0; d(s) :=  n; 
E* :=  O; 
for all e E E with s e {tail(e), beadle)) do addedgeie); 

Incremental  generic algorithm: 
generic initialize; 
w h i l e  max{e(v) :v E V +} > 0 
d o  execute some push, relabel or addedge operation 

whose precondition is satisfied. ( ,  there always is one *) 
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An execution of push(e, c) and of relabel(v) is called a push on e and a relabelin9 of v, respectively. 
We next show the part ial  correctness of the algorithm and give a few addit ional properties. In 
stat ing invariants for the algorithm, we consider setflow and add edge to be atomic operations, 
i.e., we ignore possible violations of the invariants while these routines are being executed. We 
also implicitly restrict a t tent ion to the part of the execution that  follows the initialization. 

Fact 1: For v • V, let h(v) = ~eE\E*,tail(~)=~ cap(e). For all v • V, if e(v) > h(v) at some 
time during the execution, then e(v) > h(v) forever after. In particular,  for all v • V\{s} ,  
e(v} < h ( , )  ~ d(v) -- 0. 

L e m m a  3.1: At all times during an execution of the incremental  generic algorithm, 
(1) f is a preflow; 
{2} d is a valid labeling. 

P roo f :  (1) and (2) hold initially, and they are not invalidated by calls of push or reIabel (cf. 
Lemma 3.1 of [GTS8] }. Furthermore calls of add edge are easily seen to preserve (2). The only 
remaining issue is that  a saturat ing push over an edge (v, w) performed during a call of add edge 
might invalidate the nonnegat ivi ty  constraint e(v) > O. However, when the push takes place, 
d(v) > d(w) > O, and it follows from Fact 1 that  e(v} > 0 after the push. | 

L e m m a  3.2: Suppose that  the algorithm terminates. Then, at termination,  the extension 
] :  E ~ R of f with ](e) = 0 for all e • E\E* is a maximum flow in G. 

P roo f :  At termination,  f is a flow in G*, so ] is a flow in G. If / is not a maximum flow in G, it 
follows from Theorem 3.2 of I'GT88] that  there is a simple path p in G from s to t all of whose 
edges are residual with respect to f .  Let v be the last vertex on p reachable from s over a path 
of edges on p belonging to E*. If v # t, the edge on p with tail  v belongs to E\E*,  and Fact 1 
implies that  d(v) = 0, which is true for v = t as well. But since d(s) = n and v is reachable from 
s over a path of length < n -  1 all of whose edges are residual with respect to f ,  this contradicts 
the validity of d. | 

Fact 2: An ineligible edge (v, w) • E can become eligible only during a relabeling of v. 

L e m m a  3.3: For all v • V and at all times during the execution, d(v) < 2n - 1. In particular,  
the total  number  of relabelings executed by the algorithm is < 2n 2. 

P r o o f :  See Lemmas 3.7 and 3.8 of [GT88] .  | 

4. The incremental excess scaling algorithm 

Because it illustrates our main  ideas in a very simple setting, we describe in this section an 
incremental  excess scaling algorithm for the case where all edge capacities are integers bounded 
by U. The algorithm is an adaptat ion of the excess scaling algorithm of Ahuja and Orlin [AO87] 
to the incremental  paradigm. 

For each e • E*, define the undirected capacity of e as ucap(e} = cap(e) + cap(rev(e)). 
The execution is divided into phases parameterized by the value of a scaling parameter A. The 
algorithm repeatedly chooses a vertex v • V + with e* (v) > A and minimal  d(v) and either pushes 
flow on an edge (v, w) or relabels v. When there are no more vertices v • g +  with e* (v) > A, 
the current phase ends, A is replaced by A/2,  all edges e • E\E* with ucap(e) > A / ~  are added 
to E*, and the next phase begins. Here fl > 1 is an integer to be chosen later. 

We assume E* to be represented by a set of adjacency lists. For all v • V, the first eligible 
edge in the adjacency list of v (if any) is called the current edge of v. The complete program 
follows. 

f u n c t i o n  ce(v: vertex): edge; 
Return the current edge of v, or  nil if v has no current edge; 
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Incremental scaling algorithm: 
generic initialize; 
A := 2Lios2 vJ; 
wh i l e  A > 1 
d o  b e g i n  

for  al l  e e E\E* with ucap(e) >_ A/fl  do  addedge(e); 
whi l e  max{e*(v) : v e V +} > A 
d o  b e g i n  

Among the vertices v E V + with e*(v) >__ A, choose v as one with minimal d(v); 
i f  ce(v) = nil 
t h e n  relabel(v) 
else push(ce (v), min{A, rescap(ee (e))}); 

end ;  
A := A/2;  

end .  

The algorithm is easily seen to be an instance of the incremental generic algorithm, and hence 
to be partially correct. We now analyze its running time. Denote by ~pushes the total  number 
of pushes executed by the algorithm, and by Tee the total  time spent in the routine ce. Tee will 
be analyzed in the following section. 

L e m m a  4.1: The algorithm uses O(q) flow operations and Tee + O(q) time, where q = ~pushes + 
n l o g U  + n 2 + mlog(nfl) .  

P r o o f :  Ahuja and Orlin [AO87] have described a simple implementation that  allows the total  
t ime spent in testing the condition of the inner loop of the program and in choosing v to be 
bounded by O(~pushes + nlogU) .  Each relabeling takes constant time, and the total  number 
of relabelings is O(n 2) by Lemma 3.3. A single update of E* following a decrease of A can be 
time-consuming. However, if the edges are initially sorted by their undirected capacities, the 
necessary time is O(1) per edge added to E*, for a total time of O(m). Finally, there are O(log U) 
phases, each contributes O(1) time that  has not yet been accounted for, and O(rn tog(nf~)) time 
suffices for the initialization (O(mlogn) time for sorting the edges, and O(mlogf~) time for 
multiplying their capacities by/7). I 

For v E V and i = 1, 2 , . . . ,  denote by degi(v) the number of edges with tail v added to E* 
between phase i - 1 and phase i (for i = 1: before the first phase). Further, for i = 1, 2 , . . . ,  let 
m~ = ~ v e w  degi(v) and denote by ~relabels i the number of relabelings carried out in phase i. 
The following observations are immediate: 

F a c t  3: Consider a push on an edge e = (v, w) carried out during a phase (i.e., not in a call of 
addedge). At the time of the push, e is a current edge, the value of the push is < 2A, and if 
w E V +, then e*(w) < A immediately before the push. 

F a c t  4: For all v • V + and for i = 1 , 2 , . . . ,  e*(v) < 3A + 2deg~(v)A/f~ throughout phase i. 

Using arguments similar to those of [GT88] and [AO87], it is easy to bound the number 
of saturating pushes by O(nm) and the number of nonsaturating pushes by O(nm/f~ + n 2 log U). 
In order to obtain a tighter bound on the number of saturating pushes, we define a push on 
an edge (u,v) to be terminal if I{w • V : d(w) = d(v)} I < fi at the time of the push, and 
we part i t ion the saturating pushes into three classes: (1) pushes of value < A/fl; (2) terminal 
pushes of value ~ A//3; (3) nonterminal pushes of value >_ A/f~. The first two classes are easy 
to handle, whereas the number of pushes in the third class is bounded using Lemma 4.2 below. 
The lemma generalizes the potential  function argument of [CH89, Lemma 2]. For V' C V and 
7 >_ 1, call a push on an edge (u,v) a (Y',7)-push if I{w • Y ' :  d(w) = d(v)}t >_ 7 at the time 
of the push. A nonterminal push is just a (V, fl)-push; the more general form of the lemma is 
needed in Sections 7 and 8. Compared with Lemma 2 of [CH89], which corresponds to the case 



240 

7 ~ I, the present lemma bounds the amount of flow moved by (V*,v)-pushes by a quantity 
essentially inversely proportional to 7. 

Lemma 4.2: For i ~ 1,2,... and for all V I C V and 7 ~ 1, the total value of all (Vt,7)-pushes 
in phase i is at most (3nA~ + 2rn~Ai//3)IV~I/~ + 3Ai. |relabels i. 
Proof :  Let h -~ IV'I and V'  = { v l , . . .  ,Vh} and for all v E V, define the fooling height of v as 

d'(v) = max  [{j : 0 < j < d(v) and I(k : i~ = j}[ > q,)[. 
~1>a(~),...jL>~(,~) - 

Intuitively, d~(v) counts the maximum number of "dense virtual distance levels" between v and 
t, where a vertex vk E V ~ is allowed to occupy any one virtual distance level numbered at least 
d(vt), and where a dense virtual distance level is one that contains at least V vertices in V t. 

d' has the following properties: 
(1) Yv E V :  0 < d'(v) < h/q;  
(2) vu,,  • v :  d(u) > >_ a'( ,);  
(3) Vu, v • v :  (d(u) > d(v) and I{w • Y' : d(w) = d(v)}l  >_ 7) ~ d'(u) > d'(v); 
(4) A relabeling of a vertex v • Y + increases d'(v) by at most 1 and does not  increase d'(w) 

for any • Y \ ( . ) .  

Define the potent ial  function 

= : ( , , ) .  a ' ( , )  + e ' ( v )  • hl, . 

At the start of phase i, ~ < (3nA~ + 2rn~Ad/3)h/q, (by Fact 4), and # > 0 always. ~ does 
not increase due to push operations (by property (2) and Fact 3), and a relabeling increases 

by at most 3A i (by property (4)). It follows that the total increase in ¢ during phase i 
is at most 3A~ • ~relabels~. Consequently, the total decrease in • during phase i is at most 
(3hAl + 2rn~Ad/3)h/v + 3A~. |relabels~. Finally note that each (V ~, "y)-push of value c causes ~) 
to decrease by at least c (by property (3)). I 

Lemma 4.3: lpushes = O ( n m / f l  + n2fl + n 2 log U). 
Proof: Call a push small if its value is < A/ft. We prove the following claims: 
(1) The total number of small saturating pushes is O(nm/~ % n 2 log U). 
(2) The total number of terminal saturating pushes is 0(n2/3). 
(3) For i = 1,2,..., the number of nonsmall nonterminal saturating pushes in phase i is 

O(nmi / ,G 4- n 2 4- irelabels i . fl). 
(4) For i -- I, 2 , . . . ,  the number  of nonsaturat ing pushes in phase i is O(nm~/f l+n2+~relabels i ) .  

Each push is counted at least once. Since ~ i  ~relabelsi = O(n2) by Lemma 3.3 and ~ i  rr~ _< m, 
the lemma follows by summing the contributions of (3) and (4) over all phases and adding those 
of (1) and (2). We next prove (1)-(4). 

(1) Each e E E* which is not  incident on s has ucap(e) > A//3. Hence between any two 
small sa turat ing pushes on an edge e • E*, there is a nonsa tura t ing  push on one of the edges e 
and rev (e). The claim now follows from (4) by summat ion  over all phases. 

(2) By Fact 2, each terminal  push out of a vertex v • V is followed by fewer than/3  saturat ing 
pushes out  of v before the next relabeling of v. Summing over all v • V and all possible values 
of d(v), this gives O(n2fl) pushes. 

(3) Apply Lemma 4.2 with V ~ = V and 7 = ft. 
(4) Note that  the value of each nonsaturat ing push is at least A and that  every push is a 

(V, 1)-push and apply Lemma 4.2 as in (3), bu t  with -~ = 1. I 

Using the definition of Tc~, (n, q) given in the following section (for the t ime being, interpret 
T~,(n,q) as T**), we can sum up the findings of this section as follows: 
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T h e o r e m  1: A maximum flow in a network with n vertices, m edges and integer capacities 
bounded by U can be computed deterministically using O(q) flow operations and O(q + T" e (n, q)) 
time, where q = n3/2rn 1/2 + n 2 log U. 

Proof :  Put /3  = L ~ ]  and combine Lemmas 4.1 and 4.3. I 

R e m a r k :  Using the wave scaling technique of [AOT89], the value of q in Theorem 1 can be 
reduced to na/2rn 1/~ + nU(log U) 1/2. 

5. F i n d i n g  c u r r e n t  e d g e s  

This section discusses the implementation of the function ce. We consider the following 
abstraction of the problem: Let n E ~I and V = {1 , . . . ,  n}. The task is to maintain two 
functions r : V x V --* {0, 1} and d : V --* {0 , . . . ,  2n - 1} and n permutations ~tl,...,/~,~ of V 
under the operations specified below. Elements of V and of V × V are called vertices and edges, 
respectively, and an edge (v, w) E V × V is eligible if r(v, w) -- 1 and d(v) = d(w} + 1. For v E V, 
let E(v) = {w E V :  (v, w) is eligible). 

i~itM . . . . .  ~ ' ) .  
Precondition: #~ , . . . ,  #~ are permutations of V. 
Sets d(v) := 0 and #.  := #; for all v E V and r(v ,w)  := 0 for all (v,w) E V x V; 

push((v, ~), b). 
Precondition: (v, w) E V x V, b E {0, 1}, and (v, w) is eligible. 
Sets , ( ~ , , )  :=  1 and ,(v, ~) := b. 
relabel(v). 
Precondition: E(v) = 13 and d(v) < 2n - 1. 
Executes d(v) := d(~) + 1. 
add edge (v, w). 
Precondition: (v, w) E Y × V and d(v) < d(w). 
Sets r(v, w) := 1. 

ce(,), 
Precondition: v E V. 
Returns (v,~t,(min{i E V :  p~(i) E E(v)}))  if E(v) # f3, nil otherwise. 

The interpretation is as follows: Vertices and edges correspond to vertices and edges of G, #~ 
represents the ordering of the adjacency list of v, for all v E V, r(v, w) = 1 corresponds to 
(v, w) being residual, for all (v, w) E E*, relabel, add edge and ce correspond to the routines of 
the same names in the maximum flow algorithms, and push(e, 0) and push(e, 1) correspond to a 
saturating push and a nonsaturating push on e, respectively. 

For n, q E IN, denote by Tc~(n, q) the time needed to execute any legal sequence of one init 
operation followed by q push, relabel, add edge and ce operations. Note that the symbol Tc~ is 
used without arguments in a related, but different sense. 

During the execution of a legal sequence of the above operations, starting with init, if 
an edge (v,w) is ineligible at some time, then it remains ineligible until the next execution 
of relabeI(v) (of. Fact 2). Hence we can implement ce(v) by letting a pointer z[v] sweep over 
1 , . . . ,  n until an element of #: l (E(v ) )  is found, saving z[v] between calls of ce(v), and resetting 
z[v] to 1 in each call of relabel(v). Since the total number of calls of relabel is O(n2), it follows 
that Tce(n,q) = O(q + n 3) (another immediate bound is T¢¢(n,q} = O(q + n m ) ,  where m is the 
number of add edge operations). 

We now give a faster solution for the special case in which the arguments #1' , . . . ,  #,~' of 
init are all the identity permutation Idv of V. For n,q E IN, let T'c~(n,q ) be the quantity 
defined as T~ (n, q) for this special case. If we represent the function d not only directly, but 
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also through an array D : {0 . . . . .  2 n -  1} × V --* {0,1} such that  for a l l 0  < k _< 2 n -  1 
and all v e V, D[k,v] = 1 if and only if d(v) = k, the edge (v,z[vl) is eligible if and only if 
r (v,  ziv]). Did(v ) - 1, z[v]] =~ 0. We combine this observation with the "four Russians'  trick" (see 
[AHU, Section 6.6]) to obtain a faster algorithm. Considering r and D as (two-dimensional) 
bit matrices, note that  for #1 . . . . .  #,~ = Idv, the search for an eligible edge with tai l  v is a 
left-to-right scan of one fixed row of r and one fixed row of D. Part i t ioning r and D into blocks, 
i.e., 1 × [log 2 nJ submatrices, we can store the [log 2 nJ bits of each block in a single RAM word, 
i.e., as one integer, and process the block in constant t ime using table look-up. This speeds up 
the scan by a factor of O( logn)  and allows q operations, s tar t ing with  init, to be executed in 
O(q + n3/logn) time. The necessary tables can be constructed in O(n 2) time. We hence have 

L e m m a  5.1: T~ce(n,q) = O(q + n3/logn). II 

6. The incremental strongly polynomial algorithm 

In addition to the da ta  structures of the generic algorithm, the incremental  strongly poly- 
nomial  algori thm uses, as do several previous algorithms, an edge-weighted directed graph 
F = (V, EF, val), where EF C E* and val : EF --* ~.  F at all t imes is a directed forest, 
i.e., an acyclic directed graph with maximum outdegree at most one. A vertex v C V is called a 
root exactly if its outdegree in F is zero. The following operations are applied to F:  

initF. 
Sets EF = ~. 
link(e, c). 
Precondition: e C E*, c • JR, and (V, EF tO {e}) is a directed forest. 
Replaces BE by EF U {e} and sets val(e) :=  c. 

cut(e). 
Precondition: e • EF.  
Replaces EF by EF \ {e} .  

find value(e). 
Precondition: e • EF. 
Returns val(e). 
find bottleneck(v, c). 
Precondition: v • V and c • IR. 
Returns the first edge e wi th  val(e) < c on the maximal  path in F start ing at v, or nil if no such 
edge exists. 

add value (v, c). 
Precondition: v • V and c • ~ .  
Replaces val{e) by val(e) + c for each edge e on the maximal  path  in F start ing at v. 

Using the dynamic trees da ta  structure of Sleator and Tarjan [ST85],  the six operat ions 
defined above can be implemented to take O( logn)  amortized t ime each, i.e., a sequence of q 
operations on F ,  s tar t ing with  initF, can be executed in O(qlogn) t ime (the find bottleneck 
operation is nonstandard,  but  can be implemented within this t ime bound). 

The preflow f is represented in one of two ways: For e • E*, while e ~ E~, and rev(e) ~ EF, 
f(e) is stored directly as g[e], where g : E --* {R is an array. While e • EF ,  f(e) is given implici t ly 
as cap(e)- val(e), and f(rev(e)) as - f ( e ) .  Accordingly, we redefine the basic procedure set flow 
and incorporate the conventions for the representation of f into new versions of link and cut. 
p r o c e d u r e  set flow(e : edge; c: real); 

gle] : =  c; glrev(e)l : - -  - c ;  
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p r o c e d u r e  Link(e: edge); 
rink(e, rescap(d); 

p r o c e d u r e  Cut(e: edge); 
sermon(e, cap(e) - ~nd value(d); 
cut(e); 

The procedure tree push defined below works as follows: A call tree push(e, e) first inserts e into 
EF, if it is not already in E~-, and then sends c units of flow from the tail of e along the unique 
path in F as far as possible without saturating any edge. If the flow does not reach a root, the 
first edge e e on the path with rescap(e') < c is removed from EF and saturated. 

p r o c e d u r e  tree push(e: edge; c: real); 
i f  e ~ EF t h e n  Link(e); 
v := tail(e); 
e I := find bottleneck(v, c); 
if e' =~ nil t h e n  Cut(e'); 
add value(v, c); 
if e t # nil t h e n  saturate(et); 

As in Section 4, an execution of the algorithm is divided into phases parameterised by the value 
of a variable A For i = 1, 2 , . . . ,  let Ai be the value of A in phase i. For i = 1, 2 , . . . ,  Ai satisfies 
the following requirements: 
(1) Ai < & i - l / 2  (take A0 = ~ ) .  
(2) At the beginning of phase i, e*(v) < 2Ai + 2deg~(v)Ai/fl for all v E V +. 
(3) At the beginning of phase i, e*(v) > Ai for at least one vertex v E V +. 

If requirement (3) cannot be satisfied for any Ai > 0, the algorithm terminates. 
The routine select returns a vertex v E V + with e*(v) >> A. If necessary, the current phase 

is first ended, and a new phase is begun. 

f u n c t i o n  select : vertex; 
while  max{e*(v) :v  E V +} < A 
do beg in  

A := min{A/2, max({e*(v):v E V + ) U  {~ • ucap(e): (e) E E\E*))} ;  
if  A = 0 t h e n  stop;  
( * V v E V + : e * ( v )  < 2 A ;  V e e E \ E * : u c a p ( e )  < 2 A / f l * )  
for all  e E E\E* with ucap{e) > lX/fl do addedge(e); 

end;  
Among the vertices v E V + with e*(v) > A, return one with minimal d(v); 

We finally extend the routine relabel and give the main program. 

procedure relabel(v : vertex); 
for all  u E V with ce(u) = (u,v) E Ep do Cut(u,v); 
d(v) := d(v) + 1; 

Incremental strongly polynomial algorithm: 
generic initialize; 
Suitably permute the adjacency lists of G (see Section 9); 
initF; A := co; 
r e p e a t  

v := select; 
i f  ce(v) = nil 
t h e n  relabel(v) 
else treepush(ce(v), i f  e*(v) > 2A t h e n  A else e*(v)); 

forever.  
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7. Analysis of the strongly polynomial algorithm 

Again, the algorithm is easily seen to be an instance of the incremental generic algorithm. 
Note that F remains acyclic, as required, since EF at all times is a subset of the set of current 
edges. This and the following sections investigate the running time of the algorithm. The 
symbols ucap,/~, Tee, degi(v), rni, and ~relabels i are used with the same meaning as in Section 4. 

Define a cycle to be one iteration of the main loop of the algorithm. An execution of Link(e} 
and Cut(e) is called a link on e and a cut on e, respectively. A call of select will be called a select 
step, and a v-select if it returns the vertex v. Let ~selects and ~cuts denote the total number of 
select steps and cuts, respectively. Facts 1-4 and Lemma 4.2 still hold. In addition, we have 

Fact 5: While v E V is not a root, e* (v) does not increase due to nonsatnrating pushes into v. 

Fact 6: At the end of a cycle containing a v-select, either v is a root, e*(v} = 0, or e*(v) >_ A. 
Fact 7: Following each cut on an edge e C E and in the same cycle, e becomes ineligible. 

L e m m a  7.1: The algorithm uses O(Q) flow operations and Tee +O(Q) time, where Q = ~selects. 
logn + rn log(hi3}. 

Proof:  In order to efficiently compute the maxima and minima needed in select, we maintain 
two heaps, the d-heap, containing all vertices v C V with e*(v) > A, ordered according to the 
key d(v), and the e-heap, containing all vertices v C V with e*(v) < A, ordered according to the 
key -e* (v). We assume a standard heap implementation with a logarithmic time bound for each 
operation. In particular, a push operation, which must update at most two values stored in the 
heaps, can be executed in O(log n) time. Decreasing A is expensive, since possibly many vertices 
must be transferred from the e-heap to the d-heap. However, only one vertex is removed from 
the d-heap per select step, so that the total time spent in decreasing A is O((~seleets + n) log n). 
The operations that modify E* can be executed in O(m log n) time. Altogether, hence, the total 
time spent in calls of select is O((~selects + m)logn). 

Each call of treepush executes O(1) operations on F,  and the number of cut operations 
executed in relabel cannot exceed the number of link operations executed in treepush. Hence the 
total number of operations executed on F is O(~selects}, for a total time of O(~selects. logn). 
The remaining parts of treepush and relabel can be executed in O(~selects.log n) time, provided 
that a list of the edges in EF entering v is maintained for each v e V. Finally, O(mlog(n/3)} 
time suffices for the initialization. | 

L e m m a  7.2: ~selects = O(~cuts + n2). 
Proof:  Define a v-select to be decreasing if e*(v) decreases by at least A in the same cycle. A 
nondecreasing v-select is followed in the same cycle by a relabeling of v or a cut on an edge with 
tail v. By Lemma 3.3, it therefore suffices to count the number of decreasing select steps. 

Call a vertex v E V + special if e*(v) > 3A, and call a select step special if it returns a 
special vertex. Since no vertices become special during a phase and since e*(v) never increases 
in a phase while v is special (by Fact 3), the total number of special decreasing v-selects in 
phase i is seen by Fact 4 to be at most 2degi(v)/ft. Summing over all vertices and all phases 
shows the total number of special decreasing select steps to be at most 2rn//~. 

In order to count the remaining select steps, define a major event for a vertex v to be a 
relabeling of v, a saturating push into v, a link or a cut on an edge leaving v, the addition to 
E* of an edge with head v, or program initiMization or termination. We wilt count the number 
of nonspecial decreasing v-selects in a particular period between two successive major events for 
v. Either v is a root throughout the period (Case 1}, or v is a nonroot throughout the period 
(Case 2). 

Case 1: At most one decreasing v-select can occur during the period. 
Case 2: By Fact 5, e*(v) never increases during the period. At the time of the first nonspecial 

v-select in the period, e* (v) < 3A, and if A is changed during the period, e*(v) first decreases 
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to zero (by Fact 6). Hence there are at most 2 nonspecial decreasing v-selects during the period. 
Summing over all periods and all vertices, we find that  the total  number  of nonspecial decreasing 
select steps is at most 2n plus twice the number  of major  events, which is O(~euts + n2). II 

Define the status of an edge e E E as follows: While e E E\E*,  e is absent. For e E E*, e 
is medium if ueap(e) < 20n3A, and e is huge ff ueap(e) > 20nSA. 

L e m m a  7.3: Let e E E be huge. Then at least one of the edges e and rev(e} is never again 
saturated. 

Proof: Applying Lemma 4.2 with V ~ = V and ~ = 1 shows the total  value of all pushes in 
phase i to be at most (3n 2 + 2ran+ 6n2}Ai < 5n3Ai, for i = 1 , 2 , . . . ,  and hence the increase in 
f(e) in phase i and Ml subsequent phases to be at most 10n3Ai. II 

Define a cut to be a PTR event if it happens during an execution of relabel, and denote 
by |ptr the total  number  of P T R  events during the execution. P T R  events were introduced in 
[CH89].  

L e m m a  7.4 ( [CH89] ,  Lemma 6): Over the whole execution, there are O(~ptr + rn) cuts on huge 
edges. II 

8. O p e r a t i o n s  on  m e d i u m  edges 

In order to bound ~euts, it turns out to be essential to count the number  of certain pushes 
of value > A//3 on medium edges. We next introduce some convenient terminology for speaking 
about  pushes. A push over an edge (u, v) happening while d(v) = k is represented by the triple 
(~, v, k). 

Define an event list to be a repetition-free sequence of triples of the form (u, v, k), where 
(u, v) E E,  0 < k _< 2n - 1, and at some time during the execution, (u, v) is medium while 
simultaneously d(v) = k. Given an event list • and triples Q and t2, we write t l  -<~ t2 to 
indicate that  t l  and tz both occur in ~,  with t l  preceding t~. 

We also need to formalize the notion that  a vertex is incident with a large number  of 
currently medium edges. For v E V, denote by deg(v) the number  of edges in E with head v. A 
phase (an integer k, respectively) is said to hit a vertex v if v is the head of at least deg(v}//3 
edges that  are medium in that  phase (throughout that  part  of the execution in which d(v) = k, 
respectively}. For i = 1, 2 , . . . ,  denote by Vi the set of vertices hit by phase i and let ni  = IYil. 
A push occurring in phase i is called regular if it is a (Vi,/3)-push and its value is at least A j / 3 .  

Each push of interest will be either regular or associated with a terminal  triple in a sui tably 
defined event list, where a triple (u, v, k) in an event list ~ is called terminal (with respect to 
• ) if 

[{w: {u, v, k) -<~ (u, w, k) and w is hit by k}i </~.  

Hence our immediate  objective is to count terminal  triples and regular pushes. 

L e m m a  8.1: The number  of terminal  triples in an event list is O(nm//3 + n2/3}. 
Proof: Since an edge changes its status at most twice, ~ contains O(m) triples (u, v, k) such 
that  (u, v) changes its status while d(v) = k. Let ~ '  be the set of remaining triples in ~.  

For each v E V and 0 < k < 2 n -  1 such that  v is not hit by k, ~ contains less than 
deg(v)//3 triples of the form (u, v, k). Summing over all v and k, this yields am~~3 triples. For 
each u E V and 0 < k < 2n - 1, ~l  contains less t han /3  terminal  triples of the form (u, v, k), 
where v is hit  by k. Summing over all u and k gives 0(n2/3) triples. It is easy to see tha t  each 
terminal  triple in • has been counted (at least once}. II 

L e m m a  8.2: The total  number  of regular pushes is O{nrn//3 + n2/31ogn). 
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P r o o f :  One easily shows that  each vertex is hit by O(/3 log n) phases. Hence ~-~i n / =  O(n~ log n). 
By Lemma 4.2, applied with V'  = Vi and 7 = ~, the total  number  of regular pushes is 

o ( ~ ( ~ , ~ J Z  + , ~ j :  + g~,l~bels~). Z) = o(~m/Z + ~Zlog~).  It 
i 

L e m m a  8.3: Over the whole execution, there are O{nm/fl + n2/3togn + gptr) cuts on medium 
edges. 

P roo f :  Consider a cut on a medium edge e = (u, v). We can assume that  the cut is not the 
first cut on e and that  both the previous cut on e and the cut under  consideration happen in an 
execution of treepush (i.e., they are not P T R  events). Let 27 be the part  of the execution between 
the end of the cycle containing the previous cut on e and the end of the cycle containing the cut 
under consideration. We consider two cases: 

Case 1: reseap(e) < A//3 throughout  2;. In this case each of the >_ 1 cuts on rev(e) during 
2: is a P T R  event. Hence Case 1 contributes O(gptr) cuts. 

Case 2: rescap(e) >_ A/~  at some time during 27. Associate with the cut one distinguished 
push over e during 27 that  changes rescap(e) from >_ A//3 to < A / ~  and note that  the value 
of this push is at least A//3. Furthermore, if d(v) = h at the t ime of the distinguished push, 
associate with the push the triple (u,v,  k> and append (u, v, h>, at the time of the push, to an 
init ially empty  sequence ~ .  

The final value of k~ is an event list, and each push associated with a nonterminal  triple in 
is regular. It now follows from Lemmas 8.1 and 8.2 that Case 2 contributes O(nm/~+n2fllogn) 
cuts. II 

L e m l n a  8.4: The algorithm uses O(Q) flow operations and Tc~ + O(Q) time, where Q = 
n312m 112 (log n) s12 + ~ptr • log n. 

P roo f :  Pu t  fl = 1 + [mX/2n-1/2(logn)-~/2J and combine Lemmas 7.1, 7.2, 7.4 and 8.3. II 

9. P T R  events  

The number  of P T R  events may depend on the ordering of the adjacency lists of G, which 
defines ce. We need some technical definitions to discuss this dependence. 

For every finite set A, denote by HA the set of all permutat ions of A, i.e., of all bijec- 
tions 7r : { 1 , . . . , I A I }  --* A. For every A' C A and every ~ @ HA, and a E HA, denote 
by ~(~,a)  the length of a longest (not necessarily contiguous) ascending subsequence of the 
sequence c r - l ( ~ ( 1 ) ) , . . . , ~ - l ( ~ ( I A ' l )  ) or, equivalently, the length of a longest (not necessarily 
contiguous) common subsequence of the sequences ~(1) , . . . ,~ ( IA ' I )  and a(1) . . . .  ,a(IAI).  Fi- 
nally, for any set {~1,--. ,~n} of permutat ions of subsets of a finite set A, let A(~I . . . .  ,~n) = 
m ~ n ~  E%1 ~(~,, ~). 

Let Y = {vt . . . . .  vn} and for i = 1 , . . . , n ,  let Fi --- {w e V : (vi,w) e E} and di = IFil. For 
i -- 1 , . . .  ,n ,  the ordering of the adjacency list of vi may be viewed as a permutat ion ~i of Fi, 
i.e., (vi,~i(j)) is the j t h  edge in the adjacency list of vi, for j = 1 , . . .  ,di. The following fact was 
essentially proved in [CH89] (Lemma 9 and Claim following Lemma 11): 

L e m m a  9.1: If the adjacency list of vi is ordered according to ~i E Hr~, for i = 1 , . . .  ,n ,  then 
~ptr < 2n. A ( G , . . . , & ) .  II 

The fact below was also essentially proved in [CH89] and expressed there as Lemma 10 
{put/3 = X / ~ ) .  

L e m m a  9.2: Suppose that  ~i is drawn randomly from the uniform distr ibut ion over Hr~, for i = 
1 . . . . .  n,  and that  ~1, . . .  ,~n are independent.  Then for any r _> nv/-n--m + n l o g n ,  A(~I , . . .  ,~n) = 
O(r) with probabili ty at least 1 - 2 - r .  II 
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Combining Lemmas 8.4, 9.1 and 9.2, we obtain 

T h e o r e m  2: For any constant a > 0, a maximum flow in a network with n vertices and m edges 
can be computed using O{Q) flow operations and O(Q + Tee(n, Q/logn)) time with probability 

at least 1 - 2 - ~ ,  where Q = O(na/2m'/~(logn) 3/2 + n2(logn)~). ! 
Alon has given a deterministic construction of pseudo-random permutations with properties 

similar to those exploited above. 

L e m m a  9.3 ([A189], Theorem 2): For every two integers n and h with n > h > 1 and every set 
V with IV 1 -- h, n permutations (1 , . . .  ,~,~ of V with A(~I,... ,~,,) = O(nh 2/3) can be constructed 
in O(nh) time. I 

T h e o r e m  3: A maximum flow in a network with n vertices can be computed deterministically 
using O(Q) flow operations and O(Q + Tc~ (n, Q/logn)) time, where Q = O(n s/3 log n). II 

The fast solution to the current-edge problem described in Section 5 assumes identical 
orderings of all adjacency lists. As we saw above, however, it is essential to order different 
adjacency lists differently. Let B = {bl , . . . ,  b,~/x} be a partition of V into blocks bl , . . . ,  b,~/= of 
size z = [log 2 nJ each and corresponding in the obvious way to the blocks defined in Section 5. 
Different permutations of the blocks in different adjacency lists is easily accommodated, but 
the association between vertices and blocks is fixed by the interpretation of D and must be the 
same for all adjacency lists. Hence not all permutations of V represent possible adjacency list 
orderings, and therefore Alon's scheme (Lemma 9.3) cannot be used without modification. Our 
solution is to apply the scheme to the ordering of blocks instead of to the ordering of vertices. 

For every block permutation ~ C IIB, define the induced full permutation as the permutation 
E l iv  obtained by first arranging the blocks according to ~, and then replacing each block by 

the sorted sequence of its elements (i.e., for v E bi and w E bj, ~ - ' (v )  < ~-l(w) ¢=~ (~-l(bi) < 
~- l (bj)  or (i = j and v < w))). 

L e m m a  9.4: For any ~1 , . - . , ~ ,  ~ n s ,  A(~, . . . .  ,~.) < =. A(~  . . . . .  ~.). 
Proof:  Fix a E Hv arbitrarily and let R _C IIB be the set of those block permutations p that 
can be obtained as follows: For i = 1 , . . .  ,n /z ,  select a representative ri E b~ from b~, and then 
arrange the blocks in the order in which their representatives occur in a (i.e., for 1 <_ i, j <_ n/z ,  
p-l(b~) < p - i ( b )  ~ ~ - 1 ( ~ )  < ~ -~ (~ ) ) .  We call ~ , . . . , ~ , Z ~  the de~nin9 vertices of p. 
Now, for any block permutation ~ E liB, 

>_ 
p E R  

To see this, note that each element of a fixed longest common subsequence of ~(1) . . . . .  ~(~) and 
a(1) . . . .  ,a(n) contributes 1 to ~(~,p) ff it is a defining vertex of p, and that each v E V is a 
defining vertex of exactly IRI/z permutations p E R. Summing the above inequality for ~ equal 
to ~1 . . . . .  ~,~ produces 

Z Z a(g,,~) _< ~ ~ a f f , , p )  = a ( e , , p )  

i = l  i = l  pER - -  

By Lemma 9.3, n block permutations ~l . . . .  , ~,, E HB with A(~I, . . . ,  ~,,) = O(n(n/log n) 2/3) can 
be constructed in O(n2/logn) time. By Lemmas 9.1 and 9.4, if the n adjacency lists of G are 
ordered according to ~ . . . .  ,~, ,  then ~ptr <_ nS/3(logn)I/3. As argued above, Lemma 5.1 can be 
generalized to the case where the arguments #~,' • • •, #n' of init are arbitrary full permutations 
induced by block permutations. Our main result follows by an appeal to Lemma 8.4. 
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T h e o r e m  4: A maximum flow in a network with n vertices can be computed deterministically 
using O(ns/3(log n) 4/z) flow operations and O(nZ/logn) time. II 

10. Additional results 

The analysis of the PLED algorithm [CH893 can be improved using the approach of Sec- 
tion 8. This yields the following result, which was first obtained by Tarjan [TAB9] using a 
different method. 

T h e o r e m  5: For any constant a > 0, the PLED algorithm finds a maximum flow in O(nm + 
n2(logn) 2) time with probability at  least 1 - n  -~ '~ .  

Since our solution to the bottleneck current-edge problem trivially parallelizes on most 
parallel machines, it is possible to crank out a variety of parallel algorithms for the maximum- 
flow problem that  are optimal, as measured by the best currently known sequential algorithms. 
We mention just one example. As is to be expected because of the P-completeness of the 
maximum-flow problem [GSS82], the algorithms are optimal only for relatively long execution 
times. No optimal parallel algorithm for the maximum-flow problem (using w(1) processors) was 
previously known. 

T h e o r e m  6: For p < nl/3(logn)-7/3~ a maximum flow in a network with n vertices can be 
computed in (optimal) O(nZ/(plog n)) time on a network o fp  processors interconnected to form 
a complete binary tree. 

Late note: Very recently we have discovered alternative algorithms that allow the value of Q in Theorem 2 to be 
reduced, with a slightly weaker probability bound, to Q-.~O(nSl~m 1/2 logr*+n2(logn) :~) in the general case and to 
Q=O((n~/~rn~/~+r* ~ log n)log(2+(n/m)log U)) in the case of integer capacities bounded by U. 

References 

[AHU74] 

[AO87] 

[AOT89] 

[A189] 

[CH89] 

[GT88] 

[GSS82] 

[ST85] 

[Ta89] 

A. V.  AHO, J .  E .  HOPCROFT AND J . D .  ULLMAN, T h e  Design and Analysis of 

Computer Algorithms, Addison-Wesley, Reading, Mass., 1974. 

R.  K .  AHUJA AND J.  B.  ORLIN, A Fas t  and Simple Algorithm for the Maximum Flow 
Problem, Sloan W.P. No. 1905-87 (revised), MIT, October 1988. 

a .  K.  AHUJA, ~. B.  ORLIN AND R.  E.  TARJAN, Improved Time Bounds for the 
Maximum Flow Problem, SIAM J. Comput. 18 (1989), pp. 939-954. 

N. ALON, Generating Pseudo-P~ndom Permutations and Maximum Flow Algorithms, 
manuscript,  December 1989. 

J. CH~RIYAN AND T. HAGERUP, A Randomized Maximum-Flow Algorithm, Pro- 
ceedings, 30th Annual Symposium on Foundations of Computer Science (1989), pp. 
118-123. 
A. V. GOr.DBERG AND R. E. TARJAN, A New Approach to the Maximum-Flow Prob- 
lem, J. ACM 35 (1988), pp. 921-940. 

L. M. GOLDSCHLAGER, R.  A.  SHAW AND J. STAPLES, The Maximum Flow Problem 
is Log Space Complete for P,  Theor. Comp. Sci. 21 (1982), pp. 105-111. 

D. D. SLEATOR AND R. E. TARJAN, Self-Adjusting Binary Search Trees, J. ACM 32 
(1985), pp. 652-686. 

R. E. TARJAN, personal communication, September 1989. 


