
On the All -Pairs Shortest Path Algor i thm
of Moffat and Takaoka*

Kurt Mehlhorn and Volker Priebe**

Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbrficken, Germany

Abstract . We review how to solve the all-pairs shortest path problem
in a non-negatively weighted digraph with n vertices in expected time
O(n 2 log n). This bound is shown to hold with high probability for a
wide class of probability distributions on non-negatively weighted di-
graphs. We also prove that for a large class of probability distributions
f~(nlog n) time is necessary with high probability to compute shortest
path distances with respect to a single source.

1 Introduction

Given a complete digraph in which all the edges have non-negative length, we
want to compute the shortest path distance between each pair of vertices. This
is one of the most basic questions in graph algorithms, since a variety of com-
binatorial optimization problems can be expressed in these terms. As far as
worst-case complexity is concerned, we can solve an n-vertex problem in time
O(n 3) by either Floyd's algorithm [3] or by n calls of Dijkstra's algorithm [2].
Fredman's algorithm [4] uses efficient distance matrix multiplication techniques
and results in a running time of O(n3((loglogn)/log n) 1/3) (slightly improved
to O(na((log log n)/log n) 1/2) by Wakaoka [14]). Recently, Karger, Koller, and
Phillips [8] presented an algorithm that runs in time O(nm* 4-n 2 log n), where
m* denotes the number of edges that are a shortest path from their source to
their target.

However, worst-case analysis sometimes fails to cover the advantages of algo-
rithms that perform well in practice; average-case analysis has turned out to be
more appropriate for these purposes. We are not only interested in algorithms
with good expected running time but in algorithms that finish their computa-
tions within a certain time bound with high probability (and might therefore be
called reliable).

Two kinds of probability distributions on non-negatively weighted complete
digraphs have been considered in the literature. In the so-called urdform model,
the edge lengths are independent, identically distributed random variables. In

* This work is supported by the ESPRIT II Basic Research Actions Program of the
EC under contract no. 7141 (project ALCOM II) and the BMFT-project "Soft-
wareSkonomie und Softwaresicherheit" ITS 9103

** Research supported by a Graduiertenkolleg graduate fellowship of the Deutsche For-
schungsgemeinschaft. E-mail: priebe@mpi-sb .mpg. de

186

the so-called endpoint-independent model, a sequence c~j, 1 _< j < n, of n non-
negative weights is fixed for each vertex v of K~ arbitrarily. These weights are
assigned randomly to the n edges with source v, i.e., a random injective mapping
~% from [1..n] to V is chosen and c~j is made the weight of edge (v, 7r, (j)) for
all j, l < j < n.

Frieze and Grimmett [6] gave an algorithm with O(n 2 log n) expected running
time in the uniform model when the common distribution function F of the edge
weights satisfies F(0) = 0, F '(0) exists, and F'(0) > 0. Under these assumptions,
m* = O(n log n) with high probability and so the algorithm of Karger et al, also
achieves running time O(n 2 log n) with high probability.

The endpoint-independent model is much more general and therefore harder
to analyze. Spira [12] proved an expected time bound of O(n 2 (log n)2), which was
later improved by Bloniarz [1] to O(n 2 log n log* n). (We use log to denote loga-
rithms to base 2 and In to denote natural logarithms; log* z := 1 for z < 2 and
log* z := 1 + log* log z for z > 2.) In [10] and [11], Moffat and Takaoka describe
two algorithms with an expected time bound of O(n 2 log n). The algorithm in
[11] is a simplified version of [10]. In this paper,

- we present an even simpler version of the algorithm in [11] and also correct
a small oversight in the analysis given by Moffat and Takaoka.

- Moreover, we prove that the running time of the modified version is O(n 2 log n)
with high probability.

- We show that under modest assumptions fl(nlog n) edges need to be in-
spected to compute the shortest path distances with respect to a single
s o u r c e .

2 Preliminaries

We mention some results from discrete probability theory. Suppose that in a se-
quence of independent trials, the probability of success is ~ p for each of the tri-
als. Then the expected number of trials until the first successful one is _~ liP. In
the so-called coupon collector's problem, we are given a set of n distinct coupons.
In each trial, a coupon is drawn (with replacement) uniformly and independently
at random. Let X denote the number of trials required to have seen at least one
copy of each coupon. By the above argument, E[X] = ~0<~<~ ~-~ ~- ~ n l n n .
Actually, it is rather unlikely that we deviate from the expected number of tri-
als by more than a constant multiplicative factor, since the probability that a
particular coupon has not been collected after r trials equals (1 - 1 r ~) . Hence,
for any/3 > 1,

(Pr(X >/3nlnn) _< n 1- _< ne -~:n'~ = n -(~-:) . (I)

For a problem of size n, we will say that an event occurs with high probability,
if it occurs with probability > 1 - O(n -c) for an arbitrary but fixed constant
C and large enough n. For example, (1) tells us that the number of trials in the
coupon collector's problem is O(n In n) with high probability.

187

2.1 A P r o b a b i l l s t l c E x p e r l m e n t

We will refer to the following probabilistic experiment: An urn contains n balls
that are either red or blue; let m be the number of red balls. The balls are repeat-
edly drawn from the urn (without replacement) uniformly and independently at
random. For] ~ k < m, let the random variable W~ denote the waiting time
for the k-th red ball. In addition, we define the random variables ~ , 1 < i < m,
by Y1 := W1 and ~ := Wi - Wi-1 for 2 < i < m. Note tha t both the W~'s and
the ~ ' s are not independent, e.g., W~ -- ~l<i<m Yi ~_ n whereas each ~ can
take values in {1 , . . . , n - m + 1}. It is s h o w n] n t h e appendix that the ~ ' s are
exchangeable random variables; in particular, for any i with 1 < i < m,

n + l
E[]~] -- (2)

m + l

It will prove convenient to normalize the Y/'s. For 1 < i < m, define random
variables Zi := (Y~ - 1)/(n - m). The Zi's take values in [0, 1]; for any j , 1 <

j _< n - m + 1, Pr (Zi = ~) = Pr(]~ = j) . By linearity of expectation,

E[Zi] - E[Y/] - 1 _ 1 for 1 < i < m . (3)
" n - m m + l

The Zi's are dependent as well, therefore, we do not expect the relation E[1- I Zi] =
H E[Zi] to hold. However, considering the underlying experiment, we may con-
jecture that if Z1 is 'large', then it is less likely to occur that Z2 is 'large' as
well. The following lemma proves that the Zi's are indeed negatively correlated.
(A proof is given in the appendix.)

L e m m a l . For any I C { 1 , . . . , m } with [I] = k > 1,

In - 1 1

where [z]k := z . (z - 1) . . . (z - k + 1).

Lemma 1 suffices to establish large deviation estimates of the Chernoff-
Hoeffding kind for Z :=)-~i Zi. Let X 1 , . . . , X= be random variables that take
values in [0, 1] and let X := ~x<~<,~Xi. Following [13], we call the Xi's 1-
correlated if for all non-empty I C_-{1,..., n}

Note that if the random variables X 1 , . . . , Xn and Y1, . . . , Ym are both 1-correlated
and if the Xi 's are independent of the Yj's, then the whole set of random vari-
ables X 1 , . . . , Xn, Y1, �9 �9 Ym is 1-correlated as well.

L e m m a 2 ([13]). net X be the sum of 1-correlated random variables X l , . . . , Xn
with values in [0, 1]. Ther~ for any c > O,

Pr(X > (1 + s)E[X]) -< k (1 + s)(1+~)] (4)

188

Note that for ~ > 2e - 1, (4) implies that

P r (X > (1 + e)E[X]) < 2 -(I+~)E[X]

We will also use Azuma's inequality. The following formulation appears in [9].

L e m r a a 3 . Let X 1 , . . . , X , t be independent random variables, with Xk taking
values in a set Ak for each k. Suppose that the function f : H Ak --+ lit satisfies
I f (z) - f(Y)t < c whenever the vectors z and y differ only in a single coordinate.
Let Y be the random variable f (X 1 , . . . , X , ~) . Then for any t > O,

Pr(IY - E[Y]] _> t) < 2e -~t~/("c~)

We use the following terminology for weighted digraphs. For an edge e =
(u, v), we call u the source and v the target or endpoint of e. The weight of an
edge is denoted by c(e). We will interpret an entry in the adjacency list of a
vertex u either as the endpoint v of an edge with source u or as the edge (u, v)
itself, as is convenient.

3 T h e A l g o r i t h m o f M o f f a t a n d T a k a o k a

We will now review the algorithm of Moffat and Takaoka in [11] and their anal-
ysis. We are given a complete digraph on n vertices with non-negative edge
weights. The algorithm first sorts all adjacency lists in order of increasing weight
(total time O(n 2 log n)) and then solves n single source shortest path problems,
one for each vertex of G. The single source shortest path problem, say, with
source s E V, is solved in two phases. Both phases are variants of Dijkstra's
algorithm [2] and only differ in the way the priority queue is handled.

Dijkstra's algorithm labels the vertices in order of increasing distance from
the source. We use S to denote the set of labeled vertices and U = V - S to
denote the set of unlabeled vertices. Initially, only the source vertex is labeled,
i.e., S = {s}. For each labeled vertex v, its exact distance d(v) from the source
is known. For the source node s, we have d(s) = 0. For each labeled vertex v,
one of its outgoing edges is called its current edge and is denoted ce(v). We
maintain the invariaut that all edges preceding the current edge ce(v) in v's
(sorted) adjacency list have their endpoint already labeled. Both phases use a
priority queue. A priority queue stores a set of pairs (~, k) where k is a real
number and is called the key of the pair. We assume that priority queues are
implemented as Fibonacci heaps [5]. Fibonacci heaps support the insertion of
a new pair (z, k) in constant time and the deletion of a pair with minimum
key (delete rain operation) in amortized time O(logp) where p is the number
of pairs in the priority queue. They also support an operation decrease key in
constant amortized time. A decrease key operation takes a pointer to a node in
a Fibonacci heap containing, say, the pair (x, k), and allows the replacement of
k by a smaller key k'.

]89

Phase L In Phase I, the additional invariant is maintained that the targets of all
current edges are unlabeled. For each vertex u E U, we also maintain a list L(u)
of all vertices v E S whose current edge ends in u. The priority queue contains
all vertices in U. The key of a vertex u G U is min~6L(u) d(v) + c(v, u). In each
iteration of Phase I, the vertex u E U with minimal key value d(u) is selected
and is deleted from the priority queue by a delete rain operation. The vertex
u is added to S and for each vertex v E (u} U L(u), the current edge ce(v) is
advanced to the first edge in v's (sorted) adjacency list whose target is in V - S.
For any v 6 {u} U L(u), let ce(v) = (v,w) be the new current edge of v and
denote w's current key by d~o. We add v to L(w), and if d(v) + c(v, w) < d~,, we
decrease d~0 appropriately. This implies a decrease key operation on the priority
queue. By our assumption on the implementation of the priority queue, the cost
of an iteration of Phase I is O(log n) plus the number of edges scanned. Phase I
ends when I U] becomes n/log n.

Remark: Moffat and Takaoka use a binary heap instead of a Fibonacci heap
to realize the priority queue; Fibonacci heaps did not exist at that time. Since
a decrease key operation in a binary heap takes logarithmic time, they use a
slightly different strategy for Phase I. They keep the vertices in S in the priority
queue. The key of vertex v E S is d(v)§ c(ce(v)). In each iteration, the vertex of
minimum key, say, vertex v E S, is selected from the heap. Let w be the target of
the current edge of v. The current edge ce(z) is advanced for all z E {w} U L(w).
Then w is inserted into the priority queue with key d(w)+c(ce(w)), and for each
z E L(w), the key of z is increased (since the weight of the new current edge is
greater than the weight of the old current edge of z). Moffat and Takaoka show
that the expected cost of an increase key operation is constant in a binary heap.
We believe that the implementation using Fibonacci heaps is slightly simpler
since it does not use a non-standard operation on priority queues.

What is the total number of edges scanned in Phase I? In [11], Moffat and
Takaoka argue as follows: Let U0 be the set of unlabeled vertices at the end
of Phase I. Then]U01 -- n/logn. Since for every vertex v the endpoints of the
edges out of v form a random permutation of V, we should expect to scan about
log n edges in each adjacency list during Phase I and hence about n l o g n edges
altogether. This argument is incorrect as U0 is determined by the orderings of the
adjacency lists and cannot be fixed independently. The following example makes
this fact obvious. Assume that all edges out of the source have length one and
all other edges have length two. Then Phase I scans n - n/log n edges out of the
source vertex and U0 is determined by the last n/log n edges in the adjacency
list of the source. Thus the conclusion that one scans about log n edges in each
adjacency list is wrong. However, the derived conclusion that the expected total
number of scanned edges is O(n log n) is true, as the following argument shows.

Consider Phase I r, the following modification of Phase I (similar to Spira's
algorithm [12]). In this modification, the target of a current edge may be labeled
and the vertices v C S are kept in a priority queue with keys d(v) + c(ce(v)).
When a vertex v with minimum key is selected, let w be the target of ce(v). If
w does not belong to S, then w is added to S and to the priority queue. In any

190

case, ee(v) is advanced to the nezt edge and v's key is increased appropriately.
The modified algorithm finishes Phase I' when IV - S[= n/logn. Let So be
the set of vertices that have been labeled in Phase I'. For every vertex v E So,
denote by A(v) the set of edges out of v that have been scanned by the modified
algorithm and denote by S(v) the targets of the edges in A(v).

The analysis of the coupon collector's problem implies that E [~ IA(v)[] =
O(nlogn). Indeed, let X, be the number of edges scanned when IS] = i. Since
the targets of the edges are random, we have E[Xi] ~ n / (n - i) and hence

E [Ei(n-n/logn Xi] ~-- ~ E,(_u 1/i ~__ n(lnn 4- 1) .

This proves that E [~ [A(v)N = O(nlogn).
It turns out that Phase I of the algorithm by Moffat and Takaoka shows basi-

cally the same behavior. In fact, at the end of Phase I, their algorithm has labeled
exactly the vertices in So, and all the edges in U~ A(v) have been scanned by the
Moffat and Takaoka algorithm as well. However, for the purpose of maintaining
the invariant, the current edge pointer of each vertex v C So has been advanced
to the first vertex in [To in v's adjacency list. For every vertex v E So, let ev and
P be the current edge of v at the end of Phase I in the algorithm by Moffat and ev

Takaoka and at the end of Phase I r in the algorithm by Spira, respectively, e~
' with precedes ev in v's adjacency list and the edge ev is the first edge after e v

I only when Phase I r has target in Uo. We can imagine scanning the edges after e v
terminated. Due to the endpoint-independent distribution of edge weights, the

P in the adjacency list form a random permutation of targets of the edges after e~
V - S(v) D_ V - So = Uo. This is the setting of the probabilistic experiment in

and ev corresponds to Y1. Since Sect. 2.1, where the number of edges between e v
IV - S(v)l < n and m := I~ol = n/logn, we deduce from (2) in Sect. 2.1 that
the expected number of edges between e~ and e~ is O(log n). This completes the
analysis of Phase I.

Phase II. In Phase II, the weaker additional invariant is maintained that the
endpoint of every current edge belongs to [To. We now keep the vertices v E S
in the queue with key d(v) + c(ce(v)).

In each iteration of Phase lI, a vertex with minimum key is selected from the
queue. Say that vertex v is selected and that w is the endpoint of ce(v). The
vertex w is a random vertex in [7o but it is not necessarily unlabeled. If w is
unlabeled, it will be labeled, d(w) is set to d(v) + c(ce(v)), and ce(v) and ce(w)
are advanced to the next edge whose endpoint is in [To. If w is already labeled,
only ce(v) is advanced. In either case the heap is updated appropriately. All of
this takes time O(log n + #edges scanned).

We have already stated that w is a random element of U0 and hence, when
[U[= i < n/logn, an expected number of (n / logn) / i iterations is required
to decrease the cardinality of U by one. The expected number of iterations in
Phase II is therefore bounded by

n 1
- = o (n) .

log n i
l(_i~_n/logu

191

Moreover, whenever the current edge of a vertex is advanced, it is advanced
to the next edge having its endpoint in [To. As argued above, for any vertex
v E S, the vertices in U0 are distributed randomly in V - S(v), and (2) in
Sect. 2.1 shows that whenever ce(v) is advanced in Phase II, it is advanced by
an expected number of O(log n) edges. We conclude that the expected cost of one
iteration in Phase II is O(log n) and, given that we do k iterations in Phase II,
the expected cost of Phase II is o(k log n). Hence, the total expected cost of
Phase II is O(nlog n).

The above discussion is summarized ill the following theorem.

T h e o r e m 1. For endpoint-independent distributions the algorithm of Moffat and
Takaoka runs in expected time O(r~ 2 log n).

We will next prove that the algorithm by Moffat and Takaoka is reliable, i.e.,
that, with high probability, its running time does not exceed its expectation by
more than a constant multiplicative factor.

T h e o r e m 2. The running time of the all-pairs shortest path algorithm by Moffat
and Takaoka is O(n 2 log n) with high probability.

Proof. It is sufficient to prove that solving a single source shortest path problem
takes time O(nlogn) with high probability. As in the proof of Theorem 1, we
analyze Phase I ~, the remaining part of Phase I) and Phase II separately, and we
prove that each of them takes time O(n log n) with high probability. We use the
notation that has been introduced for the proof of Theorem 1.

Recall that the running time of Phase I' is O(nlogn) plus E ~ S o IA(v)l, the
number of edges scanned. The tail estimate for the coupon collector's problem,
(1) in Sect. 2, implies that ~:,~So IA(v)l is O(nlogn) with high probability.

For the analysis of the remaining part of Phase I, for any v E So, define
I and e~. With the random variable Y~ as being the number of edges between e~

m := n/logn aria Z, := (Y, - 1)/(n - m), (2) and (3) in Sect. 2.1 imply that
for Yz := ~ s o Y~ and Zz := ~ e s o Z~, the expected values are E[Yz] =
IS01 = e(, logn) and EEZz] = IS01/(m + 1) = O(logn). Since the Z~'s are
independent random variables, we get from the usual Chernoff-Hoeffding bound
(which is subsumed in Lemma 2) that

Pr(Yz > (1 + r < Pr(Zz > (1 + r < 2 -(I+')E[z']

for large enough ~. This proves that Y1 = O(nlog n) with high probability.
We now turn to the analysis of Phase II. Let the random variable Y/1 denote

the total number of edges scanned in Phase II; we know that E[YII] = O(nlog n)
from the proof of Theorem 1. Suppose that we perform k iterations in Phase II;
then we can express YH as the sum of random variables l~, 1 < i < k, where l~
denotes the number of advances of the current edge pointer in the i-th iteration.
With m := n~ log n, we introduce the normalized random variables Zi := (Yi -
1)/(n - m), 1 < i < k. Since some of the g~'s might refer to the adjacency list
of the same vertex, the Zi 's are not necessarily independent random variables.

192

However, Lemma 1 tells us that Z1 , . . . , Zk are 1-correlated random variables.
Lemma 2 provides a tail estimate for Z (k) := ~ i ~ 1 Zi;

Pr (Z (k) > (1 + r _< 2 -(I+~)E[z(~)]

for large enough e. For k = O(n), we set (1 + e) = O(n/k) to obtain that
Z(k) = O(log n) with high probability. If we abbreviate by I~ the event that we
perform k iterations in Phase II, then

Pr(YH > (1 + r = E L Pr(YII > (1 + r [Ik) . Pr(Ik)

-< ~ k Pr (Z (k) > (1 + r �9 Pr(Ik) �9

By the tail estimate for the coupon collector's problem, the number of iterations
in Phase II is O(n) with high probability. Hence, YH = O(nlogn) with high
probability. Again, because the number of iterations is O(n) with high probabil-
ity, the total time needed for updating the heap in Phase II is O(nlog n) with
high probability.

Thus we have proved that the running time of the algorithm is O(n ~ log n)
with high probability. []

4 A L o w e r B o u n d f o r t h e S i n g l e S o u r c e P r o b l e m

Can we achieve running time o(n 2 log n) for solving the all-pairs shortest path
problem? In certain situations we certainly can, e.g., if all edge weights are
equal to one. However, in the general case of endpoint-independent distributions,
it takes expected time f l (n logn) to compute the shortest path distances with
respect to a single source, as we now argue.

Our underlying graph is / ~ = (V, E), the complete digraph on n vertices
with loops. We restrict ourselves to the case of simple weight functions on the
edges, i.e., for every vertex v and each integer k, 1 < k < n, there is exactly one
edge with weight k and source v. A single source shortest path algorithm gets
as its input the problem size n, a source vertex s, and a simple weight function
c. We assume that c is provided by means of an oracle that answers questions of
the following kind:

(1) What is the weight c(e) of a given edge e?
(2) Given a vertex v E V and an integer k E {1 , . . . , n}, what is the target of

the edge with weight k and source v?

The algorithm is supposed to compute the function d of shortest distances from
s. It is allowed to ask the oracle questions of type (1) and (2), thereby gaining
partial information on c. The complexity of the algorithm on a fixed simple
weight function c is defined to be the number of questions the algorithm asked
in order to compute the distance function d with respect to c.

For simple weight functions, the distance function d maps the set of vertices
into]No. Define D := max{d(v) ; v e V} and for a l l i , 0 < i < D, let ~ :--

193

{v ; d(v) = i}. We call V/the i-th layer with respect to d. For all i, 0 < i < D,
let s := I{J ; J > i and Vj # ;D}] be the number of non-empty layers above
layer i. Clearly, D, the sets 1~, and the function t depend on c; for ease of
notation, we do not make this dependence visible in the notation.

We first argue intuitively how to provide a lower bound on the complexity of
a single source shortest path algorithm in terms of g. Consider any vertex v of
distance d(v) from the source and suppose that the algorithm has not inquired
about one of v's outgoing edges, say e, of length c(e) < D - d(v). By omitting
the check of e, the algorithm cannot exclude that d(v) + c(e) is smaller than the
distance label of the target of e, in which case the distance function computed
by the algorithm would be incorrect.

L e m m a 4 . Let c be a simple weight/unction and let d be the distance function
with respect to c. Then any shortest path algorithm has complexity at least

Z u e v (s 1) .

Proof. Let E r be the set of edges queried by the algorithm by a question of
either type (1) or type (2). For an arbitrary but fixed vertex u E V, let E(u)
be the set of edges with source u and let E'(u) := E' ~ E(u). We prove that
IE'(u)l >_ t(d(u)) - 1. This is clear if E' contains edge e E E(u) of weight
c(e) = j for all j , 1 _< j < i(d(u)). If there is an edge ei E E(u) - E' with weight
c(ei) = i < e(d(u)), then every non-empty layer ~. above layer d(u) + i must
contain the target of an edge in E~(u). Assume otherwise, then there is an edge
ej = (u, v) ~ E' with v E Vj for a j > d(u) + i. Define the simple weight function
c I by

c(e), if e 9~ {ei,ej} ;
c'(e) := c(ej), if e = ei ;

c(ei), i f e = e j .

Then d(e) = c(e) for all e E E', and therefore the algorithm will output d, the
distance function with respect to c, on input d as well. However, d(v) = j >
d(u) + i = d(u) + c'(ej) for ej = (u, v), which shows that d is incorrect with
respect to d.

We choose i = min{c(e) ; e E E(u) - E'}. Note that all edges in E(u) with
targets in layer V/, j > d(u) + i, must have weight at least j - d(u) > i by the
correctness of the algorithm. Hence,]E'(u)] >_ i - l + s >_ s []

Table 1 shows the distribution of vertices over distances for a (typical) simple
weight function on a graph of n = 10000 vertices. Most vertices have distance
about 14 (~ log n) from the source but there are vertices that have distance as
much as 24 (~ 21ogn). By the argument of Lemma 4, we can guess that any
(correct) algorithm must inquire about a (n log n) edges.

In the remainder of this section, we make this argument more precise. We
derive a lower bound of n(nlogn) on the expected value of E u e v s for
random simple weight functions c. More generally, we show that any algorithm
has to ask t2(nlog n) questions with high probability.

194

Table 1. A typical distribution of vertices over distances for n -- 10000

distance d 0 1 2 3 4 5 6 7 8 9 10 11
vertices 1 1 2 4 8 16 32 64 120 237 449 796

distance d 13 14 15 16 17 18 19 20 21 22 23 24
vertices 1845 1952 1562 910 415 181 58 20 16 2 1 2

12
1306

Our proof strategy is as follows. The lower bound given by Lemma 4 depends
only on the distance function d. For random simple weight functions, we re-
interpret the calculation of d and the construction of the layers Vi as the outcome
of a random labeling process. Note that a random simple weight function is given
by n independent permutations of V, one for each vertex. The i-th vertex on
the permutation for vertex v is the target of the edge with weight i and source
v. The labeling process proceeds in stages. In the 0-th stage, V0 is set to {s)
and d(s) is set to 0. In the i-th stage, i _> 1, each vertex v E S (~) = U0<j<~
picks the (i - d(v))-th vertex in its adjacency list. Note that each vertex that v
has not yet seen is equally likely to occur. The newly reached vertices are put
into ~ and their d-value is set to i. Instead of fixing the n permutations before-
hand, we may also view them as being fixed on-line (this is sometimes called the
principle of deferred decisions). This leads to the following re-interpretation of
the random labeling process: In the i-th stage, each vertex in S (i) = U0<j<i vj
chooses a vertex uniformly and independently at random from the set of vertices
it has not yet seen. The labeling process stops if S(k) = V for some k.

A related process was considered by Frieze and Grimmett in I6]. They as-
sumed that each vertex in S (i) chooses a vertex uniformly and independently at
random from the set of all vertices. If DA denotes the number of stages taken
by this version of the process, then it is clear that DA stochastically dominates
D, i.e., for all m, Pr(D > m) ~ Pr(DA > m). Frieze and g r immet t prove in [6]
that DA (and hence D) is O(logn) with high probability. However, we need a
lower bound on D and hence their result is of no use to us. (Nevertheless, our
proof strategy was inspired by theirs.)

The random labeling process is said to be in state j , if IS(i)[= j . We ca~ stage
i of the labeling process central, if n/e < [S(~)[~ n - v/-~. Layers constructed in
central stages are called central.

Our proof will proceed in two steps. First, we show in Lemma 5 that there
are f~(log n) central stages with high probability. Second, we prove in Lemma 6
that each central stage gives rise to a non-empty layer with high probability.

L e r n m a 5. With high probability, the labeling process has f~(log n) central stages.

Proof. For a random simple weight function c, let io be the first central stage with
respect to c. Then n/e < IS(i~ _< 2n/e, since [S(i+1) I < 2[S(i)[for any i > 0.
We will show that [S(~~ I < n - V~ with high probability for k -- (Inn)/17.
Let U = V - S(i~ be the set of vertices that are still unlabeled after stage i0.
Note that [U[__ (e - 2)n/e >_ n/4.

195

Let us condition on m = IUI. Construct an n x m matrix A with 0-1 entries
as follows. The rows correspond to the vertices in V and the columns correspond
to the vertices in U; entry a,,, is 1 if and only if the edge (v, u) is among the
k shortest edges in v's adjacency hst whose head is an element of U. Let f(A)
be the number of an-zero columns in A. Then IS(i~ < n - f (A) because
no vertex in U corresponding to an all-zero column will be labeled in the k
stages following stage i0. Since A models a process in which all vertices (and not
only those that are currently labeled) are allowed to label new vertices, and in
which each vertex is prevented from choosing vertices that have been labeled by
other vertices before stage i0, f (A) may seem to be a rather crude lower bound
on IV - S(i~ I. However, we will now prove that even f (A) >_ .r with high
probability.

A row of A is a random 0-1 vector of length m with exactly k ones. Moreover,
the row entries Ai., 1 < i < n, are independent random variables, and if A, A'
differ only in a single row, then I f (A) - f (A ') I <_ k. Hence, by Azuma's inequality
(Lemma 3), we get the following tail estimate for f(A) = f (A I . , . . . , A~.),

Pr(f(A) < E[f(A)]/2) < 2exp(-E[f(A)]2/(2nk2)) .

The probability that a fixed column is all-zero is (1 - k/m)'~; therefore,

Remember that m = I~rl >_ ,~/e and k = (Inn)/17; since (1 - l / z) = _> e -2 for
large enough z, we get from (5) that

E[f(A)] > me -2k'~/m > �88 1-s/1" > 2v/'~ (6)

for large enough n, where El f (A)] is conditioned on m. However, the lower bound
in (6) is independent of m. Hence,

Pr(f (A) < V~) < 2 exp(-| n) 2) = O(n -c)

for any fixed C > 0 and large enough n. Since IS(i~ I is increasing in k, we have
thus proved that, with high probability, it will take fl(ln n) = fl(log n) stages to
label all but v ~ vertices. []

L e m m a f l . With high probability, each central layer contains at least one vertex.

Proof. Suppose the process is in state j at the beginning of stage i. For any
vertex in S(i), the probability of selecting a vertex in S(i) during this stage is
< j /n . Therefore, the next layer will remain empty with probability < (j/n) j.
Note that z H (~/n) = is an increasing function for �9 > n/e.

Let B denote the event that at least one central layer remains empty. By the
estimates provided in the preceding paragraph,

Vr(B) <_ ~ < n < ne -vr~+l = O(n - c)
i=nl~

for sufficiently large n . []

196

T h e o r e m 3. Any algorithm for the single source shortest path problem has com-
plexity f](n log n) with high probability on random simple weight functions.

Proof. Suppose that i is the first central stage of the labeling process; as before,
let S(~) denote the set of vertices that have already been labeled up to this stage.
By Lemma 5, with high probability, the process has f~(logn) central layers.
Lemma 6 tells us that all these layers will be non-empty with high probability.
With the notation introduced in the discussion of the labehng process, this reads

E u e s (,) (l (d (u)) - 1) = f~(nlogn) with high probability.

By Lemma 4, the left-hand side term is a lower bound on the complexity of any
shortest path algorithm. []

Acknowledgements

We learned from discussions with Paul Spirakis that analyzing the Moffat and
Takaoka algorithm [11] is not as easy as it might appear at first glance. The
remarks of an anonymous referee for ICALP'94 allowed considerable simplifi-
cation of our proofs of Theorems 1 and 2. Rudolf Fleischer suggested the use
of Fibonacci heaps in the implementation of the algorithm. Finally, numerous
discussions with Hannah Bast were particularly insightful, as conversations with
Devdatt Dubhashi and Torben Hagerup helped to clarify our ideas.

References

1. P.A. Bloniarz, A shortest-path algorithm with expected t ime O(?~ 2 lognlog*n),
SIAM J. Comput. 12 (1983) 588-600

2. E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math.
1 (1959) 269-271

3. R.W. Floyd, Algorithm 97: Shortest path, Comm. ACM 5 (1962) 345
4. M.L. Fredman, New bounds on the complexity of the shortest path problem, SIAM

J. Comput. 5 (1976) 83-89
5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net-

work optimization algorithms, J. ACM 34 (1987) 596-615
6. A.M. Frieze and G.R. Grimmett, The shortest-path problem for graphs with ran-

dom arc-lengths, Discrete Appl. Ma~h. 10 (1985) 57-77
7. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics (2nd ed.),

Addison-Wesley, Reading, MA, 1994
8. D.R. Karger, D. Koller, and S.J. Phillips, Finding the hidden path: Time bounds

for all-pairs shortest paths, SIAM J. Comput. 22 (1993) 1199-1217
9. C. McDiarmid, On the method of bounded differences, in: J. Siemons (Ed.), Sur-

veys in Combinatorics, 1989 (London Mathematical Society Lecture Notes Series;
141), Cambridge University Press, Cambridge, 1989

10. A. Moffat and T. Takaol~, An all pairs shortest path algorithm with expected time
O(n 2 log n), Proc. of ~he 26th Annual Symposium on Foundations of Computer
Science, Portland, OR~ 1985, 101-105

197

11. A. Moffat and T. Takaoka, An all pairs shortest path algorithm with expected time
O(n 2 log n), SIAM J. Comput. 16 (1987) 1023-1031

12. P.M. Spira, A new algorithm for finding all shortest path in a graph of positive
arcs in average time O(n 2 log 2 n), SIAM J. Comput. 2 (1973) 28-32

13. A. Srinivasan, Techniques for probabilistic analysis and randomncss-efiicicnt com-
putation, Ph.D. Thesis, Cornell University, Ithaca, NY, Technical Report 93-1378,
August 1993

14. T. Takaoka, A new upper bound on the complexity of the all pairs shortest path
problem, Im%rm. Process. Left. 43 (1992) 195-199

Appendix

Recall the probabilistic experiment from Sect. 2.1: An urn contains n balls that
are either red or blue; let m be the number of red balls. The balls are repeatedly
drawn from the urn (without replacement) uniformly and independently at ran-
dom. For 1 < k < m, let the random variable Wk denote the waiting time for
the k-th red ball. In addition, we define the random variables 1~, 1 < i < m, by
Y1 := W! and Y~ := W~ - Wi-1 for 2 < i < m. The Wk's are distributed accord-
ing to the negative hypergeometric distribution, i.e., for k, r with 1 < k _< m
and k < r < n - r e + k ,

(; ,,)(: ;)/(:)
The waiting time for the k-th red ball equals r if and only if there is a k-tuple
(j l , . . . , j k) of positive integers with j l + "'" + jk = r and Y~ = ji for all i,
1 < i < k. Hence, for j l , . . . , j k > 1 with Jl + ' " + j k = r,

Pr (Al<i___k Yi : ji) -: (;- ;)- lpr(Wk--r)---(T/ '--(Jl [- 'k "-~-m- jk)) / (:) .

By using the well-known convolution identity

(l-mk)(q+k) = (l +q+ l]
n \mA-n-4- 1]

O < k < l

(A.1)

for integers l, m, n, q > O, n > q (see [7] for a proof), it is easy to see t h a t

,', (A,<,<,, , , --- ~,) = Z: P, (A,<,<_, ~, -- ~,)
l< j~ <. , , - ra+l

-- : c
,<,,_<._..+, / (:)

--

198

and, more generally, for any non-empty I C {1, . . . , m} and positive integers ji,
iEI,

i.e., the]~'s are exchangeable random variables. Making use of (A.1), we conclude
that for any i, 1 < i < m,

n-m+X (: - - J l) / (:) (n + 11) / (:) n + l = ~ = E[Y/] j = m + m + l
j = l

This proves (2) in Sect. 2.1.
For 1 _< i _< m, we introduced normalized random variables Zi := (Y~ -

1) / (n - m). The Z/'s take values in [0,1]; for any j, 1 < j < n - m + 1,

(Z~ = ~) = Pr(Y~ = j). By linearity of expectation, E[Z~] = 1 / (m + 1)
%

Pr
for any i, 1 < i < m. Lemma 1 proves that the Zi's are negatively correlated.

L e m m a 1. For any I C_ {1, . . . , m} with IZl = k > 1,

[n - m]} 1 1 E[IIIcIZ, j [Y I "] = (n m) k [m+k]k -< (m + l) k -- "El" r l l l i c l E t Z , j

where [~]~ : = ~ . (~ - 1) . . . (~ - k + 1).

Proof. Only the first equation has to be proved and because of (A.2), we can
restrict ourselves to the case I = {1, . . . , k}. Using (A.1), one can prove by
induction on k that

~ (j ~ - l) . . . (j ~ - l) = 2 k - 1 "
./1 j~>__l

J l + '" .-t-jk =~"

Therefore, by (A.2) and (A.1),

(n-- m)kE [Hl_<i<k 2i]

= E E (J ' - 1) . - . (jk - 1).Pr (A , < , < k "
k < * ' < n - m + k J l J u k 1

jx + . . - + j ~ = ~

1 r - - 1 - I n

=J,)

k [m + k]k

