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Abstract .  We review how to solve the all-pairs shortest path problem 
in a non-negatively weighted digraph with n vertices in expected time 
O(n 2 log n). This bound is shown to hold with high probability for a 
wide class of probability distributions on non-negatively weighted di- 
graphs. We also prove that for a large class of probability distributions 
f~(nlog n) time is necessary with high probability to compute shortest 
path distances with respect to a single source. 

1 Introduction 

Given a complete digraph in which all the edges have non-negative length, we 
want to compute the shortest path distance between each pair of vertices. This 
is one of the most basic questions in graph algorithms, since a variety of com- 
binatorial optimization problems can be expressed in these terms. As far as 
worst-case complexity is concerned, we can solve an n-vertex problem in time 
O(n 3) by either Floyd's algorithm [3] or by n calls of Dijkstra's algorithm [2]. 
Fredman's algorithm [4] uses efficient distance matrix multiplication techniques 
and results in a running time of O(n3((loglogn)/log n) 1/3) (slightly improved 
to O(na((log log n)/log n) 1/2) by Wakaoka [14]). Recently, Karger, Koller, and 
Phillips [8] presented an algorithm that  runs in time O(nm* 4-n 2 log n), where 
m* denotes the number of edges that  are a shortest path from their source to 
their target. 

However, worst-case analysis sometimes fails to cover the advantages of algo- 
rithms that  perform well in practice; average-case analysis has turned out to be 
more appropriate for these purposes. We are not only interested in algorithms 
with good expected running time but in algorithms that  finish their computa- 
tions within a certain time bound with high probability (and might therefore be 
called reliable). 

Two kinds of probability distributions on non-negatively weighted complete 
digraphs have been considered in the literature. In the so-called urdform model, 
the edge lengths are independent, identically distributed random variables. In 
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the so-called endpoint-independent model, a sequence c~j, 1 _< j < n, of n non- 
negative weights is fixed for each vertex v of K~ arbitrarily. These weights are 
assigned randomly to the n edges with source v, i.e., a random injective mapping 
~% from [1..n] to V is chosen and c~j is made the weight of edge (v, 7r, (j)) for 
all j, l < j < n. 

Frieze and Grimmett [6] gave an algorithm with O(n 2 log n) expected running 
time in the uniform model when the common distribution function F of the edge 
weights satisfies F(0) = 0, F '(0)  exists, and F'(0) > 0. Under these assumptions, 
m* = O(n log n) with high probability and so the algorithm of Karger et al, also 
achieves running time O(n 2 log n) with high probability. 

The endpoint-independent model is much more general and therefore harder 
to analyze. Spira [12] proved an expected time bound of O(n 2 (log n)2), which was 
later improved by Bloniarz [1] to O(n 2 log n log* n). (We use log to denote loga- 
rithms to base 2 and In to denote natural logarithms; log* z := 1 for z < 2 and 
log* z := 1 + log* log z for z > 2.) In [10] and [11], Moffat and Takaoka describe 
two algorithms with an expected time bound of O(n 2 log n). The algorithm in 
[11] is a simplified version of [10]. In this paper, 

- we present an even simpler version of the algorithm in [11] and also correct 
a small oversight in the analysis given by Moffat and Takaoka. 

- Moreover, we prove that  the running time of the modified version is O(n 2 log n) 
with high probability. 

- We show that  under modest assumptions fl(nlog n) edges need to be in- 
spected to compute the shortest path distances with respect to a single 
s o u r c e .  

2 Preliminaries 

We mention some results from discrete probability theory. Suppose that  in a se- 
quence of independent trials, the probability of success is ~ p for each of the tri- 
als. Then the expected number of trials until the first successful one is _~ liP. In 
the so-called coupon collector's problem, we are given a set of n distinct coupons. 
In each trial, a coupon is drawn (with replacement) uniformly and independently 
at random. Let X denote the number of trials required to have seen at least one 
copy of each coupon. By the above argument, E[X] = ~0<~<~ ~-~ ~- ~ n l n n .  
Actually, it is rather unlikely that  we deviate from the expected number of tri- 
als by more than a constant multiplicative factor, since the probability that  a 
particular coupon has not been collected after r trials equals (1 - 1 r ~) . Hence, 
for any/3 > 1, 

( Pr(X >/3nlnn) _< n 1- _< ne -~:n'~ = n -(~-:) . (I) 

For a problem of size n, we will say that  an event occurs with high probability, 
if it occurs with probability > 1 - O(n -c)  for an arbitrary but fixed constant 
C and large enough n. For example, (1) tells us that  the number of trials in the 
coupon collector's problem is O(n In n) with high probability. 
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2.1 A P r o b a b i l l s t l c  E x p e r l m e n t  

We will refer to the following probabilistic experiment: An urn contains n balls 
that  are either red or blue; let m be the number of red balls. The balls are repeat- 
edly drawn from the urn (without replacement) uniformly and independently at 
random. For ] ~ k < m, let the random variable W~ denote the waiting time 
for the k-th red ball. In addition, we define the random variables ~ ,  1 < i < m, 
by Y1 := W1 and ~ := Wi - Wi-1 for 2 < i < m. Note tha t  both the W~'s and 
the ~ ' s  are not independent, e.g., W~ -- ~l<i<m Yi ~_ n whereas each ~ can 
take values in {1 , . . . ,  n - m + 1}. It is s h o w n ] n t h e  appendix that  the ~ ' s  are 
exchangeable random variables; in particular, for any i with 1 < i < m, 

n + l  
E[]~] -- (2) 

m + l  

It will prove convenient to normalize the Y/'s. For 1 < i < m, define random 
variables Zi := (Y~ - 1)/(n - m). The Zi's take values in [0, 1]; for any j ,  1 < 

j _< n -  m + 1, Pr (Zi = ~ )  = Pr(]~ = j) .  By linearity of expectation, 

E[Zi] - E[Y/] - 1 _ 1 for 1 < i < m . (3) 
" n - m  m + l  

The Zi's are dependent as well, therefore, we do not expect the relation E[1- I Zi] = 
H E[Zi] to hold. However, considering the underlying experiment, we may con- 
jecture that  if Z1 is 'large', then it is less likely to occur that  Z2 is 'large' as 
well. The following lemma proves that  the Zi's are indeed negatively correlated. 
(A proof is given in the appendix.) 

L e m m a l .  For any I C { 1 , . . . , m }  with [I] = k > 1, 

In - 1 1 

where [z]k := z .  ( z -  1 ) . . . ( z -  k + 1). 

Lemma 1 suffices to establish large deviation estimates of the Chernoff- 
Hoeffding kind for Z := )-~i Zi. Let X 1 , . . . ,  X= be random variables that  take 
values in [0, 1] and let X := ~x<~<,~Xi. Following [13], we call the Xi's 1- 
correlated if for all non-empty I C_-{1,..., n} 

Note that  if the random variables X 1 , . . . ,  Xn and Y1, . . . ,  Ym are both 1-correlated 
and if the Xi 's  are independent of the Yj's, then the whole set of random vari- 
ables X 1 , . . . ,  Xn, Y1, �9 �9 Ym is 1-correlated as well. 

L e m m a 2  ([13]). net X be the sum of 1-correlated random variables X l , . . . ,  Xn 
with values in [0, 1]. Ther~ for any c > O, 

Pr(X > (1 + s)E[X]) -< k (1 + s)(1+~) ] (4) 
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Note that  for ~ > 2e - 1, (4) implies that  

P r (X > (1 + e)E[X]) < 2 -(I+~)E[X] 

We will also use Azuma's  inequality. The following formulation appears in [9]. 

L e m r a a 3 .  Let X 1 , . . . , X , t  be independent random variables, with Xk taking 
values in a set Ak for each k. Suppose that the function f : H Ak --+ lit satisfies 
I f ( z )  - f(Y)t  < c whenever the vectors z and y differ only in a single coordinate. 
Let Y be the random variable f ( X 1 , . . . , X , ~ ) .  Then for any t > O, 

Pr(IY - E[Y]] _> t) < 2e -~t~/("c~) 

We use the following terminology for weighted digraphs. For an edge e = 
(u, v), we call u the source and v the target or endpoint of e. The weight of an 
edge is denoted by c(e). We will interpret an entry in the adjacency list of a 
vertex u either as the endpoint v of an edge with source u or as the edge (u, v) 
itself, as is convenient. 

3 T h e  A l g o r i t h m  o f  M o f f a t  a n d  T a k a o k a  

We will now review the algorithm of Moffat and Takaoka in [11] and their anal- 
ysis. We are given a complete digraph on n vertices with non-negative edge 
weights. The algorithm first sorts all adjacency lists in order of increasing weight 
(total time O(n 2 log n)) and then solves n single source shortest path problems, 
one for each vertex of G. The single source shortest path problem, say, with 
source s E V, is solved in two phases. Both phases are variants of Dijkstra's 
algorithm [2] and only differ in the way the priority queue is handled. 

Dijkstra's algorithm labels the vertices in order of increasing distance from 
the source. We use S to denote the set of labeled vertices and U = V - S to 
denote the set of unlabeled vertices. Initially, only the source vertex is labeled, 
i.e., S = {s}. For each labeled vertex v, its exact distance d(v) from the source 
is known. For the source node s, we have d(s) = 0. For each labeled vertex v, 
one of its outgoing edges is called its current edge and is denoted ce(v). We 
maintain the invariaut that  all edges preceding the current edge ce(v) in v's 
(sorted) adjacency list have their endpoint already labeled. Both phases use a 
priority queue. A priority queue stores a set of pairs (~, k) where k is a real 
number and is called the key of the pair. We assume that  priority queues are 
implemented as Fibonacci heaps [5]. Fibonacci heaps support the insertion of 
a new pair (z, k) in constant time and the deletion of a pair with minimum 
key (delete rain operation) in amortized time O(logp) where p is the number 
of pairs in the priority queue. They also support an operation decrease key in 
constant amortized time. A decrease key operation takes a pointer to a node in 
a Fibonacci heap containing, say, the pair (x, k), and allows the replacement of 
k by a smaller key k'. 
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Phase L In Phase I, the additional invariant is maintained that  the targets of all 
current edges are unlabeled. For each vertex u E U, we also maintain a list L(u) 
of all vertices v E S whose current edge ends in u. The priority queue contains 
all vertices in U. The key of a vertex u G U is min~6L(u) d(v) + c(v, u). In each 
iteration of Phase I, the vertex u E U with minimal key value d(u) is selected 
and is deleted from the priority queue by a delete rain operation. The vertex 
u is added to S and for each vertex v E (u}  U L(u), the current edge ce(v) is 
advanced to the first edge in v's (sorted) adjacency list whose target is in V - S. 
For any v 6 {u} U L(u), let ce(v) = (v,w) be the new current edge of v and 
denote w's current key by d~o. We add v to L(w), and if d(v) + c(v, w) < d~,, we 
decrease d~0 appropriately. This implies a decrease key operation on the priority 
queue. By our assumption on the implementation of the priority queue, the cost 
of an iteration of Phase I is O(log n) plus the number of edges scanned. Phase I 
ends when I U] becomes n/log n. 

Remark: Moffat and Takaoka use a binary heap instead of a Fibonacci heap 
to realize the priority queue; Fibonacci heaps did not exist at that  time. Since 
a decrease key operation in a binary heap takes logarithmic time, they use a 
slightly different strategy for Phase I. They keep the vertices in S in the priority 
queue. The key of vertex v E S is d(v)§ c(ce(v)). In each iteration, the vertex of 
minimum key, say, vertex v E S, is selected from the heap. Let w be the target of 
the current edge of v. The current edge ce(z) is advanced for all z E {w} U L(w). 
Then w is inserted into the priority queue with key d(w)+c(ce(w)), and for each 
z E L(w), the key of z is increased (since the weight of the new current edge is 
greater than the weight of the old current edge of z). Moffat and Takaoka show 
that  the expected cost of an increase key operation is constant in a binary heap. 
We believe that  the implementation using Fibonacci heaps is slightly simpler 
since it does not use a non-standard operation on priority queues. 

What  is the total number of edges scanned in Phase I? In [11], Moffat and 
Takaoka argue as follows: Let U0 be the set of unlabeled vertices at the end 
of Phase I. Then ]U01 -- n/logn. Since for every vertex v the endpoints of the 
edges out of v form a random permutation of V, we should expect to scan about 
log n edges in each adjacency list during Phase I and hence about  n l o g n  edges 
altogether. This argument is incorrect as U0 is determined by the orderings of the 
adjacency lists and cannot be fixed independently. The following example makes 
this fact obvious. Assume that  all edges out of the source have length one and 
all other edges have length two. Then Phase I scans n - n/log n edges out of the 
source vertex and U0 is determined by the last n/log n edges in the adjacency 
list of the source. Thus the conclusion that  one scans about  log n edges in each 
adjacency list is wrong. However, the derived conclusion that  the expected total 
number of scanned edges is O(n log n) is true, as the following argument shows. 

Consider Phase I r, the following modification of Phase I (similar to Spira's 
algorithm [12]). In this modification, the target of a current edge may be labeled 
and the vertices v C S are kept in a priority queue with keys d(v) + c(ce(v)). 
When a vertex v with minimum key is selected, let w be the target of ce(v). If 
w does not belong to S, then w is added to S and to the priority queue. In any 
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case, ee(v) is advanced to the nezt edge and v's key is increased appropriately. 
The modified algorithm finishes Phase I' when IV - S[ = n/logn.  Let So be 
the set of vertices that  have been labeled in Phase I'. For every vertex v E So, 
denote by A(v) the set of edges out of v that  have been scanned by the modified 
algorithm and denote by S(v) the targets of the edges in A(v). 

The analysis of the coupon collector's problem implies that  E [ ~  IA(v)[] = 
O(nlogn). Indeed, let X, be the number of edges scanned when IS] = i. Since 
the targets of the edges are random, we have E[Xi] ~ n / (n  - i) and hence 

E [Ei(n-n/logn Xi] ~-- ~ E,(_u 1/i ~__ n( lnn  4- 1) . 

This proves that  E [ ~  [A(v)N = O(nlogn). 
It turns out that  Phase I of the algorithm by Moffat and Takaoka shows basi- 

cally the same behavior. In fact, at the end of Phase I, their algorithm has labeled 
exactly the vertices in So, and all the edges in U~ A(v) have been scanned by the 
Moffat and Takaoka algorithm as well. However, for the purpose of maintaining 
the invariant, the current edge pointer of each vertex v C So has been advanced 
to the first vertex in [To in v's adjacency list. For every vertex v E So, let ev and 
P be the current edge of v at the end of Phase I in the algorithm by Moffat and ev 

Takaoka and at the end of Phase I r in the algorithm by Spira, respectively, e~ 
' with precedes ev in v's adjacency list and the edge ev is the first edge after e v 

I only when Phase I r has target in Uo. We can imagine scanning the edges after e v 
terminated. Due to the endpoint-independent distribution of edge weights, the 

P in the adjacency list form a random permutation of targets of the edges after e~ 
V - S(v) D_ V - So = Uo. This is the setting of the probabilistic experiment in 

and ev corresponds to Y1. Since Sect. 2.1, where the number of edges between e v 
IV - S(v)l < n and m := I~ol = n/logn,  we deduce from (2) in Sect. 2.1 that  
the expected number of edges between e~ and e~ is O(log n). This completes the 
analysis of Phase I. 

Phase II. In Phase II, the weaker additional invariant is maintained that the 
endpoint of every current edge belongs to [To. We now keep the vertices v E S 
in the queue with key d(v) + c(ce(v)). 

In each iteration of Phase lI, a vertex with minimum key is selected from the 
queue. Say that  vertex v is selected and that  w is the endpoint of ce(v). The 
vertex w is a random vertex in [7o but it is not necessarily unlabeled. If w is 
unlabeled, it will be labeled, d(w) is set to d(v) + c(ce(v)), and ce(v) and ce(w) 
are advanced to the next edge whose endpoint is in [To. If w is already labeled, 
only ce(v) is advanced. In either case the heap is updated appropriately. All of 
this takes time O(log n + #edges scanned). 

We have already stated that  w is a random element of U0 and hence, when 
[U[ = i < n/logn,  an expected number of (n / logn) / i  iterations is required 
to decrease the cardinality of U by one. The expected number of iterations in 
Phase II is therefore bounded by 

n 1 
- = o ( n ) .  

log n i 
l(_i~_n/logu 
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Moreover, whenever the current edge of a vertex is advanced, it is advanced 
to the next edge having its endpoint in [To. As argued above, for any vertex 
v E S, the vertices in U0 are distributed randomly in V - S(v), and (2) in 
Sect. 2.1 shows that  whenever ce(v) is advanced in Phase II, it is advanced by 
an expected number of O(log n) edges. We conclude that  the expected cost of one 
iteration in Phase II is O(log n) and, given that  we do k iterations in Phase II, 
the expected cost of Phase II is o(k log n). Hence, the total expected cost of 
Phase II is O(nlog n). 

The above discussion is summarized ill the following theorem. 

T h e o r e m  1. For endpoint-independent distributions the algorithm of Moffat and 
Takaoka runs in expected time O(r~ 2 log n). 

We will next prove that  the algorithm by Moffat and Takaoka is reliable, i.e., 
that,  with high probability, its running time does not exceed its expectation by 
more than a constant multiplicative factor. 

T h e o r e m  2. The running time of the all-pairs shortest path algorithm by Moffat 
and Takaoka is O(n 2 log n) with high probability. 

Proof. It is sufficient to prove that  solving a single source shortest path problem 
takes time O(nlogn) with high probability. As in the proof of Theorem 1, we 
analyze Phase I ~, the remaining part of Phase I) and Phase II separately, and we 
prove that  each of them takes time O(n log n) with high probability. We use the 
notation that  has been introduced for the proof of Theorem 1. 

Recall that  the running time of Phase I' is O(nlogn) plus E ~ S o  IA(v)l, the 
number of edges scanned. The tail estimate for the coupon collector's problem, 
(1) in Sect. 2, implies that ~:,~So IA(v)l is O(nlogn) with high probability. 

For the analysis of the remaining part of Phase I, for any v E So, define 
I and e~. With the random variable Y~ as being the number of edges between e~ 

m := n/logn aria Z, := (Y, - 1)/(n - m), (2) and (3) in Sect. 2.1 imply that  
for Yz := ~ s o  Y~ and Zz := ~ e s o  Z~, the expected values are E[Yz] = 
IS01  = e(, logn) and EEZz] = IS01/(m + 1) = O(logn). Since the Z~'s are 
independent random variables, we get from the usual Chernoff-Hoeffding bound 
(which is subsumed in Lemma 2) that 

Pr(Yz > (1 + r < Pr(Zz > (1 + r < 2 -(I+')E[z'] 

for large enough ~. This proves that  Y1 = O(nlog n) with high probability. 
We now turn to the analysis of Phase II. Let the random variable Y/1 denote 

the total number of edges scanned in Phase II; we know that  E[YII] = O(nlog n) 
from the proof of Theorem 1. Suppose that  we perform k iterations in Phase II; 
then we can express YH as the sum of random variables l~, 1 < i < k, where l~ 
denotes the number of advances of the current edge pointer in the i-th iteration. 
With m := n~ log n, we introduce the normalized random variables Zi := (Yi - 
1)/(n - m), 1 < i < k. Since some of the g~'s might refer to the adjacency list 
of the same vertex, the Zi 's are not necessarily independent random variables. 
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However, Lemma 1 tells us that  Z1 , . . . ,  Zk are 1-correlated random variables. 
Lemma 2 provides a tail estimate for Z (k) := ~ i ~ 1  Zi; 

Pr (Z  (k) > (1 + r _< 2 -(I+~)E[z(~)] 

for large enough e. For k = O(n), we set (1 + e) = O(n/k) to obtain that 
Z(k) = O(log n) with high probability. If we abbreviate by I~ the event that we 
perform k iterations in Phase II, then 

Pr(YH > (1 + r = E L  Pr(YII > (1 + r [ Ik) .  Pr(Ik) 

-< ~ k  Pr (Z (k) > (1 + r �9 Pr(Ik) �9 

By the tail estimate for the coupon collector's problem, the number of iterations 
in Phase II is O(n) with high probability. Hence, YH = O(nlogn) with high 
probability. Again, because the number of iterations is O(n) with high probabil- 
ity, the total time needed for updating the heap in Phase II is O(nlog n) with 
high probability. 

Thus we have proved that the running time of the algorithm is O(n ~ log n) 
with high probability. [] 

4 A L o w e r  B o u n d  f o r  t h e  S i n g l e  S o u r c e  P r o b l e m  

Can we achieve running time o(n 2 log n) for solving the all-pairs shortest path 
problem? In certain situations we certainly can, e.g., if all edge weights are 
equal to one. However, in the general case of endpoint-independent distributions, 
it takes expected time f l (n logn)  to compute the shortest path distances with 
respect to a single source, as we now argue. 

Our underlying graph is / ~  = (V, E), the complete digraph on n vertices 
with loops. We restrict ourselves to the case of simple weight functions on the 
edges, i.e., for every vertex v and each integer k, 1 < k < n, there is exactly one 
edge with weight k and source v. A single source shortest path algorithm gets 
as its input the problem size n, a source vertex s, and a simple weight function 
c. We assume that c is provided by means of an oracle that  answers questions of 
the following kind: 

(1) What  is the weight c(e) of a given edge e? 
(2) Given a vertex v E V and an integer k E {1 , . . . ,  n}, what is the target of 

the edge with weight k and source v? 

The algorithm is supposed to compute the function d of shortest distances from 
s. It is allowed to ask the oracle questions of type (1) and (2), thereby gaining 
partial information on c. The complexity of the algorithm on a fixed simple 
weight function c is defined to be the number of questions the algorithm asked 
in order to compute the distance function d with respect to c. 

For simple weight functions, the distance function d maps the set of vertices 
into ]No. Define D := max{d(v) ; v e V} and for a l l i ,  0 < i < D, let ~ :-- 
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{v ; d(v) = i}. We call V/the i-th layer with respect to d. For all i, 0 < i < D, 
let s := I{J ; J > i and Vj # ;D}] be the number of non-empty layers above 
layer i. Clearly, D, the sets 1~, and the function t depend on c; for ease of 
notation, we do not make this dependence visible in the notation. 

We first argue intuitively how to provide a lower bound on the complexity of 
a single source shortest path algorithm in terms of g. Consider any vertex v of 
distance d(v) from the source and suppose that  the algorithm has not inquired 
about one of v's outgoing edges, say e, of length c(e) < D - d(v). By omitting 
the check of e, the algorithm cannot exclude that  d(v) + c(e) is smaller than the 
distance label of the target of e, in which case the distance function computed 
by the algorithm would be incorrect. 

L e m m a 4 .  Let c be a simple weight/unction and let d be the distance function 
with respect to c. Then any shortest path algorithm has complexity at least 

Z u e v ( s  1) . 

Proof. Let E r be the set of edges queried by the algorithm by a question of 
either type (1) or type (2). For an arbitrary but fixed vertex u E V, let E(u) 
be the set of edges with source u and let E'(u) := E' ~ E(u).  We prove that  
IE'(u)l >_ t(d(u)) - 1. This is clear if E' contains edge e E E(u) of weight 
c(e) = j for all j ,  1 _< j < i(d(u)). If there is an edge ei E E(u) - E'  with weight 
c(ei) = i < e(d(u)), then every non-empty layer ~. above layer d(u) + i must 
contain the target of an edge in E~(u). Assume otherwise, then there is an edge 
ej = (u, v) ~ E'  with v E Vj for a j > d(u) + i. Define the simple weight function 
c I by 

c(e), if e 9~ {ei,ej} ; 
c'(e) := c(ej), if e = ei ; 

c(ei), i f e = e j  . 

Then d(e) = c(e) for all e E E',  and therefore the algorithm will output d, the 
distance function with respect to c, on input d as well. However, d(v) = j > 
d(u) + i = d(u) + c'(ej) for ej = (u, v), which shows that  d is incorrect with 
respect to d.  

We choose i = min{c(e) ; e E E(u) - E'}.  Note that  all edges in E(u) with 
targets in layer V/, j > d(u) + i, must have weight at least j - d(u) > i by the 
correctness of the algorithm. Hence, ]E'(u)] >_ i - l + s  >_ s  [] 

Table 1 shows the distribution of vertices over distances for a (typical) simple 
weight function on a graph of n = 10000 vertices. Most vertices have distance 
about 14 (~  log n) from the source but there are vertices that  have distance as 
much as 24 (~ 21ogn). By the argument of Lemma 4, we can guess that  any 
(correct) algorithm must inquire about a (n log  n) edges. 

In the remainder of this section, we make this argument more precise. We 
derive a lower bound of n(nlogn) on the expected value of E u e v s  for 
random simple weight functions c. More generally, we show that  any algorithm 
has to ask t2(nlog n) questions with high probability. 
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Table 1. A typical distribution of vertices over distances for n -- 10000 

distance d 0 1 2 3 4 5 6 7 8 9 10 11 
# vertices 1 1 2 4 8 16 32 64 120 237 449 796 

distance d 13 14 15 16 17 18 19 20 21 22 23 24 
# vertices 1845 1952 1562 910 415 181 58 20 16 2 1 2 

12 
1306 

Our proof strategy is as follows. The lower bound given by Lemma 4 depends 
only on the distance function d. For random simple weight functions, we re- 
interpret the calculation of d and the construction of the layers Vi as the outcome 
of a random labeling process. Note that  a random simple weight function is given 
by n independent permutations of V, one for each vertex. The i-th vertex on 
the permutation for vertex v is the target of the edge with weight i and source 
v. The labeling process proceeds in stages. In the 0-th stage, V0 is set to {s) 
and d(s) is set to 0. In the i-th stage, i _> 1, each vertex v E S (~) = U0<j<~ 
picks the (i - d(v))-th vertex in its adjacency list. Note that  each vertex that  v 
has not yet seen is equally likely to occur. The newly reached vertices are put  
into ~ and their d-value is set to i. Instead of fixing the n permutations before- 
hand, we may also view them as being fixed on-line (this is sometimes called the 
principle of deferred decisions). This leads to the following re-interpretation of 
the random labeling process: In the i-th stage, each vertex in S (i) = U0<j<i vj 
chooses a vertex uniformly and independently at random from the set of vertices 
it has not yet seen. The labeling process stops if S(k) = V for some k. 

A related process was considered by Frieze and Grimmett  in I6]. They as- 
sumed that  each vertex in S (i) chooses a vertex uniformly and independently at 
random from the set of all vertices. If DA denotes the number of stages taken 
by this version of the process, then it is clear that  DA stochastically dominates 
D, i.e., for all m, Pr(D > m) ~ Pr(DA > m). Frieze and g r immet t  prove in [6] 
that  DA (and hence D) is O(logn) with high probability. However, we need a 
lower bound on D and hence their result is of no use to us. (Nevertheless, our 
proof strategy was inspired by theirs.) 

The random labeling process is said to be in state j ,  if IS(i)[ = j .  We ca~ stage 
i of the labeling process central, if n/e < [S(~)[ ~ n -  v/-~. Layers constructed in 
central stages are called central. 

Our proof will proceed in two steps. First, we show in Lemma 5 that  there 
are f~(log n) central stages with high probability. Second, we prove in Lemma 6 
that each central stage gives rise to a non-empty layer with high probability. 

L e r n m a  5. With high probability, the labeling process has f~(log n) central stages. 

Proof. For a random simple weight function c, let io be the first central stage with 
respect to c. Then n/e < IS(i~ _< 2n/e, since [S(i+1) I < 2[S(i)[ for any i > 0. 
We will show that  [S(~~ I < n - V~ with high probability for k -- ( Inn)/17.  
Let U = V - S(i~ be the set of vertices that  are still unlabeled after stage i0. 
Note that  [U[ __ (e - 2)n/e >_ n/4. 
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Let us condition on m = IUI. Construct an n x m matrix A with 0-1 entries 
as follows. The rows correspond to the vertices in V and the columns correspond 
to the vertices in U; entry a,,, is 1 if and only if the edge (v, u) is among the 
k shortest edges in v's adjacency hst whose head is an element of U. Let f(A) 
be the number of an-zero columns in A. Then IS(i~ < n - f (A) because 
no vertex in U corresponding to an all-zero column will be labeled in the k 
stages following stage i0. Since A models a process in which all vertices (and not 
only those that  are currently labeled) are allowed to label new vertices, and in 
which each vertex is prevented from choosing vertices that  have been labeled by 
other vertices before stage i0, f (A)  may seem to be a rather crude lower bound 
on IV - S(i~ I. However, we will now prove that  even f (A) >_ .r with high 
probability. 

A row of A is a random 0-1 vector of length m with exactly k ones. Moreover, 
the row entries Ai., 1 < i < n, are independent random variables, and if A, A' 
differ only in a single row, then I f (A) - f (A ' ) I  <_ k. Hence, by Azuma's inequality 
(Lemma 3), we get the following tail estimate for f(A) = f ( A I . , . . . ,  A~.), 

Pr(f(A) < E[f(A)]/2) < 2exp(-E[f(A)]2/(2nk2)) . 

The probability that  a fixed column is all-zero is (1 - k/m)'~; therefore, 

Remember that  m = I~rl >_ ,~/e and k = (Inn)/17; since (1 - l / z )  = _> e -2 for 
large enough z, we get from (5) that  

E[f(A)] > me -2k'~/m > �88 1-s/1" > 2v/'~ (6) 

for large enough n, where El f (A) ]  is conditioned on m. However, the lower bound 
in (6) is independent of m. Hence, 

Pr( f (A)  < V~) < 2 exp(-|  n) 2) = O(n -c )  

for any fixed C > 0 and large enough n. Since IS(i~ I is increasing in k, we have 
thus proved that,  with high probability, it will take fl(ln n) = fl(log n) stages to 
label all but v ~  vertices. [] 

L e m m a f l .  With high probability, each central layer contains at least one vertex. 

Proof. Suppose the process is in state j at the beginning of stage i. For any 
vertex in S(i), the probability of selecting a vertex in S(i) during this stage is 
< j /n .  Therefore, the next layer will remain empty with probability < (j/n) j. 
Note that  z H (~/n) = is an increasing function for �9 > n/e. 

Let B denote the event that  at least one central layer remains empty. By the 
estimates provided in the preceding paragraph, 

Vr(B) <_ ~ < n < ne -vr~+l = O(n - c )  
i=nl~ 

for sufficiently large n .  []  
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T h e o r e m  3. Any algorithm for the single source shortest path problem has com- 
plexity f](n log n) with high probability on random simple weight functions. 

Proof. Suppose that  i is the first central stage of the labeling process; as before, 
let S(~) denote the set of vertices that  have already been labeled up to this stage. 
By Lemma 5, with high probability, the process has f~(logn) central layers. 
Lemma 6 tells us that  all these layers will be non-empty with high probability. 
With the notation introduced in the discussion of the labehng process, this reads 

E u e s ( , ) ( l ( d ( u ) ) -  1 ) =  f~(nlogn) with high probability. 

By Lemma 4, the left-hand side term is a lower bound on the complexity of any 
shortest path algorithm. [] 

Acknowledgements 

We learned from discussions with Paul Spirakis that  analyzing the Moffat and 
Takaoka algorithm [11] is not as easy as it might appear at first glance. The 
remarks of an anonymous referee for ICALP'94 allowed considerable simplifi- 
cation of our proofs of Theorems 1 and 2. Rudolf Fleischer suggested the use 
of Fibonacci heaps in the implementation of the algorithm. Finally, numerous 
discussions with Hannah Bast were particularly insightful, as conversations with 
Devdatt  Dubhashi and Torben Hagerup helped to clarify our ideas. 

References 

1. P.A. Bloniarz, A shortest-path algorithm with expected t ime O(?~ 2 lognlog*n), 
SIAM J. Comput. 12 (1983) 588-600 

2. E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 
1 (1959) 269-271 

3. R.W. Floyd, Algorithm 97: Shortest path, Comm. ACM 5 (1962) 345 
4. M.L. Fredman, New bounds on the complexity of the shortest path problem, SIAM 

J. Comput. 5 (1976) 83-89 
5. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved net- 

work optimization algorithms, J. ACM 34 (1987) 596-615 
6. A.M. Frieze and G.R. Grimmett, The shortest-path problem for graphs with ran- 

dom arc-lengths, Discrete Appl. Ma~h. 10 (1985) 57-77 
7. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics (2nd ed.), 

Addison-Wesley, Reading, MA, 1994 
8. D.R. Karger, D. Koller, and S.J. Phillips, Finding the hidden path: Time bounds 

for all-pairs shortest paths, SIAM J. Comput. 22 (1993) 1199-1217 
9. C. McDiarmid, On the method of bounded differences, in: J. Siemons (Ed.), Sur- 

veys in Combinatorics, 1989 (London Mathematical Society Lecture Notes Series; 
141), Cambridge University Press, Cambridge, 1989 

10. A. Moffat and T. Takaol~, An all pairs shortest path algorithm with expected time 
O(n 2 log n), Proc. of ~he 26th Annual Symposium on Foundations of Computer 
Science, Portland, OR~ 1985, 101-105 



197 

11. A. Moffat and T. Takaoka, An all pairs shortest path algorithm with expected time 
O(n 2 log n), SIAM J. Comput. 16 (1987) 1023-1031 

12. P.M. Spira, A new algorithm for finding all shortest path in a graph of positive 
arcs in average time O(n 2 log 2 n), SIAM J. Comput. 2 (1973) 28-32 

13. A. Srinivasan, Techniques for probabilistic analysis and randomncss-efiicicnt com- 
putation, Ph.D. Thesis, Cornell University, Ithaca, NY, Technical Report 93-1378, 
August 1993 

14. T. Takaoka, A new upper bound on the complexity of the all pairs shortest path 
problem, Im%rm. Process. Left. 43 (1992) 195-199 

Appendix 

Recall the probabilistic experiment from Sect. 2.1: An urn contains n balls that  
are either red or blue; let m be the number of red balls. The balls are repeatedly 
drawn from the urn (without replacement) uniformly and independently at ran- 
dom. For 1 < k < m, let the random variable Wk denote the waiting time for 
the k-th red ball. In addition, we define the random variables 1~, 1 < i < m, by 
Y1 := W! and Y~ := W~ - Wi-1 for 2 < i < m. The Wk's are distributed accord- 
ing to the negative hypergeometric distribution, i.e., for k, r with 1 < k _< m 
and k < r < n - r e + k ,  

(; ,,)(: ;)/(:) 
The waiting time for the k-th red ball equals r if and only if there is a k-tuple 
( j l , . . . , j k )  of positive integers with j l  + "'" + jk = r and Y~ = ji for all i, 
1 < i < k. Hence, for j l , . . . , j k  > 1 with Jl + ' " + j k  = r, 

Pr (Al<i___k Yi : ji) -: ( ;- ;)- lpr(Wk--r)---(T/ '--(Jl [- 'k "-~-m- jk)) / ( : )  . 

By using the well-known convolution identity 

(l-mk)(q+k) = ( l +q+ l ]  
n \mA-n-4- 1] 

O < k < l  

(A.1) 

for integers l, m, n, q > O, n > q (see [7] for a proof), it is easy to see t h a t  

,', (A,<,<,, , ,  --- ~,) = Z:  P, (A,<,<_, ~, -- ~,) 
l< j~ <. , , - ra+l  

-- : c  
,<,,_<._..+, / ( : )  

-- 
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and, more generally, for any non-empty I C {1, . . . ,  m} and positive integers ji, 
iEI, 

i.e., the ]~'s are exchangeable random variables. Making use of (A.1), we conclude 
that for any i, 1 < i < m, 

n-m+X ( : - - J l )  / ( : )  ( n +  11) / ( : )  n + l  = ~ = E[Y/] j = m +  m + l  
j = l  

This proves (2) in Sect. 2.1. 
For 1 _< i _< m, we introduced normalized random variables Zi := (Y~ - 

1 ) / ( n -  m). The Z/'s take values in [0,1]; for any j, 1 < j < n - m +  1, 

(Z~ = ~ )  = Pr(Y~ = j). By linearity of expectation, E[Z~] = 1 / (m  + 1) 
% 

Pr 
for any i, 1 < i < m. Lemma 1 proves that the Zi's are negatively correlated. 

L e m m a  1. For any I C_ {1, . . . ,  m} with IZl = k > 1, 

[n - m]} 1 1 E[IIIcIZ, j [Y I "  ] = (n m) k [m+k ]k  -< ( m + l )  k -- "El" r l l l i c l E t Z ,  j 

where [~]~ : =  ~ .  (~ - 1 ) . . .  (~  - k + 1). 

Proof. Only the first equation has to be proved and because of (A.2), we can 
restrict ourselves to the case I = {1, . . . ,  k}. Using (A.1), one can prove by 
induction on k that 

~ ( j ~ - l ) . . . ( j ~ - l ) =  2 k - 1  " 
./1 . . . . .  j~>__l 

J l  + '"  .-t-jk =~" 

Therefore, by (A.2) and (A.1), 

(n-- m)kE [Hl_<i<k 2i] 

= E E ( J ' -  1) . - . ( jk  - 1).Pr  ( A , < , < k "  
k < * ' < n - m + k  J l  . . . . .  J u k  1 

jx  + . . - + j ~ = ~  

1 r - - 1  - I  n 

=J,) 

k [m + k]k 


