
Faster Algorithms for Bound-Consistency of

the Sortedness and the Alldifferent Constraint

Kurt Mehlhorn and Sven Thiel

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{mehlhorn,sthiel}@mpi-sb.mpg.de

Abstract. We present narrowing algorithms for the sortedness and the
alldifferent constraint which achieve bound-consistency. The algorithm
for the sortedness constraint takes as input 2n intervals X1, . . . , Xn,
Y1, . . . , Yn from a linearly ordered set D. Let S denote the set of all
tuples t ∈ X1 × · · · × Xn × Y1 × · · · × Yn such that the last n compo-
nents of t are obtained by sorting the first n components. Our algorithm
determines whether S is non-empty and if so reduces the intervals to
bound-consistency. The running time of the algorithm is asymptotically
the same as for sorting the interval endpoints. In problems where this is
faster than O(n log n), this improves upon previous results.
The algorithm for the alldifferent constraint takes as input n integer
intervals Z1, . . . , Zn. Let T denote all tuples t ∈ Z1 × · · · × Zn where
all components are pairwise different. The algorithm checks whether T
is non-empty and if so reduces the ranges to bound-consistency. The
running time is also asymptotically the same as for sorting the interval
endpoints. When the constraint is for example a permutation constraint,
i.e. Zi ⊆ [1;n] for all i, the running time is linear. This also improves
upon previous results.

1 The Sortedness Constraint

1.1 Introduction

Let D be a non-empty linearly ordered set. An interval X in D consists of
all elements of D which lie between two given elements a and b of D, i.e.,
X = {d ∈ D ; a ≤ d ≤ b}. For a non-empty interval X we use X and X to
denote the smallest and largest element in X , respectively. The function sort
maps any n-tuple over D to its sorted version, i.e., if (d1, . . . , dn) ∈ Dn then
sort(d1, . . . , dn) = (e1, . . . , en) with e1 ≤ e2 ≤ . . . ≤ en and ei = df(i) for all i,
1 ≤ i ≤ n, for some permutation f of [1;n].
Let X1, . . . , Xn, Y1, . . . , Yn be 2n non-empty intervals in D which we consider
fixed in this section. We use S to denote all 2n-tuples (d1, . . . , dn, e1, . . . , en)
with di ∈ Xi and ei ∈ Yi for all i and (e1, . . . , en) = sort(d1, . . . , dn). The task
of narrowing the sortedness constraint is to decide whether S is non-empty and,
if so, to compute the minimal and maximal element in each of its 2n compo-
nents. Bleuzen-Guernalec and Colmerauer [BGC97,BGC00] gave an O(n log n)

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 306–319, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Faster Algorithms for Bound-Consistency 307

algorithm for narrowing the sortedness constraint. We relate the problem to
matching theory and derive an alternative algorithm. The new algorithm has
two advantages over the previous algorithms: it is simpler and its running time
is O(n) plus the time required to sort the interval endpoints of the x-ranges. In
particular, if the interval endpoints are from a integer range of size O(nk) for
some constant k the algorithm runs in linear time.

The last n components of any 2n-tuple in S are sorted in increasing order
and hence we may restrict our attention to normalized 2n-tuples (X1, . . . , Xn,
Y1, . . . , Yn) with Y i ≤ Y i+1 and Y i ≤ Y i+1 for all i with 1 ≤ i < n. Normal-
ization can be achieved algorithmically by setting Y i+1 to max(Y i, Y i+1) for i
from 1 to n− 1 and Y i−1 to min(Y i, Y i−1) for i from n to 2. We assume from
now on (assumption of normality) that our 2n-tuple (X1, . . . , Xn, Y1, . . . , Yn)
is normalized.

Example. We use the following running example in this section:

X1 = [1; 16] X2 = [5; 10] X3 = [7; 9] X4 = [12; 15] X5 = [1; 13]
Y1 = [2; 3] Y2 = [6; 7] Y3 = [8; 11] Y4 = [13; 16] Y5 = [14; 18]

1.2 A Connection to Matchings

We define a bipartite graph G which we call the intersection graph. The nodes
of G are {xi ; 1 ≤ i ≤ n} and {yj ; 1 ≤ j ≤ n} and there is an edge {xi, yj}
if Xi ∩ Yj �= ∅. Clearly, if (d1, . . . , dn, e1, . . . , en) ∈ S and f is a permutation
such that df(j) = ej for all j then the set

{{xf(j), yj} ; 1 ≤ j ≤ n
}

is a perfect
matching in G. The following lemma provides a partial converse and gives a first
indication of the relevance of the intersection graph. The lemma was stated as
property (4) in [BGC00].

Lemma 1 (Characterization of input ranges). Fix a perfect matching
M =

{{xi, yg(i)} ; 1 ≤ i ≤ n
}

in the intersection graph. For each i let di be an
arbitrary element in Xi ∩Yg(i). Then there is a tuple in S whose i-th component
is equal to di for all i with 1 ≤ i ≤ n.

Proof. Consider a tuple t = (d1, . . . , dn, e1, . . . , en) with di ∈ Xi ∩ Yg(i)

and eg(i) = di for all i. Thus ej ∈ Yj for all j. If e1 ≤ . . . ≤ en we
have t ∈ S and we are done. So assume that there is a j with ej > ej+1.
We know ej ∈ Yj and ej+1 ∈ Yj+1 and, by the assumption of normality,
Y j ≤ Y j+1 and Y j ≤ Y j+1. Thus ej ∈ Yj+1 and ej+1 ∈ Yj and hence we
may swap ej and ej+1 to obtain the tuple (d1, . . . , dn, e

′
1, . . . , e

′
n) with ei = e′i

for i /∈ {j, j + 1}, e′j = ej+1 and e′j+1 = ej . We have again e′j ∈ Yj for all j.
Continuing in this way we can construct a tuple in S.
�

For a node v (either an x or a y) we use N(v) to denote its set of neighbors
in G and for a set V of nodes we use N(V) = ∪v∈V N(v) to denote the set
of all neighbors of nodes in V . We use I(v) to denote the set of indices of
the nodes in N(v). The set of neighbors N(xi) of each xi forms an interval

308 Kurt Mehlhorn and Sven Thiel

I(xi) = [min {j ; Xi ∩ Yj �= ∅} ; max {j ; Xi ∩ Yj �= ∅}] or simply Ii in the y’s.
Glover (see [Glo67] and [Law76, Section 6.6.6]) called graphs with this property
convex and gave a simple matching algorithm for them: f(1), f(2), . . . , f(n) are
defined in this order. Assume that f(1), . . . , f(j − 1) are already defined. Let
I = I(yj) \ {f(1), . . . , f(j − 1)} and set f(j) to i where i ∈ I is such that Ii is
minimal.

Example. In the following table we show how the algorithm would compute the
function f for our example (in the second column the x’s are sorted such that
the interval endpoints of their ranges are increasing):

yj N(yj) I(yj) \ {f(1), . . . , f(j − 1)} f(j)
y1 x5, x1 5, 1 5
y2 x3, x2, x5, x1 3, 2, 1 3
y3 x3, x2, x5, x1 2, 1 2
y4 x5, x4, x1 4, 1 4
y5 x4, x1 1 1

Lemma 2 (Glover). If the intersection graph has a perfect matching, the al-
gorithm above constructs one.

Proof. Assume that the intersection graph has a perfect matching π. We use
induction on k to show that there is a perfect matching πk which matches yj

with xf(j) for all j ≤ k. The claim holds for k = 0 with π0 = π. So assume k > 0.
If πk−1 matches yk with xf(k) we take πk = πk−1. Otherwise πk−1 matches yk

with xi and xf(k) with yl for some i and l. Then l > k and by definition of f(k)
we have Xi ≥ Xf(k) and hence yl ∈ N(xi). Thus we can switch the roles of xf(k)

and xi in πk−1 to obtain πk, i.e. we match yk with xf(k) and yl with xi.
�
We are interested in the edges that belong to some perfect matching of the

intersection graph. These edges form the reduced intersection graph. They are
easy to characterize; this characterization was already used by Regin in his arc-
consistency algorithm for the alldifferent constraint [Reg94].

Lemma 3. Assume that M is a perfect matching in G. Let us construct the
oriented intersection graph G by orienting all edges in G from their x-endpoint
to their y-endpoint and adding the reverse edge for all edges in M . An edge
(xi, yj) belongs to some perfect matching iff it belongs to a strongly connected
component of G.

Proof. standard matching theory (see for example Section 7.6 in [MN99])
�
We next show how a perfect matching and the strongly connected compo-

nents of the intersection graph can be computed. We start by sorting the xi

according to both their lower interval endpoints Xi and their upper interval
endpoints Xi, i.e. we compute the sorting permutations.

The probably most suggesting implementation of Glover’s algorithm main-
tains a priority queue P . After iteration j − 1, the queue P contains all

Faster Algorithms for Bound-Consistency 309

i ∈ I({y1, . . . , yj−1}) \ {f(1), . . . , f(j − 1)} ordered according to their upper in-
terval endpoint Xi. In iteration j we first add all i to P with Y j−1 < Xi ≤ Y j .
We then select the i with smallest X i from P . If P is empty or X i < Y j ,
we detect that there is no perfect matching. Otherwise we set f(j) = i. This
implementation has complexity O(n logn).

But as we have the sorting of the x’s according to both bounds of their ranges,
we can implement the algorithm in linear time. We reduce the problem to an
instance of the offline-min problem [AHU74, Chapter 4.8], which can be solved
in linear time using the union-find data structure of Gabow and Tarjan [GT83].
We show that we can construct the sequence of insert and extractmin operations
performed on the priority queue whithout knowing the results of the extract
operations. The construction is iterative. We start with an empty sequence, in
iteration j we append the following operations: insert(i) for all i with Y j−1 <
Xi ≤ Y j and then extractminj . The offline-min data structure determines, if
possible, for every insertion the corresponding extraction. If there is a matching
in the intersection graph, the algorithm will run to completion and find the same
matching as before. If there is no matching there are two ways to get stuck: The
result of extractminj is a value i with X i < Y j . Or the offline-min data structure
detects an insert operation for which there is no corresponding extract operation.
Since we have n insertions and n extractions in our sequence, this means that
there is an extraction which is performed on an empty priority queue.

We next show how to compute the strongly connected components of the
intersection graph. By construction, we have that for every j the edges (xf(j), yj)
and the reverse edge (yj , xf(j)) belong to G. Thus the two nodes always belong
to the same strongly connected component and we can imagine that the nodes
have been merged into a single node xyj . The incoming edges are the edges of yj

and the outgoing edges are the edges of xf(j). It helps to visualize the graph
with the nodes xy1, . . . , xyn drawn from left to right in that order. There are
many algorithms for computing strongly connected components, all based on
depth-first search. We use the algorithm of [CM96] as a basis and adapt it to the
special structure of our graph. We will show how to compute the components
in time O(n). This is not trivial since the intersection graph may have Ω(n2)
edges.

The algorithm is based on DFS. It maintains the strongly connected com-
ponents of Gcur, the graph consisting of all nodes and edges visited by DFS.
A component is completed if the call to DFS is completed for all nodes in
the component and uncompleted otherwise. The root of a component is the
node in the component with the smallest DFS-number. We maintain two stacks.
The stack S1 contains the nodes in uncompleted components in order of in-
creasing DFS-number. It was shown in [CM96] that each uncompleted compo-
nent forms a contiguous segment in S1 and that the roots of all uncompleted
components lie on a single tree path. The second stack S2 contains an item
〈root , rightmost ,maxX 〉 for every uncompleted component. The fields root and
rightmost denote the indices of the root (also leftmost) node and the rightmost
node of the component. The field maxX is the maximum upper interval endpoint

310 Kurt Mehlhorn and Sven Thiel

of an x-node in the component, this determines the rightmost xyj that can be
reached from within the component. We still need to say how we scan the edges
out of a node. We scan from left to right, i.e., the edge (xyi, xyj) is scanned
before (xy i, xyk) iff j < k. We maintain the invariant that for a node xy in a
component 〈root , rightmost ,maxX 〉 all edges (xy , xyi) with i ≤ rightmost have
been scanned. Since the outgoing edges of a node xy form an interval and we
scan them from left to right, we have that DFS visits the nodes in the order
xy1, . . . , xyn, provided that top-level calls to DFS are always performed on the
unreached node xy with the smallest index. Thus tree edges are easy to recognize
if we maintain the index next of the unreached node with minimal index.

The algorithm proceeds like this. If the stack S2 of uncompleted compo-
nents is empty, we start a new component by pushing a corresponding item
on the stack. We also push xynext on the stack S1. This amounts to a top-
level call of DFS. Otherwise we consider the topmost uncompleted compo-
nent 〈root , rightmost ,maxX 〉 and determine whether it can reach xynext . This
is the case iff maxX ≥ Y next . Assume first that it can reach xynext . Then
xynext forms a new uncompleted component which extends the path of un-
completed components. In the algorithm of [CM96] we would push xynext

onto S1 and the item C = 〈xynext , xynext , Xf(next)〉 onto S2. Then we would
scan the outgoing edges from left to right. The leftward edges out of xynext

could cause merging of components: Consider the components C1, . . . , Ck on S2,
where Ck = C is the topmost component. Let j be minimal such that xynext can
reach a node in Cj , i.e. Y rightmostj

≥ Xf(next). Then the components Cj , . . . , Ck

would be merged into a single component, which is represented by the item
C′ = 〈root j ,next ,max(maxX j , . . . ,maxX k)〉. In order to avoid unnecessary
push and pop operations, our algorithm checks first whether components can
be merged before pushing C onto S2. If this is the case, it pops Ck−1, . . . , Cj ,
computes C′ and pushes it onto S2. Otherwise it pushes C onto S2. In either
case we push xynext onto S1.

We come to the case where the topmost component cannot reach xynext .
Then we have explored all edges out of that component and hence can declare
it completed. We pop all nodes between the root and the rightmost node from
the stack S1 of unfinished nodes and label them with their scc-number.

Example. We show a table of the states of our algorithm when it computes the
strongly connected components for our example:

next S1 S2 completed SCCs action
1 1 〈1, 1, 13〉 - start component
2 1,2 〈1, 1, 13〉, 〈2, 2, 9〉 - start component
3 1,2,3 〈1, 1, 13〉, 〈2, 3, 10〉 - merge
4 1 〈1, 1, 13〉 {xy2, xy3} complete component
4 1,4 〈1, 1, 13〉, 〈4, 4, 15〉 {xy2, xy3} start component
5 1,4,5 〈1, 5, 16〉 {xy2, xy3} merge
- - - {xy2, xy3}, {xy1, xy4, xy5} complete component

Faster Algorithms for Bound-Consistency 311

Theorem 1. The asymptotic time complexity of constructing a matching M
and the strongly connected components of the intersection graph is O(n) plus the
time for sorting the endpoints of the x-ranges.

Proof. by the discussion above.
�

1.3 Output Ranges

For j, 1 ≤ j ≤ n, we use Tj to denote the projection of S onto the yj-coordinate.
We show how to compute T j for all j. Assume that the intersection graph has
a perfect matching and that our algorithm computed the function f . For j =
1, . . . , n let τj = maxXf(j) ∩ Yj . We claim that T j = τj for all j. First we show
that τ1 ≤ . . . ≤ τn which implies (τf−1(1), . . . , τf−1(n), τ1, . . . , τn) ∈ S and hence
τj ≤ T j . Assume τj < τj−1 for some j; then Xf(j) < τj−1 = min(Xf(j−1), Y j−1).
Since Xf(j) < Xf(j−1) the value f(j) must have entered the priority queue in
iteration j and not earlier. Thus Y j−1 < Xf(j) ≤ Xf(j) < τj−1 ≤ Y j−1, a
contradiction.

Now we prove by induction that T j cannot be larger than τj . Assume we have
already established τh = Th for all h < j. Imagine that we restrict Yj to a single
value e ∈ [τj ;Y j] and set Y h to min(e, Y h) for h < j and Y h to max(e, Y h) for
h > j. Note that this change preserves normality and does not restrict Y h below
Th for h < j. If we rerun our matching algorithm, it will construct the same
matching as before, until it tries to match yj . It will also extract f(j) from the
priority queue, but in case e > τj the algorithm will get stuck. Thus τj = T j .

Example. In our example we get (T 1, . . . , T 5) = (3, 7, 10, 15, 16).

The symmetric procedure computes the lower bounds. We start with a
function f ′ which is obtained in the following way: f ′(n), . . . , f ′(1) are de-
fined in that order. When f ′(n), . . . , f ′(j + 1) are already determined, we let
I = I(yj) \ {f ′(n), . . . , f ′(j + 1)} and set f ′(j) to i ∈ I such that Ii is maximal.
Then T j = minXf ′(j) ∩ Yj .

Note that we can compute the output ranges from any graph whose edge-set
is a superset of the reduced intersection graph and a subset of the intersection
graph. We can do it in linear time, provided that we have the sortings of the x’s.

1.4 Input Ranges

Given Lemmas 1 and 3, the narrowing of the input intervals becomes easy. For i,
1 ≤ i ≤ n, we use Si to denote the projection of S onto the xi-coordinate.

Lemma 4. We have Si = Xi ∩ ∪yj∈N ′(xi)Yj, where N ′(xi) denote the set of
neighbors of xi in the reduced intersection graph. In particular, Si = minXi∩Yjl

and Si = maxXi∩Yjh
where yjl

and yjh
are the minimal and maximal elelements

in N ′(xi), respectively.

Proof. immediate.
�

312 Kurt Mehlhorn and Sven Thiel

We now show how to compute the minimal neighbors of the x’s, a symmet-
ric procedure can find the maximal neighbors. Recall that each node xy in an
scc C stands for a pair {xf(j), yj} of matched nodes. Assume that an scc C
consists of the nodes (xi1 , . . . , xik

) and (yj1 , . . . , yjk
) with X i1 ,≤ . . . ≤ X ik

and
j1 < . . . < jk. Because of the normalization of the y’s we have Y j1 ≤ . . . ≤ Y jk

.
We can determine the minimal neighbor of every x in C by merging the se-
quences; observe that the minimal neighbor of xis is yjt iff Y jt−1 < Xis

≤ Y jt .
The two sortings of the nodes can be computed as follows. The sorting of the y’s
is already determined by the scc-algorithm. The sorting of the x’s is obtained
by going through the sorted list of all x’s and partitioning it according to scc-
number. This bucket-sort step requires linear time and gives us the sorting of
the x-nodes for all components. This proves that we can narrow the input ranges
in time O(n).

Example. If we split up the xy-nodes in our example, we get the two compo-
nents C1 = {y2, x3, y3, x2} and C2 = {y1, x5, y4, x4, y5, x5}. By merging the
sequences (X2, X3) = (5, 7) and (Y 2, Y 3) = (7, 11), the algorithm discovers that
the minimal neighbor of x2 and x3 in the reduced intersection graph is y2 and
hence (S2, S3) = (6, 7). When the algorithm processes C2, it finds out that y1 is
the minimal neighbor of x5 and x1 and that y4 is the minimal neighbor of x4.
Thus it can compute (S5, S1, S4) = (2, 2, 13).

1.5 Summary of the Full Algorithm

The full algorithm is as follows:

1. Sort the x-ranges according to their lower and their upper endpoints.
2. Normalize the y-ranges.
3. Perform a down sweep to compute the matching M0 and the upper bounds

of the y-ranges and an up sweep to compute a matching M1 and the lower
bounds of the y-ranges.

4. Compute the strongly connected components.
5. Reduce the x-ranges.

Except for the first step, all steps take linear time. Thus the complexity of
the whole algorithm is asymptotically the same as for sorting the lower and
upper endpoints of the x-ranges. This is O(n log n) in general, but is O(n) if the
interval endpoints are drawn from a range of size O(nk) for some constant k.
As Bleuzen-Guernalec and Colmerauer have stated in [BGC00], every narrowing
algorithm for the sortedness constraint which achieves bound-consistency can be
used for sorting n elements of the set D in time O(n) plus the running time of
the algorithm. Thus the complexity of our algorithm is asymptotically optimal
in all models of sorting.

1.6 Implementation

We have a stand-alone implementation of the algorithm and we have also incor-
porated it in the constraint programming system MOZ [Moz]. The implementa-
tion can be obtained from the second author.

Faster Algorithms for Bound-Consistency 313

2 Alldifferent Constraint

2.1 Introduction

Let X1, . . . , Xn be n non-empty intervals in the integers. We use S to denote
the set of all n-tuples (d1, . . . , dn) in X1 × · · · × Xn such that di �= dj for all
i < j. The task of narrowing the alldifferent constraint is to decide whether S
is non-empty and, if so, to compute the minimal and maximal element in each
of its n components. Puget [Pug98] gave an O(n log n) algorithm for this task.
The running time of our algorithm is O(n) plus the time required for sorting the
interval endpoints. In particular, if the endpoints are from a range of size O(nk)
for some constant k, the algorithm runs in linear time. This is for example the
case when X1, . . . , Xn encode a permutation, i.e. Xi ⊆ [1;n] for all i, or in the
alldifferent constraints used in [Pug98] to model the n-queens problem.

Example. In this section we use the following running example:

X1 = [3; 4], X2 = [7; 7], X3 = [2; 5], X4 = [2; 7], X5 = [1; 3], X6 = [3; 4]

2.2 A Connection to Matchings

As before we reduce the problem to determining the matchings in a bipartite
graph G. Let l = min1≤i≤n Xi and h = max1≤i≤n Xi. We assume that m = h−
l+1 ≥ n, otherwise we know that S is empty. The nodes ofG are {xi ; 1 ≤ i ≤ n}
and {yj ; l ≤ j ≤ h} and there is an edge {xi, yj} if j ∈ Xi. We have the following
one-to-one correspondence:

Lemma 5. Every Matching M =
{{xi, yg(i)} ; 1 ≤ i ≤ n

}
in G corresponds to

the tuple (g(1), . . . , g(n)) in S and vice versa.

Proof. by the definition of a matching.
�
It is clear that G is convex. We use a slightly modified version of the algorithm

in section 1.2 to compute a matching M in G. We encode the matching by a
function f : [l;h] → [1;n] ∪ {free} which maps every y-node to its mate on
the x-side or indicates that that the node has no mate. We compute f(l), f(l +
1), . . . , f(h) in that order. Assume that f(l), . . . , f(j − 1) are already defined.
Let I = I(yj) \ {f(l), . . . , f(j − 1)} denote the set of all unmatched neighbors
of yj. If I is empty we set f(j) to free, otherwise we set f(j) to i such that Xi

is minimal.

Example. In our example we get the following function f :

j 1 2 3 4 5 6 7
f(j) 5 3 1 6 4 free 2

Lemma 6. If there is a matching of cardinality n in G, the algorithm above
constructs one.

314 Kurt Mehlhorn and Sven Thiel

Proof. Consider the graph G′ which is obtained from G by adding the
nodes xn+1, . . . , xm to the x-side and connecting them to all nodes on the y-
side. Clearly G′ has a perfect matching. Thus the algorithm in section 1.2 will
construct a mapping f ′ encoding it. Assume that we have modified both algo-
rithms such that in case of multiple choices for f(j) or f ′(j) the smallest index i
(with maximal X i) is chosen. Then f(j) = f ′(j) if f ′(j) ≤ n, and f(j) = free
otherwise.
�
The matching constructed by this algorithm has an interesting property which
we will use later:

Lemma 7. Let {xi, yj} be an edge in the matching M constructed by the algo-
rithm above. Then any yj′ with j′ < j and j′ ∈ Xi is matched in M .

Proof. Assume yj′ is free. At the time when the algorithm determined f(j′),
the node xi was not matched since yj had not been processed. This contradicts
f(j′) = free.
�

How do we implement the algorithm? We have to take care of the fact that
we do not have a bound on m, i.e. the number of nodes on the y-side. We want
an algorithm whose time complexity does not depend on m. Let us first look
at a priority queue implementation: We sort the x-ranges according to their
lower interval endpoints. After iteration j − 1, our priority queue P contains
all i ∈ I({y1, . . . , yj−1} \ {f(1), . . . , f(j − 1)} ordered according to their upper
interval endpoint Xi. In iteration j we first add all i to P with Y j−1 < Xi ≤ Y j .
If P is empty, the node yj becomes a free node. And so will all his successors
until the next insertion into P . Since we know the index i0 of the unmatched x-
node with the smallest interval endpoint, we can advance directly to iteration
j′ = Xi0 . If P is non-empty, we select the i with the smallestXi from P and check
whether Xi < Y j . If so, we detect that there is no matching of cardinality n,
otherwise we set f(j) to i.
The sequence of insert and extractmin operations can be computed in advance.
When we construct that sequence we can also determine the free nodes. By
counting the number of insertions and extractions, we know when the priority
queue would become empty. This means that if we know the sorting of the x-
ranges according to lower and upper endpoint, we can compute the matching M
and the intervals of free nodes in time O(n) using an offline-min data structure.

We are interested in the edges that belong to some matching in G where all x-
nodes are matched. Therefore we construct the oriented graph G. We orient all
edges in G from their x-endpoint to their y-endpoint and add the reverse edge
for all edges in M . The following lemma was already used by Regin in [Reg94],
it characterizes the edges we are looking for:

Lemma 8. An edge (xi, yj) belongs to some matching of cardinality n in G iff
it belongs to a strongly connected component of G or lies on a path to a free
node.

Faster Algorithms for Bound-Consistency 315

Proof. standard matching theory (see for example Section 7.6 in [MN99])
�
The computation of the strongly connected components can be carried out

as earlier because every single free node forms a component of its own. Thus we
only have to consider the n matched nodes on the y-side.

Now we show how to mark all matched y-nodes that can reach a free node in
time O(n). First we want to put down a few facts about the strongly connected
components of the graph G. Let C be a component of G and let root and
rightmost denote the minimal and maximal index of a y-node in C. We define
I(C) to be the interval [root ; rightmost].

1. Let j ∈ I(C). Then there is a path from yroot to yj . If yj ∈ C there is noth-
ing to show. Otherwise consider a path yroot = yj1 , xi1 , yj2 , xi2 , . . . , yjk

=
yrightmost in C from the root to the rightmost node. Since j1 < j < jk
there must be a κ with 1 ≤ κ < k such that jκ < j < jκ+1. We
have Xiκ ⊇ [jκ; jκ+1] � j.

2. Let C be a non-trivial component, i.e. C does not consist of a single free
node. Then any yj with j ∈ I(C) is a matched node. Assume that yj is free.
Considering a path from yrightmost to yroot , one can show similarly as in fact
1) that there is a node yj′ ∈ C matched to some node xi′ with j′ > j and
j ∈ Xi′ . This is a contradiction to Lemma 7.

3. For two different strongly connected components C and C′ exactly one of
the following 3 statements holds:

i) I(C) ∩ I(C′) = ∅ ii) I(C) ⊂ I(C′) iii) I(C′) ⊂ I(C)

This follows directly from the fact 1). If statement iii) holds, we say that C′ is
nested in C. And we say that C′ is directly nested in C, if there is no strongly
connected component C′′ different from C and C′ such that I(C′) ⊂ I(C′′) ⊂
I(C).

4. Let C and C′ be two components such that C′ is nested in C. Let xi be
a node in C′ and let (xi, yj) be an edge in G. We claim that yj lies in a
component nested in C. Assume otherwise. By fact 1) there is a path from
the root of C to xi. Thus if yj ∈ C then C = C′, a contradiction. If j /∈ I(C),
i.e. yj lies to the left or to the right of C, then there is also an edge from xi

to the root or to the rightmost node of C since the set of neighbors of xi

forms an interval. Again we can conclude C = C′ and derive a contradiction.
We say that the edges of C′ cannot escape from C. They can only lie within
C′ or between C′ and an other component C′′ nested in C.

Consider the top-level components C1, . . . , Ck of G, i.e. all components which
are not nested in an other component. This also includes free nodes, which
form top-level components of their own by fact 2). We know that the intervals
I(C1), . . . I(Ck) are a partition of the set of indices of the y-nodes. Thus we can
assume that the components are numbered such that I(Ci) < I(Cj) for all i < j.

Imagine that we shrink each top-level component and its nested components
to a single node keeping only the edges between different top-level components.

316 Kurt Mehlhorn and Sven Thiel

Then we get an acyclic graph Gs. To be precise, the nodes of Gs are C1, . . . , Ck

and there is an edge (Ci, Cj) iff there are u ∈ Ci and v ∈ Cj such that the
edge (u, v) is in G and i �= j. We call a node F of Gs free iff F consists of a
single free node of G. Let us consider a path in G from a node yj in a top-
level component C to a free node yf . This path cannot visit a node in a nested
component, because edges from nested components cannot escape from their
enclosing top-level component by fact 4). Thus the path corresponds to a path
in Gs from C to the free node F = {yf }.
Clearly, the converse is also true. If we have a path in Gs from a node C to a
free node F = {yf }, we can find a path in G from any node u ∈ C to yf . In
order to find all nodes of Gs that can reach a free node we exploit the following
property of Gs:

Lemma 9. Assume that the nodes of Gs are numbered as described above and
that there is a path from C to C′ in Gs. Then there is also a monotone path
from C to C′, which means a path C = Ci1 , Ci2 , . . . , Cik

= C′ with i1 < . . . < ik
or i1 > . . . > ik.

Proof. Consider any path C = Cl1 , Cl2 , . . . , Clk = C′ from C to C′ in Gs and
assume w.l.o.g. that l1 < l2. If the path is not monotone then there is a κ with
1 < κ < k such that lκ−1 < lκ > lκ+1. We distinguish two cases:

– lκ−1 < lκ+1 < lκ:
Since Gs contains the edge (Clκ−1 , Clκ) there must be an edge (xiκ−1 , yjκ)
in G with xiκ−1 ∈ Clκ−1 and yjκ ∈ Clκ . As xiκ−1 can reach a node in Clκ−1

(its mate) and a node in Clκ , we have that I(xiκ−1) ⊃ I(Clκ+1). Thus the
edge (Clκ−1 , Clκ+1) is in Gs and we can shorten the path.

– lκ+1 ≤ lκ−1 < lκ:
Since Gs contains the edge (Clκ , Clκ+1) there must be an edge (xiκ , yjκ+1) in
G with xiκ ∈ Clκ and yjκ+1 ∈ Clκ+1 . As the neighbors of xiκ form an interval
in the y-nodes, we have that there is an edge from xiκ to the rightmost node
of Clκ−1 , and hence the edge (Clκ , Clκ−1) is in Gs. This contradicts the fact
that this graph is acyclic.

This proves that we can shorten the path until it becomes monotone.
�
The statement of Lemma 7 implies that no free node (either in G or Gs) has

an incoming edge from the right. And hence, we only have to consider monotone
paths from left to right in our search for nodes that can reach free nodes. Now
it is easy to design an algorithm that marks all matched y-nodes of G which
can reach a free y. We know by the facts 2) and 4) that these nodes can only
reside in non-trivial top-level components. We can easily modify the algorithm
which computes the strongly connected components such that it generates a
list L of these components, for the stack of uncompleted components represents
the nesting relation. Whenever a top-level component becomes completed, we
append the corresponding item 〈root , rightmost ,maxX ,nodes〉 to L, where nodes
is a list of the indices of all y-nodes in the component. The overhead of this is
only a constant factor.

Faster Algorithms for Bound-Consistency 317

After we have finished the computation of the components we perform a
sweep over the non-trivial top-level components from right to left. We maintain
the index j� of the leftmost node that we have seen so far and that is either free
or marked. We know that all y-nodes outside the non-trivial components (and
their nested components) are free. So when the sweep moves from a non-trivial
component C′ to its immediate non-trivial successor C to the left, we advance j�

to I(C)+1 if there is a gap between the rightmost node of C and the root of C′,
i.e. I(C) < I(C′)−1. With the aid of the value maxX , we can determine whether
the node yj	 can be reached from C. If so, we mark all y-nodes in the component
and advance j� to the index of the root of C. The complexity of the sweep is
linear in the number of matched y-nodes in top-level components. Thus the
marking can be done in O(n) time.

Example. In our example, we have one nested component {y3, x1, y4, x6} and
three top-level components {y1, x5}, {y2, x3, y5, x4} and {y7, x2}. The sweep
from right to left will first mark y2 and y5 because the maxX -value for their
component is 7 and hence it can reach the free node y6. Then it will also mark y1
since its component can reach y2.

2.3 Narrowing of the Ranges

Let Si denote the projection of S onto the xi-coodinate for i = 1, . . . , n. Because
of Lemma 7, we do not have to consider free nodes when we determine the
lower bounds S1, . . . , Sn, and hence we can do it in the same way as the input
ranges for the sortedness-constraint (cf. section 1.4). Since no x-node in a nested
component can reach a free node, the computation of the upper bounds does
not change for these nodes either.

In order to compute Si for a node xi in a top-level component we must
determine two things:

1. We must compute the maximal neighbor ysi of xi which belongs to the same
strongly connected component as xi.

2. We have to find the maximal neighbor yti of xi that is either free or marked.
(If xi has no such neighbor, we make sure that ti ≤ si.)

We have Si = max(si, ti) by the Lemmas 5 and 8. The neighbor ysi can be found
as in section 1.4. The computation of yti is similar. First we generate the sequence
(U1, . . . , Uk) where U1, . . . , Uk are non-empty intervals that form a partition of
the set of unmarked matched y-nodes with the property U j−1 < U j − 1 for
1 < j ≤ k. Since every interval contains a matched node, we have k < n.
The sequence is easily constructed. Assume that our matching algorithm has
computed the sequence of matched nodes sorted by ascending index. We step
through this sequence, sort out the marked nodes and generate the intervals. In
linear time we can generate a sorting (i1, . . . , il) of the ranges of the x-nodes in
top-level components such that Xi1 ,≤ . . . ≤ X il

.
We determine ti1 , . . . , til

by merging the sequence (Xi1 , . . . Xil
) and the se-

quence (U1, U1, . . . , Uk, Uk). When an Xi does not lie within a U -interval, we

318 Kurt Mehlhorn and Sven Thiel

set ti = Xi, because then the maximal neighbor of xi is free or marked. Oth-
erwise Xi ∈ Uj for some j, and we set ti = U j − 1. Note that yti is either the
maximal free or marked neighbor of xi or we have ti < Xi ≤ si.

Example. We want to look now at the x-nodes which belong to top-level com-
ponents. The sorted sequence of the upper interval endpoints of their ranges is
(X5, X3, X4, X2) = (3, 5, 7, 7). In our example the unmarked matched y-nodes
are partitioned in two intervals (U1, U2) = ([3; 4], [7; 7]). Thus the merging step
produces (t5, t3, t4, t2) = (2, 5, 6, 6). The indices of the maximal neighbors of
the x-nodes in their component are (s5, s3, s4, s2) = (1, 5, 5, 7). And hence the
narrowed upper bounds are (S5, S3, S4, S2) = (2, 5, 6, 7).

2.4 Summary of the Full Algorithm

The full algorithm looks like this:

1. Sort the ranges according to their upper and lower endpoints.
2. Perform a sweep to compute the initial matching M .
3. Compute the strongly connected components of G.
4. Mark all matched y-nodes that can reach a free node.
5. Narrow the ranges

Except for the first step, all steps take linear time, and hence the complexity
of the algorithm is asymptotically the same as for sorting endpoints of the ranges.
If we have a permutation constraint, the narrowing can be done in linear time.
In this case there are no free nodes and the forth step can be left out.

2.5 Implementation

We have not implemented the algorithm yet, but we expect that it will also show
good performance in pratice.

3 Conclusion

We have presented narrowing algorithms for the alldifferent and the sorted-
ness constraint which achieve bound-consistency. Our algorithms are competi-
tive with the best previously known algorithms. Under some circumstances our
algorithm have a better asymptotic running time. For example, we can narrow
instances of the alldifferent constraint in linear time when the variables encode
a permutation.

Bleuzen-Guernalec and Colmerauer [BGC97] have already noticed that a
bound-consistency narrowing algorithm for the sortedness constraint can be used
for narrowing permutation constraints. We feel that translating both constraints
to matching problems in bipartite graphs has made the relationship more ob-
vious, because the matching problems for both constraints are the same. The

Faster Algorithms for Bound-Consistency 319

matching problems originating from general instances of the alldifferent con-
straint are more difficult, because one has to cope with free nodes. Thus we
think that matching theory has not only provided some efficient algorithms but
also some deeper insight into the structure of the sortedness and the alldifferent
constraint.

References

AHU74. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974. 309

BGC97. N. Bleuzen-Guernalec and A. Colmerauer. Narrowing a 2n-block of sortings
in $O(n log n)$. Lecture Notes in Computer Science, 1330:2-16, 1997. 306,
318

BGC00. N. Bleuzen-Guernalec and A. Colmerauer. Optimal narrowing of a block of
sortings in optimal time. Constraints : An international Journal, 5(1-2):85-
118, 2000. 306, 307, 312

CM96. Joseph Cheriyan and Kurt Mehlhorn. Algorithms for dense graphs and net-
works on the random access computer. Algorithmica, 15(5):521-549, 1996.
309, 310

Glo67. F. Glover. Maximummatchings in a convex bipartite graph. Naval Res. Logist.
Quart., 14:313-316, 1967. 308

GT83. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. In ACM Symposium on Theory of Computing (STOC ’83),
pages 246-251. ACM Press, 1983. 309

Law76. Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
New York;Chicago;San Francisco, 1976. 308

MN99. Kurt Mehlhorn and Stefan Naher. LED A: a platform for combinatorial
and geometric computing. Cambridge University Press, Cambridge, November
1999. 308, 315

Moz. The Mozart Programming System, http://www.MOZ-oz.org. 312
Pug98. Jean-Fran\c{c}ois Puget. A fast algorithm for the bound consistency of alldiff

constraints. In Proceedings of the 15th National Conference on Artificial In-
telligence (AAAI-98) and of the 10th Conference on Innovative Applications
of Artificial Intelligence (IAAI-98), pages 359-366, Menio Park, July 26-30
1998. AAAI Press. 313

Reg94. J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In
Proc. 12th Conf. American Assoc. Artificial Intelligence, volume 1, pages
362-367. Amer. Assoc. Artificial Intelligence, 1994. 308, 314

	Faster Algorithms for Bound-Consistency of the Sortedness and the Alldifferent Constraint
	The Sortedness Constraint
	Introduction
	A Connection to Matchings
	Output Ranges
	Input Ranges
	Summary of the Full Algorithm
	Implementation

	Alldifferent Constraint
	Introduction
	A Connection to Matchings
	Narrowing of the Ranges
	Summary of the Full Algorithm
	Implementation

	Conclusion

