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ABSTRACT: We review how to solve the all-pairs shortest-path problem in a nonnegatively
Ž 2 .weighted digraph with n vertices in expected time O n log n . This bound is shown to hold

with high probability for a wide class of probability distributions on nonnegatively weighted
Ž .digraphs. We also prove that, for a large class of probability distributions, V n log n time is

necessary with high probability to compute shortest-path distances with respect to a single
Ž .source. Q 1997 John Wiley & Sons, Inc. Random Struct. Alg., 10, 205]220 1997
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1. INTRODUCTION

Given a complete digraph in which all the edges have nonnegative length, we want
to compute the shortest-path distance between each pair of vertices. This is one of
the most basic questions in graph algorithms, since a variety of combinatorial-opti-
mization problems can be expressed in these terms. As far as worst-case complexity

Ž 3.is concerned, we can solve an n-vertex problem in time O n either by Floyd’s
w x w x w xalgorithm 4 or by n calls of Dijkstra’s algorithm 2 . Fredman’s algorithm 5 uses

*A preliminary version of this paper was presented at the Third Annual European Symposium on
w xAlgorithms, Corfu, Greece, 1995 12 .
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efficient distance-matrix multiplication techniques and results in a running time of
Ž 3ŽŽ . .1r3. Ž Ž 3ŽŽ . .1r2 .O n log log n rlog n slightly improved to O n log log n rlog n by

w x. w xTakaoka 17 . Recently, Karger, Koller, and Phillips 10 presented an algorithm
Ž U 2 . Uthat runs in time O nm qn log n , where m denotes the number of edges that

are a shortest path from their source to their target.
However, worst-case analysis sometimes fails to bring out the advantages of

algorithms that perform well in practice; average-case analysis has turned out to be
more appropriate for these purposes. We are not only interested in algorithms with
good expected running time but in algorithms that finish their computations within

Ž .a certain time bound with high probability and might therefore be called reliable .
Two kinds of probability distributions on nonnegatively weighted complete

digraphs have been considered in the literature. In the so-called uniform model, the
edge weights are independent, identically distributed random variables. In the

Ž .so-called endpoint-independent model, an arbitrary multi- set c , 1F jFn, of n¨ j

Ž .nonnegative weights possibly ` is fixed for each vertex ¨ . These weights are
assigned randomly to the n edges with source ¨ , i.e., a random bijective mapping

Ž¨ . � 4p from 1, . . . , n to V is chosen and c is made the weight of the edge¨ j
Ž Ž¨ .Ž ..¨ , p j for all j, 1F jFn.

w x Ž 2 .Frieze and Grimmett 7 gave an algorithm with O n log n expected running
time in the uniform model when the common distribution function F of the edge

Ž . XŽ . XŽ .weights satisfies F 0 s0, F 0 exists, and F 0 )0. Under these assumptions,
U Ž . w xm sO n log n with high probability, and so the algorithm of Karger et al. 10

Ž 2 .also achieves running time O n log n with high probability.
The endpoint-independent model is more general and harder to analyze. Spira

w x Ž 2Ž .2 .16 proved an expected time bound of O n log n , which was later improved by
w x Ž 2 . ŽBloniarz 1 to O n log n log* n . We use log to denote logarithms to base 2 and

ln to denote natural logarithms; logU x[1 for xF2 and logU x[1q logU log x for
. w x w xx)2. In 13 and 14 , Moffat and Takaoka describe two algorithms with an

Ž 2 . w xexpected time bound of O n log n . The algorithm in 14 is a simplified version of
w x w xthat of 13 . In Section 3 of this paper, we review the algorithm in 14 and the

analysis of its expected running time. We point out some easy-to-make mistakes in
the analysis and show how to avoid them. Moreover, we prove that the running

Ž 2 .time of the algorithm is O n log n with high probability. In Section 4, we show
Ž .that under modest assumptions V n log n edges need to be inspected to compute

the shortest-path distances with respect to a single source.

2. PRELIMINARIES

We will refer to the following probabilistic experiments. Let an urn contain n balls
that are either red or blue; let r be the number of red balls. The balls are

Ž .repeatedly drawn from the urn without replacement uniformly at random. Let W
be the number of drawings until the first red ball occurs; then

ny r n nyk nw xE W s Pr W)k s s ,Ž .Ý Ý Ý ž / ž /ž / ž / r rk k0FkFnyr 0FkFnyr 0FkFnyr
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nq 1 y k n y kn y kand from s y , we conclude thatž / ž / ž /r rq 1 r q 1

nq1nq1 nw xE W s s .ž /ž / rrq1 rq1

We are also interested in sampling with replacement. Suppose that in a sequence
of independent trials, the probability of success is p for each of the trials. Let Z be
the number of trials until the first successful one; then

kw xE Z s Pr Z)k s 1yp s1rp.Ž . Ž .Ý Ý
kG0 kG0

In the so-called coupon-collector problem, we are given a set of n distinct coupons
and we are trying to complete a collection of all coupons. In each trial, a coupon is

Ž .drawn with replacement uniformly and independently at random. We call a trial a
success if it results in adding a new coupon to our collection. Let ZU denote the
completion time, i.e., the number of trials required to have seen at least one copy
of each coupon. ZU s1qZ q ??? qZ , where for 1F i-n, Z is the number of1 ny1 i

ny iŽ . Ž .trials with probability of success each between the ith and iq1 th successn
nŽ . w xexcluding the former, including the latter . By the argument above, E Z s ,i ny i

U nw x Ž . Ž .and hence, E Z sÝ Fn ln nq1 sO n ln n .0 F i- n ny i

For a problem of size n, we will say that an event occurs with high probability if it
Ž yC .occurs with probability G1yO n for an arbitrary but fixed constant C. For

Ž .example, in the coupon-collector problem with n coupons , the probability that a
1 tŽ .particular coupon has not been collected after t trials equals 1y . Hence, forn

any b)1,

b n ln n1
U yb ln n yŽ by1.Pr Z )b n ln n Fn 1y Fne sn ; 1Ž . Ž .ž /n

Ž .that is, the completion time in the coupon-collector problem with n coupons is
Ž . Ž .O n ln n with high probability. 1 establishes what is called a large-dë iation

U Ž U .estimate for Z , i.e., a bound on Pr Z )z , where z is of about the order of
w U xE Z .

We are actually interested in a large-deviation estimate for a random variable
X U [1qX q ??? qX , where each X is stochastically dominated by the ran-1 ny1 i
dom variable Z from the coupon-collector problem. For two random variables Xi
and Y taking values in the positive integers, X is said to be stochastically dominated

Ž . Ž .by Y, written XF Y, if Pr X)k FPr Y)k for all kG0. Note that XF Yst st
w x w ximplies E X FE Y . Stochastic dominance is preserved under taking sums of

independent random variables, i.e., if X , . . . , X , Y , . . . , Y are independent and1 n 1 n
w xX F Y for 1F iFn, then X q ??? qX F Y q ??? qY ; see, for example, 18 .i s t i 1 n st 1 n

We will need the following, slightly more general result, which is a generalization
w xof Lemma 7 of 15 .

Lemma 1. Let X , . . . , X , Y , . . . , Y be random ¨ariables that take ¨alues in the1 n 1 n
positï e integers. Suppose that each X , 1F iFn, conditioned on any possible tuple ofi
¨alues for X , . . . , X , is stochastically dominated by Y , and that Y , . . . , Y are1 iy1 i 1 n
independent. Then X Žn.[Ý X is stochastically dominated by Y Žn.[Ý Y .1F iF n i 1F iF n i
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Ž .Proof. The proof is by induction on n. For the base case ns1 , we have
Ž1. Ž1. Ž . Ž .X sX , Y sY , and Pr X )k FPr Y )k for any kG0 by assumption. For1 1 1 1

Ž .the induction step ny1ªn , note that, on the one hand, for any kGn,

kynq1
Žn. Žny1.Pr Y )k sPr Y )kynq1 q Pr Y s j ?Pr Y )ky j , 2Ž . Ž . Ž . Ž .Ž .Ýn n

js1

Ž Žny1. .since Pr Y Gny1 s1. On the other hand, for any kGn,

Pr X Žn.)kŽ .
kynq1

Žny1. Žny1. Žny1.sPr X )ky1 q Pr X ) j ¬ X sky j ?Pr X sky jŽ . Ž .Ž .Ý n
js1

kynq1
Žny1. Žny1.FPr X )ky1 q Pr Y ) j ?Pr X sky j ,Ž . Ž . Ž .Ý n

js1

since X is stochastically dominated by Y , regardless of the value of X Žny1.. Usingn n
Ž Žny1. . Ž Žny1. . Ž Žny1. .Pr X sky j sPr X Gky j yPr X )ky j and rearranging the

sum, we get

kynq1
Žn. Žny1.Pr X )k FPr Y )kynq1 q Pr Y s j ?Pr X )ky j . 3Ž . Ž . Ž . Ž .Ž .Ýn n

js1

Ž . Ž .By the induction hypothesis and 2 , we deduce from 3 that

kynq1
Žn. Žny1.Pr X )k FPr Y )kynq1 q Pr Y s j ?Pr Y )ky jŽ . Ž . Ž . Ž .Ýn n

js1

sPr Y Žn.)k .Ž .

Ž Žn. . Ž Žn. .Since Pr X )k s1sPr Y )k for 0Fk-n, we have thus proved that
X Žn.F Y Žn.. Bst

We will also use the following two results on large-deviation estimates. The first
lemma is usually referred to as the Chernoff]Hoeffding bound on the tail of the

w xdistribution of a sum of independent random variables; see 8, 9 for a proof.

Lemma 2. Let X be the sum of independent random ¨ariables X , . . . , X with ¨alues1 n
w x Ž .in 0, 1 . The X ’s need not be identically distributed. Then, for any «)0,i

w xE X«e
w xPr X) 1q« E X F . 4Ž . Ž .Ž . Ž .1q«ž /1q«Ž .

Ž .In particular, 4 implies that

ya w xPr X)a F2 for aG6E X . 5Ž . Ž .

w xThe following formulation of Azuma’s inequality appears in 11 .
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Lemma 3. Let X , . . . , X be independent random ¨ariables, with X taking ¨alues in1 n k
< Ž . Ž . <a set A for each k. Suppose that the function f :Ł A ªR satisfies f x y f y Fck k

whene¨er the ¨ectors x and y differ only in a single coordinate. Let Y be the random
Ž .¨ariable f X , . . . , X . Then, for any t)0,1 n

< < y2 t 2 rŽ nc2 .w xPr YyE Y G t F2 e .Ž .

3. THE ALGORITHM OF MOFFAT AND TAKAOKA

Ž .We use the following terminology for weighted digraphs. For an edge es ¨ , w , we
call ¨ the source and w the target or endpoint of e. The weight of an edge e is

Ž .denoted by c e . We will interpret an entry in the adjacency list of a vertex ¨ either
Ž .as the endpoint w of an edge with source ¨ or as the edge ¨ , w itself, as is

convenient.
For the sake of future reference, we briefly review the algorithm of Moffat and

w x Ž .Takaoka in 14 . We are given a complete digraph with loops on n vertices with
nonnegative edge weights. The algorithm first sorts all adjacency lists in order of

Ž Ž 2 ..increasing weight with ties resolved randomly, total time O n log n and then
solves n single-source shortest-path problems, one for each vertex. A single-source
shortest-path problem with source sgV is solved by labeling the vertices in order
of increasing distance from the source. If ¨ is a labeled vertex, then its exact

Ž .distance d ¨ from the source is known. We use S to denote the set of labeled
vertices and UsVyS to denote the set of unlabeled vertices. Initially, only the

� 4 Ž .source vertex is labeled, i.e., Ss s with d s s0. For each labeled vertex ¨ , one
Ž .of its outgoing edges is called its current edge and is denoted ce ¨ ; we maintain the

Ž .invariant that all edges preceding the current edge ce ¨ in ¨ ’s adjacency list have
Ž . Žtheir endpoints already labeled. We say that the edges preceding ce ¨ as well as

.their targets have been scanned by the algorithm. The potential of ¨ ’s current
Ž . Ž Ž ..edge is defined as d ¨ qc ce ¨ . The algorithm proceeds in iterations. In each

iteration, the algorithm selects the current edge of minimum potential; suppose
Ž .that ce ¨ is selected and that w is its target. If w is not yet labeled, then the

Ž . Ž . Ž . Ž Ž .. Žalgorithm labels w i.e., adds w to S and sets d w to d ¨ qc ce ¨ . It follows
Ž .by a standard argument as for Dijkstra’s algorithm that this indeed sets d w to the

.distance of w from s. Moreover, some current-edge pointers are updated. The
precise nature of these updates depends on the size of U.

< <As long as U )nrlog n, the algorithm is said to be in Phase I, and the
additional invariant is maintained that the targets of all current edges are unla-

Ž .beled. Whenever the algorithm selects a current edge ce ¨ of minimum potential,
Ž .the target of ce ¨ will therefore be a vertex u in U. The algorithm labels u and

Ž . Ž . Ž Ž ..sets d u to d ¨ qc ce ¨ . In order to maintain the invariant of Phase I, the
algorithm advances the current-edge pointer of u and the current-edge pointers of
all the vertices whose current edges end in u; the pointers are advanced to the next

< <edge with target in VyS in the respective adjacency lists. Phase I ends when U
becomes nrlog n; let U be the set of unlabeled vertices at the end of Phase I.0
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< <If U Fnrlog n, the algorithm is said to be in Phase II, and the weaker
additional invariant is maintained that the endpoint of every current edge belongs

Ž . Ž .to U . Suppose that the current edge ce ¨ s ¨ , w is selected in an iteration. The0
vertex wgU is not necessarily unlabeled. If w is unlabeled, it will be labeled,0
Ž . Ž . Ž Ž .. Ž . Ž .d w is set to d ¨ qc ce ¨ , and ce ¨ and ce w are advanced to the next edge

Ž .whose endpoint is in U . If w is already labeled, only ce ¨ is advanced.0

ŽŽ . .Lemma 4. The algorithm spends time O nqj log nqm on sol̈ ing a single-source
shortest-path problem, where j is the number of iterations in Phase II and m is the
total number of edges scanned in the two phases.

Proof. Since the algorithm does exactly nynrlog n iterations in Phase I, it
Ž .performs a total number of O nqj iterations. In each iteration, we select a

current edge of minimum potential, and we have to update the current-edge
pointers as well as the information on their potentials. The cost of updating the
current-edge pointers in an iteration is proportional to the increase Dm in the
number of scanned edges. The lemma follows if we prove that, in each iteration,
selecting the current edge of minimum potential and updating the information on

Ž .the potentials can be done in O log nqDm time.
Both phases use a priority queue for maintaining information on edge potentials.

Ž .A priority queue stores a set of pairs x, k , where k, the key of the pair, is a real
number. For ease of presentation, we assume that priority queues are implemented

w xas Fibonacci heaps 6 . Fibonacci heaps support the insertion of a new pair in
Ž .constant time and the deletion of a pair with minimum key a delete min operation

Ž .in amortized time O log p , where p is the number of pairs in the priority queue.
They also support an operation decrease key in constant amortized time. A

Ž .decrease key operation takes a pointer to a pair x, k in a Fibonacci heap and
allows the replacement of k by a smaller key kX.

We propose the following implementation of Phase I. We batch the current
edges with respect to their endpoints, i.e., the priority queue contains all unlabeled

Ž .vertices. For each vertex ugU, we maintain a list L u of all vertices ¨ gS whose
Ž . Ž .current edge ends in u; the key of a vertex ugU is d [min d ¨ qc ¨ , uu ¨ g LŽu.

Ž Ž . .understood to be q` if L u sB . An iteration of the algorithm corresponds to
selecting the vertex ugU with minimal key value d and deleting u from theu

priority queue with a delete min operation. The current-edge pointer must be
� 4 Ž . Ž . Ž .advanced for each vertex ¨ g u jL u . Let ce ¨ s ¨ , w be the new current

Ž .edge of ¨ and denote w’s current key by d . We add ¨ to L w , and ifw
Ž . Ž .d ¨ qc ¨ , w -d , we decrease d appropriately. This is realized through aw w

decrease key operation on the priority queue. By our assumption on the implemen-
Ž .tation of the priority queue, all of this takes time O log nqDm .

In Phase II, we represent current edges by their sources. We keep the vertices
Ž . Ž Ž ..¨ gS in the priority queue with key d ¨ qc ce ¨ . An iteration of Phase II

requires a delete min operation and the insertion of at most two new pairs in the
Ž .queue. This takes time O log n . B
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Remark. Moffat and Takaoka use a binary heap instead of a Fibonacci heap to
realize the priority queue; Fibonacci heaps had not been invented at that time. In
the implementation of Phase I, they keep the vertices in S in the priority queue;

Ž . Ž Ž ..the key of a vertex ¨ gS is d ¨ qc ce ¨ . Advancing the current-edge pointers
will then require increasing the keys of certain labeled vertices, since the weight of
the new current edge is greater than the weight of the old current edge. An
increase key operation in general takes logarithmic time in a binary heap. However,
Moffat and Takaoka show how to modify the implementation so that the expected

Ž < < Ž < <. < <.cost of all the increase key operations in an iteration is O S r ny S q log S ,
Ž .which is O log n during Phase I. The probabilistic model underlying their analysis

is described in the next subsection.

( )3.1. The Probabilistic Analysis and Its Pitfalls

The algorithm is analyzed under the assumption that edge weights are distributed
according to the endpoint-independent model. This means that with arbitrarily

Žfixed nonnegative edge weights, the adjacency lists sorted in order of increasing
.weight, ties resolved randomly are independent random permutations of V. The

algorithm of Moffat and Takaoka solves the all-pairs shortest-path problem in this
Ž 2 .model in expected time O n log n ; more precisely, it solves each single-source

Ž . Žshortest-path problem in expected time O n log n . Theorem 3 in Section 4 shows
that the running time for solving the single-source shortest-path problem is actually

.optimal for a large class of related probability distributions. As indicated in
Lemma 4, the quantities of interest in the analysis are the number j of iterations
in Phase II and the total number m of scanned edges. We will argue in Theorem 1

Ž . Ž .that the expected values of j and m are O n and O n log n , respectively.
The analysis of m turns out to be intricate. We want to mention two possible

w xpitfalls. What is the total number of edges scanned in Phase I? In 14 , Moffat and
Takaoka argue as follows. The cardinality of U , the set of unlabeled vertices at the0
end of Phase I, is nrlog n by design, and at the end of Phase I, current-edge
pointers will have been advanced to the first vertex in U in each adjacency list.0
Since, for every vertex ¨ , the endpoints of the edges out of ¨ form a random
permutation of V, the vertices in U are randomly scattered through each adja-0
cency list. We should therefore expect to scan about log n edges in each adjacency
list during Phase I and hence about n log n edges altogether. This argument is
incorrect as U is determined by the orderings of the adjacency lists and cannot be0
fixed independently. The following example makes this clear. Assume that all edges
out of the source have weight 1 and all other edges have weight 2. Then Phase I
scans nynrlog n edges out of the source and U is determined by the last0
nrlog n edges in the adjacency list of the source.

In Phase II, the number of iterations is a random variable with expected value
Ž .O n . Moreover, whenever the current edge of a vertex is advanced in Phase II, it

is advanced to the next edge having its endpoint in U , and this requires scanning0
Ž .O log n edges on average. It is tempting to state that the expected number of

Ž .edges scanned in Phase II is therefore O n log n . The claimed result would follow
if the expected number of scanned edges, given that the algorithm finishes Phase II

Ž .in k iterations, were O k log n , and in fact, in a preliminary version of this paper,
w x12 , we analyzed Phase II along these lines. We now feel that a more careful
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argumentation is needed. It is not clear whether the number of iterations and the
distance between two consecutive edges with endpoints in U are independent or,0
for example, positively correlated random variables. We are grateful to an anony-
mous referee for drawing our attention to this oversight.

It is for these reasons that we give a new proof of the following theorem. Our
Ž .proof evolved from suggestions by Alistair Moffat personal communication and

by two anonymous referees and replaces a considerably more involved argument in
drafts of this paper.

Theorem 1. For endpoint-independent distributions, the algorithm of Moffat and
Ž 2 .Takaoka runs in expected time O n log n .

w xProof. For the purpose of the analysis, we also consider Spira’s algorithm 16 .
This algorithm is similar to the algorithm by Moffat and Takaoka, the only
difference being that Spira’s algorithm does not impose any condition on the
targets of current edges but always advances the current-edge pointer only to the
next edge in the adjacency list. The algorithm does not distinguish between phases.
It stops when all vertices have been labeled. Given an ordering of the adjacency
lists, the algorithms by Moffat and Takaoka and by Spira show basically the same
behavior. All edges that the algorithm by Moffat and Takaoka selects as edges of
minimum potential are also selected by Spira’s algorithm. However, upon termina-
tion, the current-edge pointers in the algorithm of Moffat and Takaoka may have
been advanced beyond those in Spira’s algorithm, since the invariants of the
algorithm by Moffat and Takaoka enforce that the target of every current-edge

Žpointer is a vertex in U . Nevertheless, the algorithm by Moffat and Takaoka is0
more efficient, since the scanning strategies of Phase I and II tend to reduce the

.number of priority-queue operations.
The following observations are crucial for the analysis of the algorithms.

Suppose that we stop Spira’s algorithm after its first k iterations, where k is an
arbitrary but fixed number. The behavior of the algorithm in these iterations is
completely determined by the edges scanned so far. For a set A of edges, denote
by AA sA the event that Spira’s algorithm scans exactly the edges in A in the firstk

Ž .k iterations. We consider an arbitrary but fixed set A with Pr AA sA )0; assumek

that, for ¨ gV, A contains exactly n edges with source ¨ and W is the set of¨ ¨
their targets. The event AA sA does not yield any information about the remainingk

parts of the adjacency lists; for each ¨ gV, the remaining part of ¨ ’s adjacency list
Žis therefore a random permutation of VyW . We may interpret this as fixing the¨

.permutations on-line, the so-called principle of deferred decisions.
From this we conclude that the total number of edges scanned by Spira’s

algorithm is stochastically dominated by the completion time of the coupon-collec-
tor problem with n coupons. Namely, assume that AA sA implies that exactly ik

vertices have been labeled in the first k iterations. If the next edge scanned has
Ž . Žsource ¨ , then the target of the edge is already labeled with probability iyn r n¨

.yn F irn, since every vertex in VyW is equally likely to occur as the target of¨ ¨
¨ ’s current edge. More generally, the probability that the algorithm will select
edges with labeled targets in the next k iterations is bounded from above by
Ž .k Ž Ž . .kirn s 1y ny i rn for every kG0. It follows that M , the number of edgesi

Ž .scanned by Spira’s algorithm between the labelings of the ith and the iq1 th
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vertex, is stochastically dominated by the random variable Z , introduced in thei
analysis of the coupon-collector problem in Section 2. By Lemma 1 in Section 2 we
conclude that M[1qM q ??? qM , the total number of edges scanned by1 ny1
Spira’s algorithm, is indeed stochastically dominated by the completion time of the
coupon-collector problem with n coupons. In particular,

w xE M Fn ln nq1 , 6Ž . Ž .
Ž .i.e., Spira’s algorithm scans an expected number of O n log n edges.

An argument of the same kind as in the previous paragraph applies to the
targets of current edges in Phase II of the algorithm by Moffat and Takaoka. If X
denotes the number of iterations in Phase II, then X is stochastically dominated by

< <the completion time of a coupon-collector problem with r[ U snrlog n coupons;0
in particular,

w xE X F r ln rq1 sO n .Ž . Ž .
Ž .The expected value of j in Lemma 4 is therefore O n .

It remains to analyze the number of extra edges scanned by the algorithm of
Moffat and Takaoka. For a set of edges A, denote by AAU sA the event that Spira’s
algorithm scans exactly these edges before it stops. We consider an arbitrary but

Ž U .fixed set A with Pr AA sA )0; assume that, for ¨ gV, A contains exactly n¨
edges with source ¨ and r of these edges have targets in U . Given that AAU sA¨ 0
occurs, for each ¨ gV, the current-edge pointer in the algorithm by Moffat and

Ž .Takaoka will finally have been advanced to the n qY th position in ¨ ’s adja-¨ ¨
< <cency list, where Y s0 if r s rs U and, otherwise, n qY is the position of the¨ ¨ 0 ¨ ¨

next vertex in U in ¨ ’s adjacency list. Again, by the arguments above, the0
remaining part of ¨ ’s adjacency list can be interpreted as a random permutation of
nyn elements, containing ry r elements from U . This implies that Y is¨ ¨ 0 ¨
distributed as in the urn experiment in Section 2 with

nyn q1¨Uw xE Y N AA sA s if r - r . 7Ž .¨ ¨ry r q1¨

w U xNote that E Y N AA sA F2nrr as long as r F rr2.¨ ¨
w x UThe expected amount of extra work is E Ý Y . Conditioning on AA sA, we¨ ¨

Ž . Ž .get, using 7 or the trivial bound Y Fn if r ) rr2 ,¨ ¨

2n r r
UE Y AA sA F ? ¨ ; r F qn ? ¨ ; r )Ý ¨ ¨ ¨½ 5 ½ 5r 2 2¨

2n2 2
F qn ? ? r . 8Ž .Ý ¨r r ¨

Under the condition AAU sA, the number X of iterations in Phase II equals Ý r .¨ ¨
Ž U . Ž .Hence, by summing over all sets A with Pr AA sA )0, 8 implies

2n
U w xE Y s E Y AA sA ?Pr AA*sA F ? nqE X ,Ž . Ž .Ý Ý Ý¨ ¨ r¨ ¨A

w x Ž . w x Ž .and since rsnrlog n and E X sO n , we get E Ý Y sO n log n . Combining¨ ¨
Ž . Ž .this with 6 , we conclude that the expected value of m in Lemma 4 is O n log n .
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We deduce from Lemma 4 that the algorithm of Moffat and Takaoka solves a
Ž .single-source shortest-path problem in expected time O n log n and has therefore

Ž 2 .an expected running time of O n log n . B

We will next prove that the algorithm of Moffat and Takaoka is reliable, i.e.,
that, with high probability, its running time does not exceed its expectation by more
than a constant multiplicative factor.

Theorem 2. The running time of the all-pairs shortest-path algorithm of Moffat and
Ž 2 .Takaoka is O n log n with high probability.

Proof. It suffices to prove that the algorithm solves a single-source shortest-path
Ž .problem in time O n log n with high probability. This follows from Lemma 4 if the

total number of iterations and the total number of scanned edges can be proved to
Ž . Ž .be, with high probability, O n and O n log n , respectively. We use the notation

introduced for the proof of Theorem 1.
As already observed in the proof of Theorem 1, the total number X of iterations

in Phase II is stochastically dominated by the completion time of a coupon-collec-
Ž .tor problem with rsnrlog n coupons. Using the tail estimate 1 in Section 2, we

Ž . Ž .deduce that the number of iterations in Phase II is O r log r sO n with high
Ž .probability; for any arbitrary but fixed C)0,

K nn 1 n yK log n yCPr X)Kn F 1y F ?e sO n 9Ž . Ž . Ž .Ž .log n nrlog n log n

Ž .for some constant K. Hence, the total number of iterations is O n with high
probability.

Ž .Again, by the tail estimate 1 for the coupon-collector problem, Spira’s algo-
Ž .rithm scans O n log n edges with high probability. Therefore, we only have to

prove that the extra scanning Ý Y of the algorithm by Moffat and Takaoka is¨ ¨
Ž .O n log n with high probability. As in the proof of Theorem 1, we condition on

AAU sA, i.e., on the event that Spira’s algorithm scans exactly the edges in A before
it stops. For ¨ gV, let A contain exactly n edges with source ¨ and let r of these¨ ¨

Ž .edges have targets in U . Because of 9 , we may assume that XsÝ r FKn.0 ¨ ¨
U < <Given AA sA, we have, with rs U snrlog n,0

< <� 4Y Fn ? ¨ ; r ) rr2 q YÝ Ý¨ ¨ ¨
¨ ¨ , r Frr2¨

2n
F ? r q YÝ Ý¨ ¨ž /r ¨ ¨ , r Frr2¨

2n
F ?Knq Y s2 Kn log nq Y ,Ý Ý¨ ¨r ¨ , r Frr2 ¨ , r Frr2¨ ¨

which implies that

U UPr Y )3Kn log n AA sA FPr Y rn)K log n AA sA . 10Ž .Ý Ý¨ ¨ž / ž /¨ ¨ , r Frr2¨
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U ŽConditionally on AA sA, Ý Y rn is a sum of independent not necessarily¨ , r F rr2 ¨¨
. w xidentically distributed random variables with values in 0, 1 , and we can therefore

Ž .apply the Chernoff]Hoeffding bound from Lemma 2. By 7 ,

1 nyn q1 2n¨UE Y rn AA sA F ? F s2 log n ,Ý Ý¨ n ry r q1 r¨¨ , r Frr2 ¨ , r Frr2¨ ¨

Ž .independent of A. Hence, for K chosen sufficiently large, we deduce from 5 in
Section 2 that

U yK log nPr Y rn)K log n AA sA F2 ,Ý ¨ž /¨ , r Frr2¨

Ž . Ž .and by 10 , this implies that Ý Y sO n log n with high probability. B¨ n

4. A LOWER BOUND FOR THE SINGLE-SOURCE PROBLEM

˜ Ž .Our underlying graph is K s V, E , the complete digraph on n vertices withn
loops. We restrict ourselves to the case of simple weight functions on the edges,
i.e., for every vertex ¨ and each integer k, 1FkFn, there is exactly one edge with
weight k and source ¨ . A single-source shortest-path algorithm gets as its input the
problem size n, a source vertex s, and a simple weight function c. We assume that
c is provided in the form of an oracle that answers questions of the following kind:

Ž . Ž .1 What is the weight c e of a given edge e?
Ž . � 42 Given a vertex ¨ gV and an integer kg 1, . . . , n , what is the target of the

edge with source ¨ and weight k?

The algorithm is supposed to compute the function d of shortest distances from s.
Ž . Ž .It is allowed to ask the oracle questions of type 1 and 2 , thereby gaining partial

information about c. The complexity of the algorithm on a fixed simple weight
function c is defined to be the number of questions asked by the algorithm in order
to compute the distance function d with respect to c.

For simple weight functions, the distance function d maps the set of vertices
� Ž . 4 �into N . Define D[max d ¨ ; ¨ gV , and, for all i, 0F iFD, let V [ ¨ ;0 i

Ž . 4d ¨ s i . We call V the ith layer with respect to d. For all i, 0F iFD, leti
Ž . <� 4 <,, i [ j ; j) i and V /B be the number of nonempty layers above layer i.j

Clearly, D, the sets V , and the function ,, depend on c; for ease of notation, wei
do not make this dependence visible in the notation.

We first provide a lower bound on the complexity of a single-source shortest-path
algorithm in terms of ,, .
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Lemma 5. Let c be a simple weight function and let d be the distance function with
respect to c. Then any shortest-path algorithm has complexity at least

,, d u y1 .Ž .Ž .Ž .Ý
ugV

Proof. Let EX be the set of edges queried by the algorithm by a question of either
Ž . Ž . Ž .type 1 or type 2 . For an arbitrary but fixed vertex ugV, let E u be the set of

XŽ . X Ž . < XŽ . < Ž Ž ..edges with source u and let E u [E lE u . We prove that E u G,, d u y1.
X Ž . Ž .This is clear if E contains an edge egE u of weight c e s j for all j, 1F j-

Ž Ž .. Ž . X Ž . Ž Ž ..,, d u . If there is an edge e gE u yE with weight c e s i-,, d u , theni i
Ž .every nonempty layer V above layer d u q i must contain the target of an edge inj

XŽ . Ž . XE u . Assume otherwise; then there is an edge e s u, ¨ fE with ¨ gV for aj j
Ž . Xj)d u q i. Define the simple weight function c by

¡ � 4c e , if ef e , e ,Ž . i j

X ~c e , if ese ,Ž .c e [Ž . j i¢c e , if ese .Ž .i j

XŽ . Ž . XThen c e sc e for all egE , and therefore the algorithm will output d, the
X Ž . Ž .distance function with respect to c, on input c as well. However, d ¨ s j)d u q

Ž . XŽ . Ž . Xisd u qc e for e s u, ¨ , which shows that d is incorrect with respect to c .j j
� Ž . Ž . X4 Ž .We choose ismin c e ; egE u yE . Note that all edges in E u with

Ž . Ž .targets in layer V , j)d u q i, must have weight at least jyd u ) i by thej

< XŽ . < Ž Ž . . Ž Ž ..correctness of the algorithm. Hence, E u G iy1q,, d u q i G,, d u y1.
B

Ž .Table I shows the distribution of vertices over distances for a typical simple
weight function on a graph of ns10,000 vertices. Most vertices have distance

Ž .about 14 f log n from the source, but there are vertices that have distance as
Ž .much as 24 f2 log n . By the argument of Lemma 5, we can guess that any

Ž . Ž .correct algorithm must inquire about V n log n edges.
In the remainder of this section, we make this argument more precise. We

Ž . Ž Ž ..derive a lower bound of V n log n on the expected value of Ý ,, d u forug V
random simple weight functions c. More generally, we show that any algorithm has

Ž .to ask V n log n questions with high probability.
Our proof strategy is as follows. The lower bound given by Lemma 5 depends

only on the distance function d. For random simple weight functions, we reinter-
pret the calculation of d and the construction of the layers V as the outcome of ai

TABLE I A typical distribution of vertices over distances for ns10,000

Distance d 0 1 2 3 4 5 6 7 8 9 10 11 12

a Vertices 1 1 2 4 8 16 32 64 120 237 449 796 1306

Distance d 13 14 15 16 17 18 19 20 21 22 23 24

a Vertices 1845 1952 1562 910 415 181 58 20 16 2 1 2
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random labeling process. Note that a random simple weight function is given by n
independent permutations of V, one for each vertex. The ith vertex of the
permutation for vertex ¨ is the target of the edge with weight i and source ¨ . The

� 4 Ž .labeling process proceeds in stages. In the zeroth stage, V is set to s and d s is0
set to 0. In the ith stage, iG1, each vertex ¨ gS Ž i.sD V picks the0 F j- i j
Ž Ž ..iyd ¨ th vertex in its adjacency list. Note that each vertex that ¨ has not yet
seen is equally likely to occur. The newly reached vertices are put into V and theiri

d-values are set to i. Instead of fixing the n permutations before-hand, we may also
Ž .view them as being fixed on-line principle of deferred decisions . This leads to the

following re-interpretation of the random labeling process: In the ith stage, each
vertex in S Ž i.sD V chooses a vertex uniformly and independently at ran-0 F j- i j

dom from the set of vertices it has not yet seen. The labeling process stops when
S Žk .sV for some k.

w xA related process was considered by Frieze and Grimmett in 7 . They assumed
that each vertex in S Ž i. chooses a vertex uniformly and independently at random
from the set of all vertices. If D denotes the number of stages taken by theirA

version of the process, then it is clear that D stochastically dominates D, i.e., forA
Ž . Ž . w x Žall k, Pr D)k FPr D )k . Frieze and Grimmett prove in 7 that D andA A
. Ž .hence D is O log n with high probability. However, we need a lower bound on D

Žand therefore their result is of no use to us. Nevertheless, our proof strategy was
.inspired by theirs.

< Ž i. <The random labeling process is said to be in state j if S s j. We call stage i of
Ž i. '< <the labeling process central if nreF S Fny n . Layers constructed in central

stages are called central.
Our proof will proceed in two steps. First, we show in Lemma 6 that there are
Ž .V log n central stages with high probability. Second, we prove in Lemma 7 that

each central stage gives rise to a nonempty layer with high probability.

Ž .Lemma 6. With high probability, the labeling process has V log n central stages.

Proof. For a random simple weight function c, let i be the first central stage with0
< Ž i0 . < < Ž iq1. < < Ž i. <respect to c. Then nreF S F2nre, since S F2 S for any iG0. We will

Ž i qk .0 '< < Ž .show that S Fny n with high probability for ks ln n r17. Let UsVy
S Ž i0 . be the set of vertices that are still unlabeled after stage i . Note that0
< < Ž .U G ey2 nreGnr4.

< <Let us condition on ms U . Construct an n=m matrix A with 0-1 entries as
follows. The rows correspond to the vertices in V and the columns correspond to

Ž .the vertices in U; entry a is 1 if and only if the edge ¨ , u is among the k¨ u
Ž .shortest edges in ¨ ’s adjacency list whose head is an element of U. Let f A be the

< Ž i0qk . < Ž .number of all-zero columns in A. Then S Fny f A because no vertex in U
corresponding to an all-zero column will be labeled in the k stages following stage

Ži . Since A models a process in which all vertices and not only those that are0
.currently labeled are allowed to label new vertices, and in which each vertex is

prevented from choosing vertices that have been labeled by other vertices before
Ž . < Ž i0qk . <stage i , f A may seem to be a rather crude lower bound on VyS .0 'Ž .However, we will now prove that even f A G n with high probability.
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A row of A is a random 0-1 vector of length m with exactly k ones. Moreover,
the row entries A , 1F iFn, are independent random variables, and if A, AX

i ?

< Ž . Ž X. <differ only in a single row, then f A y f A Fk. Hence, by Azuma’s inequality
Ž . Ž . Ž .Lemma 3 , we get the following tail estimate for f A s f A , . . . , A ,1 ? n ?

2 2Pr f A FE f A r2 F2 exp yE f A r 2nk . 11Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž .nThe probability that a fixed column is all-zero is 1ykrm ; therefore,

nk
E f A sm 1y . 12Ž . Ž .ž /m

< < Ž . Ž . x y2Remember that ms U Gnr4 and ks ln n r17; since 1y1rx Ge for large
Ž .enough x, we get from 12 that

1y2 k n r m 1y8r17 'E f A Gme G n )2 n 13Ž . Ž .4

w Ž .x < <for large enough n, where E f A is conditioned on U sm. However, the lower
Ž .bound in 13 is independent of m. Hence,

21r17 yC'Pr f A - n F2 exp yQ n r ln n sO nŽ . Ž . Ž . Ž .Ž . Ž .
< Ž i0qk . <for any fixed C)0 and large enough n. Since S is increasing in k, we have

Ž . Ž .thus proved that, with high probability, it will take V ln n sV log n central
'stages to label all but n vertices. B

Ž .Remark. f A can be expressed as the sum of 0-1 indicator variables C , 1F jFm,j
where C s1 if and only if column j of A is all-zero. The C ’s are not independent;j j
for example, Ý C Fmyk. However, they can be shown to be negatï ely associated,j j

w xi.e., negatively dependent in a strong sense; see 3 for a proof. This property of the
C ’s suffices to prove analogues of the Chernoff]Hoeffding bound from Lemma 2j

Ž . Ž .for the left tail of the distribution of f A , and 11 could be replaced by the
Ž Ž . w Ž .x . yE w f Ž A.xr8sharper Pr f A FE f A r2 Fe .

Lemma 7. With high probability, each central layer contains at least one ¨ertex.

Proof. Suppose the process is in state j at the beginning of stage i. For any vertex
in S Ž i., the probability of selecting a vertex in S Ž i. during this stage is F jrn.

Ž . jTherefore, the next layer will remain empty with probability F jrn . Note that
Ž . xx¬ xrn is an increasing function for x)nre.

Let B denote the event that at least one central layer remains empty. By the
estimates provided in the preceding paragraph,

ny n'jny n' 'j ny n
y n q1 yC'Pr B F Fn Fne sO nŽ . Ž .Ý ž / ž /n njsnre

for sufficiently large n. B
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Theorem 3. Any algorithm for the single-source shortest-path problem has complexity
Ž .V n log n with high probability on random simple weight functions.

Proof. Suppose that i is the first central stage of the labeling process; as before,
let S Ž i. denote the set of vertices that have already been labeled up to this stage. By

Ž .Lemma 6, with high probability, the process has V log n central layers. Lemma 7
tells us that all these layers will be nonempty with high probability. With the
notation introduced in the discussion of the labeling process, this reads

,, d u y1 sV n log n with high probability.Ž . Ž .Ž .Ž .Ý
Ž i.ugS

By Lemma 5, the left-hand side term is a lower bound on the complexity of any
shortest-path algorithm. B
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