A Parallelization of Dijkstra’s Shortest Path
Algorithm

A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders

Max-Planck-Institut fiir Informatik,
Im Stadtwald, 66123 Saarbriicken, Germany.
{crauser,mehlhorn,umeyer,sanders }@mpi-sb.mpg.de
http://www.mpi-sb.mpg.de/{~crauser,~mehlhorn,~umeyer, ~sanders}

Abstract. The single source shortest path (SSSP) problem lacks par-
allel solutions which are fast and simultaneously work-efficient. We pro-
pose simple criteria which divide Dijkstra’s sequential SSSP algorithm
into a number of phases, such that the operations within a phase can
be done in parallel. We give a PRAM algorithm based on these crite-
ria and analyze its performance on random digraphs with random edge
weights uniformly distributed in [0, 1]. We use the G(n,d/n) model: the
graph consists of n nodes and each edge is chosen with probability d/n.
Our PRAM algorithm needs @(n'/3 log n) time and O(n log n+dn) work
with high probability (whp). We also give extensions to external memory
computation. Simulations show the applicability of our approach even on
non-random graphs.

1 Introduction

Computing shortest paths is an important combinatorial optimization problem
with numerous applications. Let G = (V,E) be a directed graph, |[E| = m,
|[V| = n, let s be a distinguished vertex of the graph, and c be a function
assigning a non-negative real-valued weight to each edge of G. The single source
shortest path problem (SSSP) is that of computing, for each vertex v reachable
from s, the weight dist(v) of a minimum-weight path from s to v; the weight of
a path is the sum of the weights of its edges.

The theoretically most efficient sequential algorithm on digraphs with non-
negative edge weights is Dijkstra’s algorithm [8]. Using Fibonacci heaps its run-
ning time is O(nlogn + m)!. Dijkstra’s algorithm maintains a partition of V
into settled, queued and unreached nodes and for each node v a tentative dis-
tance tent(v); tent(v) is always the weight of some path from s to v and hence an
upper bound on dist(v). For unreached nodes, tent(v) = co. Initially, s is queued,
tent(s) = 0, and all other nodes are unreached. In each iteration, the queued
node v with smallest tentative distance is selected and declared settled and all
edges (v,w) are relaxed, i.e., tent(w) is set to min{tent(w), tent(v) + c(v,w)}.

! There is also an @(n + m) time algorithm for undirected graphs [20], but it requires
the RAM model instead of the comparison model which is used in this work.

Lubos Prim et al. (Eds.}: MFCS'98, LNCS 1450, pp. 722-731, 1998.
(© Springer-Verlag Berlin Heidelberg 1998

A Parallelization of Dijkstra’s Shortest Path Algorithm 723

If w was unreached, it is now queued. It is well known that tent(v) = dist(v),
when v is selected from the queue.

The queue may contain more than one node v with tent(v) = dist(v). All
such nodes could be removed simultaneously, the problem is to identify them. In
Sect. 2 we give simple sufficient criteria for a queued node v to satisfy tent(v) =
dist(v). We remove all nodes satisfying the criteria simultaneously.

Although there exist worst-case inputs needing ©(n) phases, our approach
yields considerable parallelism on random directed graphs: We use the random
graph model G(n,d/n), i.e., there are n nodes and each theoretically possible
edge is included into the graph with probability d/n. Furthermore, we assume
random edge weights uniformly distributed in [0, 1]: In Sect. 3 we show that the
number of phases is O(,/n) using a simple criterion, and O(n!/?) for a more
refined criterion with high probability (whp)?.

Sect. 4 presents an adaption of the phase driven approach to the CRCW
PRAM model which allows p processors (PUs) concurrent read/write access to
a shared memory in unit cost (e.g. [13]). We propose an algorithm for random
graphs with random edge weights that runs in O(n'/? log n) time whp. The work,
i.e., the product of its running time and the number of processors, is bounded
by O(nlogn + dn) whp.

In Sect. 5 we adapt the basic idea to external memory computation (I/O
model [22]) where one assumes large data structures to reside on D disks. In
each I/O operation, D blocks from distinct disks, each of size B, can be accessed
in parallel. We derive an algorithm which needs O(% + &% logg /B A7) 1/0s on
random graphs whp and can use up to D = O(min{n?3/logn, %}) independent
disks. S denotes the size of the internal memory.

In Sect. 6 we report on simulations concerning the number of phases needed
for both random graphs and real world data. Finally, Sect. 7 summarizes the
results and sketches some open problems and future improvements.

Previous Work

PRAM algorithms: There is no parallel O(n log n+m) work PRAM algorithm
with sublinear running time for general digraphs with non-negative edge weights.
The best O(nlogn+m) work solution [9] has running time O(nlogn). All known
algorithms with polylogarithmic execution time are work-inefficient. (O(log® n)
time and O(n3(log log n/ log n)!/3) work for the algorithm in [11].) An O(n) time
algorithm requiring O((n + m) logn) work was presented in [3].

For special classes of graphs, like planar digraphs [21] or graphs with separa-
tor decomposition [6], more efficient algorithms are known. Randomization was
used in order to find approximate solutions [5]. Random graphs with unit weight
edges are considered in [4]. The solution is restricted to dense graphs (d = 6(n))
or edge probability d = @(log"n/n) (k > 1). In the latter case O(n log**t! n)
work is needed. Properties of shortest paths in complete graphs (d = n) with

? Throughout this paper “whp” stands for “with high probability” in the sense that
the probability for some event is at least 1 — n™F for a constant 3 > 0.

724 A. Crauser et al.

random edge weights are investigated in [10, 12]. In contrast to all previous work
on random graphs, we are most interested in the case of small, even constant d.
External Memory: The best result on SSSP was published in [16]. This algo-
rithm requires O(n + 5% log,) I/Os. The solution is only suitable for small n
because it needs ©(n) I/0s.

2 Running Dijkstra’s Algorithm in Phases

We give several criteria for dividing the execution of Dijkstra’s algorithm into
phases. In the first variant (OUT-version) we compute a threshold defined via the
weights of the outgoing edges: let L = min{tent(u) + c(u, z) : u is queued and
(u,2) € E} and remove all nodes v from the queue which satisfy tent(v) <
L. Note that when v is removed from the queue then dist(v) = tent(v). The
threshold for the OUT-criterion can either be computed via a second priority
queue for o(v) = tent(v) + min{c(v,u) : (v,u) € E} or even on the fly while
removing nodes.

The second variant, the IN-version, is defined via the incoming edges: let
M = min {tent(u) : u is queued} and i(v) = tent(v) — min{e(u,v) : (u,v) €
E} for any queued vertex v. Then v can be safely removed from the queue if
i(v) < M. Removable nodes of the IN-type can be found efficiently by using an
additional pricrity queue for i(-).

Finally, the INOUT-version applies both criteria in conjunction.

3 The Number of Phases for Random Graphs

In this section we first investigate the number of delete-phases for the QUT-
variant of Dijkstra’s algorithm on random graphs. Then we sketch how to extend
the analysis to the INOUT-approach. We start with mapping the OUT-approach
to the analysis of the reachability problem as provided in [14] and [1, Sect. 10.5]
and give lower bounds on the probability that many nodes can be removed from
the queue during a phase.

Theorem 1. OUT-approach. Given a random graph from G(n,d/n) with edge
labels uniformly distributed in [0, 1], the SSSP problem can be solved using r =
O(y/n) delete-phases with high probability.

We review some facts of the reachability problem using the notation of [1].

The following procedure determines all nodes reachable from a given node s
in a random graph G from G(n,d/n). Nodes will be neutral, active, or dead.
Initially, s is active and all other nodes are neutral, let time t = 0, and Yy = 1 the
number of active nodes. In every time unit we select an arbitrary active node v
and check all theoretically possible edges (v, w), w neutral, for membership in G.
If (v,w) € E, w is made active, otherwise it stays neutral. After having treated
all neutral w in that way, we declare v dead, and let Y; equal the new number
of active nodes. The process terminates when there are no active nodes.

A Parallelization of Dijkstra’s Shortest Path Algorithm 725

The connection with the OUT-variant of Dijkstra’s algorithm is easy: The
distance labels determine the order in which queued vertices are considered and
declared dead, and time is partitioned into intervals (=phases): If a phase of the
OUT-variant removes k nodes this means that the time t increases by k.

Let Z; be the number of nodes w that are reached for the first time at time t.
Then Yo =1,Y; =Y, 1+ 2 — 1 and Z; ~ B[n— (t — 1) — Y;_1,d/n] where
B [n, g] denotes the binomial distribution for n trials and success probability gq.

Let 7" be the least ¢ for which ¥; = 0. Then T is the number of nodes that are
reachable from s. The recursive definition of Y; is continued for all ¢, 0 < ¢ < n.
We have Y, ~ Bn—1,1— (1 —d/n)t]+1—t.

It is shown in [1] that the number of nodes reachable from s is either very
small {less than O(logn)) or concentrates around Tp = opn, where 0 < ap < 1,
and ap = 1 — e—9, Only the case T = Ty requires analysis; if T = O(logn) the
number of phases is certainly small. Chernoff bounds yield:

Lemma 1. Ezcept for small t (t < /n) end large t (t > Tp — n'/2%€) Y, s
(14 0(1/n?))E [Y;] with high probability.

The yield of a phase in the OUT-variant is the number of nodes that are
removed in a phase. We call a phase starting at time ¢ profitable if its yield is

2(\/Y,/d) and highly profitable if its yield is £2(\/(Y:/2 — t/2)t/n) and show:

Lemma 2. A phase is profitable with probability at least 1/8. A phase starting
at time t with E—ldl‘i <t < aon — n/d is highly profitable with probability ot least
1/8.

Theorem 1 follows fairly easily from lemmas 1 and 2: We call a phase with
starting time t early extremeif t < \/n, early intermediate if /n <t < (nlnd)/d,
early central if (nlnd)/d < t < n/2, late central if n/2 < t < agn — n/d,
late intermediate if apn — n/d <t < agn — nl/2t¢ and late extreme if apn —
nl/2+€ < ¢, and show that there are only O(y/n) phases of each kind with high
probability. Consider, for example, the late intermediate phases. A profitable
late intermediate phase starting at time ¢ has yield £2(1/Y;/d) = 2(1/E[Y:] /d)
= 2(y/(cxon — t)/d), where the first equality holds with high probability by
Lemma 1. Let t’ := apn —t. The number of profitable phases with 2 < ¢/ < 2¢+1
is therefore O(v/2id) and the number of profitable phases with agn —n/d <t =
agn — t' is therefore 3=, 1,0 /a0y O(v2id) = O(\/n). Since a phase is profitable
with probability at least 1/8, the number of phases is also O(y/n) with high
probability. The number of early extreme phases is O(y/n) trivially. For the
number of late extreme phases we argue as follows. We first show that T <
agn + n'/?€ with high probability and then consider the first time &4, ¢; >
agn—nt/2te with Y;, < n'/%. Lemma 1 implies that the number of late extreme
phases starting before ¢; is O(+/n). If the number of phases starting after ¢; is \/n
or more, then Zy, + Zy, 41+ + Zy, 4 sz = A —n'/* > /n/2. The probability
of this event is bounded by P [B[r!/2(n — (n — nl/2*€)),d/n] > \/n/2|, which
is exponentially small.

726 A. Crauser et al.

The idea for the proof of Lemma 2 is as follows. Let vi,vs,...,vq, ¢ = Y3,
be the queued nodes in order of increasing tentative distances, and let L’ be
the value of L in the previous phase. The distance labels tent(v;) are random
variables in [L’, L’ 4+ 1]. We show that their values are independent and their
distributions are biased towards smaller values (since tent(v;) = min{dist(v) +
c(v,v;), v settled and (v,v;) € E}, dist(v) < L', ¢(v,v;) uniform in [0, 1]. The
value of tent(v,) is therefore less than r/q with constant probability for arbitrary
r, 1 < r < q. The number of edges out of v1,...,v, is r(d/n)n = rd on the
average and not much more with constant probability. The shortest of these
edges has length about %. We remove vy,...,v, from the queue if tent(v,) is
smaller than the length of the shortest edge out of v1,...,v,. This is the case
(with constant probability) if r/g < L or r < \/g/d.

For the phases starting at time ¢ with (nlnd)/d < t < apn — n/d we re-
fine the argument as follows. We call a node queued at time ¢ old if it was
already queued before time t/2 and show that the number of old queued nodes
at time t is at least Y; /o — /2. Each old queued node has an expected indegree
from settled nodes of at least £24. We use this fact to deduce that tent(v,) is
less than r/(% (Y;/2—t/2)) with constant probability and then proceed as above.

INOUT Approach. If both IN- and OUT-criterion are applied together, the
tentative distance labels of queued nodes may spread over a range as large as
[L', L’ + 2), while the edge weights are only in [0, 1]. In order to reuse the analysis
of the OUT-part we analyze a slightly slower version which alternates the two
criteria in the following way:

1-Step: Let q be the current queue size. Apply the IN-criterion to the g(g) nodes
with smallest tentative distances where g is a function we are free to choose®.
Let L be the largest distance of any removed node. Switch to O-Step.

O-Step: Repeatedly apply the OUT-criterion until no tentative distance is
smaller than L. Then switch back to I-Step.

The function g() is chosen in such a way that there is both a constant prob-
ability for a large yield in an I-Step and the expected number of subsequent
O-Steps is constant. The function g() is chosen dependent of the current phase
type. For example, during late intermediate phases we take g(q) = cg®/3/d"'/® for
some constant c¢. A super-phase consisting of an I-Step and series of O-Steps is
now profitable if at most a constant number of O-Steps is needed and if its total
vield is £2(Y;*/3/d!/3), highly profitable if its yield is £2((Y; /2 —t/2)%/3/(n/t)"/3).
Then one has to show again that a super-phase is (highly) profitable with con-
stant probability.

Theorem 2. INOUT-approach. Given a random graph from G(n,d/n) with
edge labels uniformly distributed in [0,1], the SSSP problem can be solved using
r = O(n'/3) delete-phases with high probability.

3 Note that the implementation does not need to know this function since it uses the
faster combined criterion.

A Parallelization of Dijkstra’s Shortest Path Algorithm 727

4 Parallelization

We now show how the sequential OUT-variant of Sect. 2 can be efficiently imple-
mented on an arbitrary-write CRCW PRAM for random graphs from G(n,d/n)
and random edge weights. The actual number of edges is m = @(dn) whp.

The algorithm keeps a global array tent(:) for all tentative distance values.
Each processor P;, 0 < i < p is responsible for two sequential priority queues: @Q;
and Q;. Each pair (Q;, Q;) only deals with a subset of nodes, the distribution
is made randomly and stored in a global array ind(). Furthermore, each PU
maintains a buffer array for incoming requests.

The queues (; handle tentative node distances for the nodes they are re-
sponsible for, the key of a node v € @QF is given by tent(v) + §,(v) where
do(v) := min {c(v,w) : (v,w) € E}; d,(v) is precomputed once and for all upon
initialization. The @)} queues are used to efficiently derive the criterion of the
OUT-version indicating whether a node can be deleted in a phase. The queues
are implemented as relaxed heaps [9] because they provide worst-case running
times: findMin, insert and decreaseKey are performed in O(1) time and
delete/deleteMin in O(logg) time where g denotes the local queue size.

Let r be the number of delete-phases which are needed, e.g. for the OUT-
variant r = (9(\/_) whp. For the analysis we fix the number of processors as
p = max{ 5o, ng;}, so from now on a time bound 7" implies a work bound
pT.

The algorithm works similar to Dijkstra’s algorithm: The queues start with
only s in Qind(s) and Qi*nd(5 and all other local queues empty. This and the
initialization of other arrays and buffers (ind(), outgoing edges, ...) can be done
in time O((n+m)/p) = O(rlog? n) whp, even if the input uses an adjacency-list
representation.

While any queue is nonempty the algorithm performs a phase consisting
of five steps. These steps are now further explicated together with the most
interesting part of their analysis, namely for the case that at most n/r nodes are
deleted in this phase.

Step 1 finds the global minimum L of all elements in all @} and can clearly
be performed in O(logp) < O(logn) time.

In Step 2 each PU i removes the nodes with tent(v) < L from @; and Q}.
Let R denote the union of all these sets of deleted nodes. Our index distribution
ensures that no PU has to deal with more than O(logp + |R|/p) deleteMins
whp. A single deleteMin or delete opera.tlon takes O(logn) time, thus due to
|R| < n/r and p = max{ - —4n_1 Step 2 can be performed in @(log?n)
time whp.

In Step 3 all PUs cooperate to generate a set Req := {(w, tent(v)+¢((v, w))) :
v € R and (v,w) € E} of requests. By compacting R and using prefix sums
to schedule the PUs this task can be perfectly load balanced. Since |[Req| =

(’)(d|f%{ + log n) whp for |R| < n/r, this step can be performed in time O(m/(rp)
+logn) = O(log® n) whp.

ogn’ log n

728 A. Crauser et al.

Step 4 permutes the requests such that (w,z) is put into a buffer array
Bind(w)- Altogether there are at most O(d|R|) requests whp that are spread
over p buffers, thus, because of the random node distribution, each buffer gets
O(logn + d|R| / p) O(log® n) requests whp (Chernoff bounds, |B| < n/r, p =
max{ Ten log Too—1}). The requests are placed by “randomized dart throwing”

[18]. If each processor is responsible for the placement of a group of O(log?n)
requests (which may go to different buffers) Step 4 takes O(log” n) time whp. The
dart throwing progress is regularly monitored. In the unlikely case of stagnation
(buffers are chosen too small), the buffer sizes are adapted.

Finally, in Step 5 PU i scans buffer i and for each request (w,z) with z <
tent(w) it updates tent(w) to x and calls decreaseKey(Q;, w,), decreaseKey
(Qf, w, z + d,(w)) (respectively insert for new nodes). Each operation can be
executed in O(1) time, so for |R| < n/r Step 5 needs time O(log®n) whp.

Phases with |R| > n/r show whp at least as balanced queue access patterns
as those phases deleting less elements, thus time and work of a phase increase
at most linearly. Let k; denote the number of nodes removed in phase i. Then
> i<y ki < n. The total time over all phases is T = O(Y,.[kir/n] log*n) =
O(rlog?n + (nr/n)log®n) = O(r log? n) whp.

For d > 1r'1c:.g2 n more than n PUs can be used by dropping explicit queues:
n global bits denote whether an element is “queued” or not and p/n PUs take
care of each buffer area in order to cope with the increased number of requests.
Alternatively, one can apply an initial filtering step because all but the clogn
smallest edges per node, c some constant, can be ignored whp without changing
the shortest paths [10, 12].

The INOUT-version is supported by p additional priority queues. Initial-
ization of d;(v) := min {c¢(w,v) : (w,v) € E} involves collecting the weights of
edges that are potentially distributed over §2(d) adjacency-lists. For random
graphs, the number of incoming edges of k = 2(logn) randomly selected nodes
is O(dk) whp. Thus, we can use the randomized dart throwing to perform the
initialization using O(dn) work whp.

Theorem 3. If the number of delete-phases is bounded by v then the SSSP can
be solved in O(rlog®n) time and O(nlogn + m) work whp. using max{ r1oes
P o} processors on a CRCW PRAM.

The running time can be improved by a factor of O(logn) if we choose an
alternative implementation for the queues based on the parallel priority queue
data structure from [19] which supports insert and deleteMin for O(p) ele-
ments in time O(logn) using p PUs whp. In 7] we show how to augment this
data structure so that decreaseKey and delete are also supported.

A queue is represented by three relaxed heaps: A main heap @, a buffer Qg
for newly inserted elements plus the O(logn) smallest ones and Q4 for elements
whose key drops below a bound L’ due to a decreaseKey. Deleted elements
in @1 are only marked as deleted. More generally, delete and deleteMin are
most of the time only performed on Qo and Q4 and only every O(logn) phases

A Parallelization of Dijkstra’s Shortest Path Algorithm 729

a function cleanUp is called which guarantees that Qp and Q4 do not grow too
large. For an analysis we refer to [19, 7).

Corollary 1. SSSP on random graphs with random edge weights uniformly dis-
tributed in [0,1) can be solved on a CRCW PRAM in O(n}/3logn) time and
O(nlogn + m) work whp.

The approach is relatively easy to adapt to distributed memory machines.
The ind-array can be replaced by a hash-function and randomized dart throwing
by routing. For random graphs, the PU scheduling for generating requests is
unnecessary, if the number of PUs is decreased by a logarithmic factor.

The algorithm can also be adapted to a O(n!/3+¢) time and O(nlogn + m)
work EREW PRAM for an arbitrary small constant ¢ > 0. Concurrent write
accesses only occur during the randomized dart throwing. It can be replaced
by 1/€ reordering phases (essentially radix sorting), such that phase i groups
all request for a subset of p!~¢ queue pairs. Processors are rescheduled after
each phase. After the last phase all requests to a certain queue pair are grouped
together and can be handled sequentially.

5 Adaption to External Memory

The best previous external memory SSSP algorithm is due to [16]. It requires at
least 7 I/Os and hence is unsuitable for large n. For our improved algorithm we
use D to denote the number of disks and B to denote the block size. Let r be
the number of delete-phases and assume for simplicity that each phase removes
n/r elements from the queue.

Furthermore, we assume that Dlog D < n/r and that the internal memory,
S, is large enough to hold one bit per node. It is indicated in [7] how to proceed
if this reasonable assumption does not hold. We partition the adjacency-lists
into blocks of size B and distribute the blocks randomly over the disks. All
requests to adjacency-lists of a single phase are first collected in D buffers, in
large phases they are possibly written to disk temporarily. At the end of a phase
the requests are performed in parallel. If Dlog D < n/r, the n/r adjacency-lists
to be considered in a phase will distribute almost evenly over the disks whp, and
hence the time spent in reading adjacency-lists is O(n/D + m/(DB)) whp. We
use a priority queue without decreaseKey operation (e.g. buffer trees [2]) and
insert a node as often as it has incoming edges (each edge may give a different
tentative distance). When a node is removed for the first time its bit is set, Later
values for that node are ignored.

The total I/O complexity for this approach is given by O(% + J% logs/p &)
1/0s whp. The number of disks is restricted by D = O(min{ 2, £h.

We note that it is useful to slightly modify the representation of the graph
(provide each edge (v,w) with §,(w), the minimum weight of any edge out of
w). This allows us to compute the L-value while deleting elements from the
queue without the auxiliary queue @*. This online computing is possible because
the nodes are deleted with increasing distances and the L-value initialized with

730 A. Crauser et al.

findMin() + 1 can only decrease. The preprocessing to adapt the graph takes
O(nggl lOgS/B %) I/OS.

Theorem 4. SSSP with r delete-phases can be solved in external memory using
O(%+ S5 logs/p §) 1/0s whp if the number of disks is D = O(min{ﬁ, %})
and S is large enough to hold one bit per node.

6 Simulations

Simulations of the algorithm have greatly helped to identify the theoretical
bounds to be proven. Furthermore, they give information about the involved
constant factors.

For the QUT-variant on random graphs with random edge weights we found
an average value of 2.5\/n phases. The refined INOUT-variant needs about
6.0n'/3 phases on the average. A modification of the INOUT-approach which
switches between the criteria as described in Sect. 2 takes about 8.5 n!/® phases.

We also ran tests on planar graphs taken from [15, GB_.PLANE] where the
nodes have coordinates uniformly distributed in a two-dimensional square and
edge weights denote the Euclidean distance between respective nodes. The OUT-
version finished in about 1.2n2/% phases; taking random edge weights instead,
about 1.7n2/® phases sufficed on the average. The performance of the INOUT-
version is less stable on these graphs; it seems to give only a constant factor
improvement over the simpler OUT-variant.

Motivated from the promising results on planar graphs we tested our ap-
proach on real-world data: starting with a road-map of a town (n = 10, 000) the
tested graphs successively grew up to a large road-map of Southern Germany
(n = 157,457). While repeatedly doubling the number of nodes, the average
number of phases (for different starting points) only increased by a factor of
about 1.63 =~ 2%7; for n = 157,457 the simulation needed 6,647 phases.

7 Conclusions

We have shown how to subdivide Dijkstra’s algorithm into delete phases and
gave a simple CRCW PRAM algorithm for SSSP on random graphs with random
edge weights which has sublinear running time and performs O(n log n+m) work
whp. Although the bounds only hold with high probability for random graphs,
the approach shows good behavior on practically important real-world graph
instances.

Future work can tackle the design and performance of more refined criteria
for safe node deletions, in particular concerning non-random inputs.

Another promising approach is to relax the requirement of tent(v) = dist(v)
for deleted nodes. In [7, 17] we also analyze an algorithm which allows these two
values to differ by an amount of A. While this approach yields more parallelism
for random graphs, the safe criteria do not need tuning parameters and can
better adapt to inhomogeneous distributions of edge weights over the graph.

A Parallelization of Dijkstra’s Shortest Path Algorithm 731

Acknowledgements

We would like to thank Volker Priebe for fruitful discussions and suggestions.

References

(1]
(2]

(3]
(4]

(5]
[6]
(7l
8]
(9]

(10]
(11]
[12

(13]
(14]

(15]
[16]
(17]
(18]
(19]
(20]

(21]

(22]

N. Alon, J. H. Spencer, and P. Erdés. The Probabilistic Method. Wiley, 1992.

L. Arge. Efficient external-memory data structures and applications. PhD thesis,
University of Aarhus, BRICS-DS-96-3, 1996.

G. S. Brodal, J. L. Traff, and C. D. Zaroliagis. A parallel priority queue with
constant time operation. In 11th IPPS, pages 689-693. IEEE, 1997.

A. Clementi, L. Kuéera, and J. D. P. Rolim. A randomized parallel search strat-
egy. In A. Ferreira and J. D. P. Rolim, editors, Parallel Algorithms for Irreqular
Problems: State of the Art, pages 213-227. Kluwer, 1994.

E. Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. In 26th STOC, pages 16-26. ACM, 1994.

E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decom-
position. Journal of Algorithms, 21(2):331-357, 1996.

A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. Parallelizing Dijkstra’s
shortest path algorithm. Technical report, MPI-Informatik, 1998. in preparation.
E. Dijkstra. A note on two problems in connexion with graphs. Num. Math.,
1:269-271, 1959.

J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan. Relaxed heaps: An
alternative to Fibonacci heaps with applications to parallel computation. Com-
munications of the ACM, 31(11):1343-1354, 1988.

A. Frieze and G. Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Appl. Math., 10:57-77, 1985.

Y. Han, V. Pan, and J. Reif. Efficient parallel algorithms for computing all pairs
shortest paths in directed graphs. In fth SPAA, pages 353-362. ACM, 1992.

R. Hassin and E. Zemel. On shortest paths in graphs with random weights. Math.
Oper. Res., 10(4):557-564, 1985.

J. J4ja. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

R. M. Karp. The transitive closure of a random digraph. Rand. Struct. Alg., 1,
1990.

D. E. Knuth. The Stanford GraphBase : a platform for combinatorial computing.
Addison-Wesley, New York, NY, 1993.

V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In 8th SPDP, pages 169-177. IEEE, 1996.
U. Meyer and P. Sanders. A-stepping: A parallel shortest path algorithm. In 6th
ESA, LNCS. Springer, 1998.

G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In 26th
Symposium on Foundations of Computer Science, pages 478-489. IEEE, 1985.

P. Sanders. Randomized priority queues for fast parallel access. Journal Parallel
and Distributed Computing, 49:86-97, 1998.

M. Thorup. Undirected single source shortest paths in linear time. In 38th Annual
Symposium on Foundations of Computer Science, pages 12-21. IEEE, 1997.

J. L. Traff and C. D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. In Irregular’ 96, volume 1117 of LNCS,
pages 183-194. Springer, 1996.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level
memories. Technical Report CS-90-21, Brown University, 1990.

