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Abstract. We consider the problem of matching a set of applicants to a set of posts, where each
applicant has a preference list, ranking a nonempty subset of posts in order of preference, possibly
involving ties. We say that a matching M is popular if there is no matching M ′ such that the
number of applicants preferring M ′ to M exceeds the number of applicants preferring M to M ′. In
this paper, we give the first polynomial-time algorithms to determine if an instance admits a popular
matching and to find a largest such matching, if one exists. For the special case in which every
preference list is strictly ordered (i.e., contains no ties), we give an O(n + m) time algorithm, where
n is the total number of applicants and posts and m is the total length of all of the preference lists.
For the general case in which preference lists may contain ties, we give an O(

√
nm) time algorithm.
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1. Introduction. An instance of the popular matching problem is a bipartite
graph G = (A ∪ P, E) and a partition E = E1∪̇E2 . . . ∪̇Er of the edge set. We call
the nodes in A applicants, the nodes in P posts, and the edges in Ei the edges of
rank i. If (a, p) ∈ Ei and (a, p′) ∈ Ej , with i < j, we say that a prefers p to p′. If
i = j, we say that a is indifferent between p and p′. This ordering of posts adjacent
to a is called a’s preference list. We say that preference lists are strictly ordered if
no applicant is indifferent between any two posts on his/her preference list. More
generally, if applicants can be indifferent between posts, we say that preference lists
contain ties.

A matching M of G is a set of edges, no two of which share an end point. A node
u ∈ A ∪ P is either unmatched in M or matched to some node, denoted by M(u)
(i.e., (u,M(u)) ∈ M). We say that an applicant a prefers matching M ′ to M if (i)
a is matched in M ′ and unmatched in M or (ii) a is matched in both M ′ and M ,
and a prefers M ′(a) to M(a). M ′ is more popular than M , denoted by M ′ � M , if
the number of applicants that prefer M ′ to M exceeds the number of applicants that
prefer M to M ′.

Definition 1.1. A matching M is popular if and only if there is no matching
M ′ that is more popular than M .

Example 1.1. Figure 1.1 shows the preference lists for an example instance in
which A = {a1, a2, a3}, P = {p1, p2, p3}, and each applicant prefers p1 to p2 and p2
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a1 : p1 p2 p3

a2 : p1 p2 p3

a3 : p1 p2 p3

Fig. 1.1. An instance for which there is no popular matching.

to p3. Consider the three symmetrical matchings M1 = {(a1, p1), (a2, p2), (a3, p3)},
M2 = {(a1, p3), (a2, p1), (a3, p2)}, and M3 = {(a1, p2), (a2, p3), (a3, p1)}. It is easy
to verify that none of these matchings is popular, since M1 ≺ M2, M2 ≺ M3, and
M3 ≺ M1. In fact, this instance admits no popular matching, the problem being, of
course, that the more popular than relation is not acyclic.

The popular matching problem is to determine if a given instance admits a pop-
ular matching and to find such a matching, if one exists. We remark that popular
matchings may have different sizes, and a largest such matching may be smaller than
a maximum-cardinality matching. The maximum-cardinality popular matching prob-
lem then is to determine if a given instance admits a popular matching and to find a
largest such matching, if one exists.

In this paper, we use a novel characterization of popular matchings to give an
O(

√
nm) time algorithm for the maximum-cardinality popular matching problem,

where n is the number of nodes, and m is the number of edges. For instances with
strictly ordered preference lists, we give an O(n+m) time algorithm. No polynomial
time algorithms were known previously.

Related previous work. The bipartite matching problem with a graded edge
set is well-studied in the economics literature; see, for example, [1, 19, 21]. It models
some important real-world markets, including the allocation of graduates to training
positions [10] and families to government-owned housing [20]. Instances of these
markets are restrictions of stable marriage instances [5, 7], in which members of one
side of the market (posts) are indifferent between members of the other side of the
market (applicants).

The notion of popular matching was originally introduced by Gardenfors [6] in
the context of the full stable marriage problem. It is well known that every stable
marriage instance admits a weakly stable matching (one for which there is no pair
who strictly prefer each other to their partners in the matching). In fact, there can be
an exponential number of weakly stable matchings, and so Gardenfors considered the
problem of finding one with additional desirable properties, such as popularity. Gar-
denfors showed that, when preference lists are strictly ordered, every stable matching
is popular. He also showed that, when preference lists contain ties, there may be no
popular matching.

For the problem setup considered in this paper, various other definitions of op-
timality have been studied. For example, a matching M is Pareto optimal [2, 1, 19]
if there is no matching M ′ such that (i) some applicant prefers M ′ to M and (ii) no
applicant prefers M to M ′. In particular, such a matching has the property that no
coalition of applicants can collectively improve their allocation (say, by exchanging
posts with one another) without requiring some other applicant to be worse off. This is
the weakest reasonable definition of optimality—see [2] for an algorithmically oriented
exposition. Stronger definitions exist: A matching is rank-maximal [11] if it allocates
the maximum number of applicants to their first choice and then, subject to this, the
maximum number to their second choice, and so on. Rank-maximal matchings always
exist and may be found in time O(min (n,C

√
n)m) [11], where C is the maximum edge

rank used in the matching. Finally, we mention maximum-utility matchings, which
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maximize
∑

(a,p)∈M ua,p, where ua,p is the utility of allocating post p to applicant
a. Maximum-utility matchings can be found through an obvious transformation to
the maximum-weight matching problem. Neither rank-maximal nor maximum-utility
matchings are necessarily popular.

Preliminaries. For exposition purposes, we create a unique last resort post l(a)
for each applicant a and assign the edge (a, l(a)) higher rank than any edge incident on
a. In this way, we can assume that every applicant is matched, since any unmatched
applicant can be allocated to his/her last resort. From now on then, matchings are
applicant-complete, and the size of a matching is just the number of applicants not
matched to their last resort. We may also assume that instances have no gaps—so if
an applicant a is incident to a rank i edge, then a is also incident to edges of all ranks
smaller than i.

Organization of the paper. In section 2 we develop an alternative character-
ization of popular matchings, under the assumption that preference lists are strictly
ordered. We then use this characterization as the basis of a linear-time algorithm to
solve the maximum-cardinality popular matching problem. In section 3 we consider
preference lists with ties and give an O(

√
nm) time algorithm for the maximum-

cardinality popular matching prblem. In section 4 we give some empirical results on
the probability that a popular matching exists. Finally, the preliminary version of this
paper motivated the study of several other questions related to popular matchings.
We end by summarizing this recent work.

2. Strictly ordered preference lists. In this section, we restrict our attention
to strictly ordered preference lists, both to provide some intuition for the more general
case and because we can solve the popular matching problem in only linear time.
This last claim is not immediately clear, since Definition 1.1 potentially requires an
exponential number of comparisons to even check that a given matching is popular.
We begin this section then by developing an equivalent (though efficiently checkable)
characterization of popular matchings.

2.1. Characterizing popular matchings. For each applicant a, let f(a) de-
note the first-ranked post on a’s preference list (i.e., (a, f(a)) ∈ E1). We call any such
post p an f-post and denote by f(p) the set of applicants a for which f(a) = p.

Example 2.1. Figure 2.1 gives the preference lists for an instance with six ap-
plicants and six posts that we shall use to illustrate the results in this section. The
f -posts for this instance are p1, p2, and p3, and f(p1) = {a1, a2}, f(p2) = {a3, a4, a5},
and f(p3) = {a6}. Note that we use li as an abbreviation for l(ai).

The following lemma gives the first of three conditions necessarily satisfied by a
popular matching.

Lemma 2.1. Let M be any popular matching. Then for every f-post p, (i) p is
matched in M , and (ii) M(p) ∈ f(p).

a1 : p1 p2 p3 l1
a2 : p1 p5 p4 l2
a3 : p2 p1 p3 l3
a4 : p2 p3 p6 l4
a5 : p2 p6 p4 l5
a6 : p3 p2 p5 l6

Fig. 2.1. An illustrative example.
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a1 : p1 p2 p3 l1
a2 : p1 p5 p4 l2
a3 : p2 p1 p3 l3
a4 : p2 p3 p6 l4
a5 : p2 p6 p4 l5
a6 : p3 p2 p5 l6

Fig. 2.2. The f-posts and s-posts for the example instance.

Proof. Every f -post p must be matched in M , for otherwise we can promote any
a ∈ f(p) to p, thereby constructing a matching more popular than M . Suppose for
a contradiction then that p is matched to some M(p) /∈ f(p). Select any a1 ∈ f(p),
let a2 = M(p), and since all f -posts are matched in M , let a3 = M(f(a2)). We can
again construct a matching more popular than M , this time by (i) demoting a3 to
l(a3), (ii) promoting a2 to f(a2), and then (iii) promoting a1 to p.

Example 2.2. According to Lemma 2.1, we can be sure that, if a popular matching
exists for our example instance, then posts p1, p2, and p3 are matched, and M(p1) ∈
{a1, a2}, M(p2) ∈ {a3, a4, a5}, and M(p3) = a6.

For each applicant a, let s(a) denote the first non-f -post on a’s preference list
(note that s(a) must exist, due to the introduction of l(a)). We call any such post p
an s-post and remark that f -posts are disjoint from s-posts.

Example 2.3. Figure 2.2 shows the preference lists for our example instance with
the f -posts and s-posts highlighted. The bold entry in each preference list is the
f -post and the underlined entry is the s-post.

In the next two lemmas, we show that a popular matching can only allocate an
applicant a to either f(a) or s(a).

Lemma 2.2. Let M be any popular matching. Then for every applicant a, M(a)
can never be strictly between f(a) and s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
Since a prefers M(a) to s(a), we have that M(a) is an f -post. Furthermore, M is a
popular matching, so a belongs to f(M(a)) (by Lemma 2.1), thereby contradicting
the assumption that a prefers f(a) to M(a).

Lemma 2.3. Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a) on a’s preference list.

Proof. Suppose for a contradiction that a1 prefers s(a1) to M(a1). If s(a1) is
unmatched in M , we can promote a1 to s(a1), thereby constructing a matching more
popular than M . Otherwise, let a2 = M(s(a1)), and let a3 = M(f(a2)) (note that
a2 �= a3, since f -posts and s-posts are disjoint). We can again construct a matching
more popular than M , this time by (i) demoting a3 to l(a3), (ii) promoting a2 to
f(a2), and then (iii) promoting a1 to s(a1).

The three necessary conditions we have just derived form the basis of the following
preliminary characterization.

Lemma 2.4. A matching M is popular if and only if
(i) every f-post is matched in M , and
(ii) for each applicant a, M(a) ∈ {f(a), s(a)}.
Proof. Any popular matching necessarily satisfies conditions (i) and (ii) (by Lem-

mas 2.1–2.3). It remains to show that, together, these conditions are sufficient.
Let M be any matching satisfying (i) and (ii), and suppose for a contradiction

that there is some matching M ′ that is more popular than M . Let a be any applicant
that prefers M ′ to M , and let p′ = M ′(a) (note that p′ is distinct for each such a).
Now, since a prefers p′ to M(a), it follows from condition (ii) that M(a) = s(a). So,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1034 D. J. ABRAHAM, R. W. IRVING, T. KAVITHA, AND K. MEHLHORN

l1

l2

l3

l4

l5

l6

a1

a2

a3

a4

a5

a6

p1

p2

p3

p4

p5

p6

Fig. 2.3. The reduced graph G′ for the example instance.

p′ is an f -post, which by condition (i) must be matched in M , say, to a′. But then
p′ = f(a′) (by condition (ii) and since f -posts and s-posts are disjoint), and so a′

prefers M to M ′.
Therefore, for every applicant a that prefers M ′ to M , there is a distinct corre-

sponding applicant a′ that prefers M to M ′. Hence, M ′ is not more popular than M ,
giving the required contradiction.

Given an instance graph G = (A ∪ P, E), we define the reduced graph G′ =
(A ∪ P, E′) as the subgraph of G containing two edges for each applicant a: one to
f(a) and the other to s(a). We remark that G′ need not admit an applicant-complete
matching, since l(a) is now isolated whenever s(a) �= l(a).

Example 2.4. Figure 2.3 shows the reduced graph for our example instance.
Lemma 2.4 gives us that M is a popular matching of G if and only if every f -post

is matched in M , and M belongs to the graph G′. Recall that all popular matchings
are applicant-complete through the introduction of last resorts. Hence, the following
characterization is immediate.

Theorem 2.5. M is a popular matching of G if and only if
(i) every f-post is matched in M , and
(ii) M is an applicant-complete matching of the reduced graph G′.
Example 2.5. By applying Theorem 2.5 to the reduced graph of Figure 2.3, it

may be verified that our example instance admits four popular matchings, two of size
5 and two of size 4, as listed below. (Clearly, in the matchings of size 5, a3 is matched
with his last resort in the reduced graph, and in those of size 4, a1 is also matched
with his last resort.)

M1 = {(a1, p1), (a2, p5), (a4, p2), (a5, p6), (a6, p3)},
M2 = {(a1, p1), (a2, p5), (a4, p6), (a5, p2), (a6, p3)},
M3 = {(a2, p1), (a4, p2), (a5, p6), (a6, p3)},
M4 = {(a2, p1), (a4, p6), (a5, p2), (a6, p3)}.

2.2. Algorithmic results. Figure 2.4 contains an algorithm for solving the
popular matching problem. The correctness of this algorithm follows immediately
from the characterization in Theorem 2.5. We remark only that at the termination
of the loop, every f -post must be matched, since f(a) is unique for each applicant a,
and f -posts are disjoint from s-posts. We now show a linear-time implementation of
this algorithm.

It is clear that the reduced graph G′ of G can be constructed in O(n + m) time.
G′ has O(n) edges, since each applicant has degree 2, and so it is also clear that the
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Popular matching (G = (A ∪ P, E))
G′ := reduced graph of G;
if G′ admits an applicant-complete matching M , then

for each f -post p unmatched in M
let a be any applicant in f(p);
promote a to p in M ;

return M ;
else

return “no popular matching”.

Fig. 2.4. Linear-time popular matching algorithm for instances with strictly ordered preference
lists.

Applicant-complete matching (G′ = (A ∪ P, E′))
M := ∅;
while some post p has degree 1

a := unique applicant adjacent to p;
M := M ∪ {(a, p)};
G′ := G′ − {a, p}; // remove a and p from G′

while some post p has degree 0
G′ := G′ − {p};

// Every post now has degree at least 2
// Every applicant still has degree 2
if |P| < |A| then

return “no applicant-complete matching”;
else

// G′ decomposes into a family of disjoint cycles
M ′ := any maximum-cardinality matching of G′;
return M ∪M ′.

Fig. 2.5. Linear-time algorithm for finding an applicant-complete matching in G′.

loop phase requires only O(n) time. It remains to show how we can efficiently find an
applicant-complete matching of G′ or determine that no such matching exists.

One approach involves computing a maximum-cardinality matching M of G′ and
then testing if M is applicant-complete. However, using the Hopcroft–Karp algorithm
for maximum-cardinality matching [9], this would take O(n3/2) time, which is super-
linear, whenever m is o(n3/2). Consider then the algorithm in Figure 2.5.

This algorithm begins by repeatedly matching a degree 1 post p with the unique
applicant a adjacent to p. No subsequent augmenting path can include p (since it is
matched and has degree 1), so we can remove both a and p from consideration. It
is not hard to see that this loop can be implemented to run in O(n) time, using, for
example, degree counters and lazy deletion. After this, we remove any degree 0 posts,
so that all remaining posts have degree at least 2, while all remaining applicants still
have degree exactly 2. Now, if |P| < |A|, G′ cannot admit an applicant-complete
matching by Hall’s marriage theorem [8]. Otherwise, we have that |P| ≥ |A|, and
2|P| ≤

∑
p∈P deg(p) = 2|A|. Hence, it must be the case that |A| = |P|, and every

post has degree exactly 2. G′ therefore decomposes into a family of disjoint cycles,
and we need only to walk over these cycles, choosing every second edge.

We summarize the preceding discussion in the following lemma.
Lemma 2.6. We can find a popular matching, or determine that no such matching

exists, in O(n + m) time.
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We now consider the maximum-cardinality popular matching problem. Let A1 be
the set of all applicants a with s(a) = l(a), and let A2 = A−A1. Our target matching
must satisfy conditions (i) and (ii) of Theorem 2.5 and, among all such matchings,
allocate the fewest A1-applicants to their last resort.

We begin by constructing G′ and testing for the existence of an applicant-complete
matching M of A2-applicants to posts (using the applicant-complete matching algo-
rithm in Figure 2.5). If no such M exists, then G admits no popular matching by
Theorem 2.5. Otherwise, we remove all edges from G′ that are incident on a last resort
post and exhaustively augment M , each time matching an additional A1-applicant
with his/her first-ranked post. If any A1-applicants are unmatched at this point,
we simply allocate them to their last resort. Finally, we ensure that every f -post is
matched, as in the popular matching algorithm in Figure 2.4. It is clear that the
resulting matching is a maximum-cardinality popular matching, and so we comment
only on the time complexity of augmenting M .

Note that an alternating path Q from an unmatched applicant a is completely
determined (since applicants have degree 2). If we are able to augment along this
path, then no subsequent augmenting path can contain a node in Q, since such a
path would necessarily terminate at a, which is already matched. Otherwise, if there
is no augmenting path from a, then it is not hard to see that again no subsequent
augmenting path can contain a node in Q. This means we only need to visit and mark
each node at most once, leading to the following result.

Theorem 2.7. For instances with strictly ordered preference lists, we can find a
maximum-cardinality popular matching, or determine that no such matching exists,
in O(n + m) time.

3. Preference lists with ties. In this section, we relax our assumption that
preference lists are strictly ordered and consider problem instances with ties. We begin
by developing a generalization of the popular matching characterization, similar to
Theorem 2.5. Using this characterization, we then go on to give an O(

√
nm) time

algorithm for solving the maximum-cardinality popular matching problem. Note that
we cannot hope for a linear-time algorithm here, since, for the special case where
all edges have rank one, the problem of finding a popular matching is equivalent to
the problem of finding a maximum-cardinality bipartite matching. Thus the popular
matching problem is at least as hard as the maximum-cardinality bipartite matching
problem when preference lists contain ties.

3.1. Characterizing popular matchings. For each applicant a, let f(a) de-
note the set of first-ranked posts on a’s preference list. Again, we refer to all such
posts p as f-posts and denote by f(p) the set of applicants a for which p ∈ f(a).

It may no longer be possible to match every f -post p with an applicant in f(p) (as
in Lemma 2.1), since, for example, there may now be more f -posts than applicants.
Below then, we work towards generalizing this key lemma.

Let M be a popular matching of some instance graph G = (A∪P, E). We define
the first-choice graph of G as G1 = (A ∪ P, E1), where E1 is the set of all rank-one
edges.

Example 3.1. Figure 3.1 gives an example instance that we use as an illustration
in this section. Ties in the preference lists are indicated by parentheses.

The graph G1 for this instance is shown in Figure 3.2.
For instances with strictly ordered preference lists, Lemma 2.1 is equivalent to

requiring that every f -post is matched in M ∩ E1 (note that f -posts are the only
posts with nonzero degree in G1). But since applicants have a unique first choice in
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a1 : (p1 p2) p4 l1
a2 : p1 (p2 p5) l2
a3 : p2 (p4 p6) l3
a4 : p2 p1 p3 l4
a5 : p4 p3 p2 l5
a6 : (p5 p6) p1 l6

Fig. 3.1. An example with ties in the preference lists.

l1

l2

l3

l4

l5

l6

a1

a2

a3

a4

a5

a6

p1

p2

p3

p4

p5

p6

Fig. 3.2. The graph G1 for the example instance with ties.

this context, Lemma 2.1 is also equivalent to the weaker condition that M ∩ E1 is a
maximum matching of G1. The next lemma shows that this weaker condition must
also be satisfied when ties are permitted.

Lemma 3.1. Let M be a popular matching. Then M∩E1 is a maximum matching
of G1.

Proof. Suppose for a contradiction that M1 = M∩E1 is not a maximum matching
of G1. Then M1 admits an augmenting path Q = 〈a1, p1, . . . , pk〉 with respect to G1.
It follows that M(a1) /∈ f(a1), and either pk is unmatched in M , or M(pk) /∈ f(pk).
We now show how to use Q to construct a matching M ′ that is more popular than
M . Begin with M ′ = M \ {(a1,M(a1))}. There are two cases:

(i) pk is unmatched in M ′. Since both a1 and pk are unmatched in M ′, we
augment M ′ with Q. In this new matching, a1 is matched with p1 (where
p1 ∈ f(a1)), while all other applicants in Q remain matched to one of their
first-ranked posts. Hence M ′ is more popular than M .

(ii) pk is matched in M ′. Let ak+1 = M ′(pk), and note that pk /∈ f(ak+1).
Remove (ak+1, pk) from M ′, and then augment M ′ with Q. Select any pk+1 ∈
f(ak+1). If pk+1 is unmatched in M ′, we promote ak+1 to pk+1. Otherwise,
we demote a = M ′(pk+1) to either l(a) (if a �= a1) or back to M(a1) (if
a = a1), after which we can promote ak+1 to pk+1. It is clear from this that
at least one of a1 and ak+1 prefers M ′ to M . Also, at most one applicant
(that is, a) prefers M to M ′, though in this case both a1 and ak+1 prefer M ′.
Hence, M ′ is more popular than M .

Example 3.2. In our example, we see from Figure 3.2 and Lemma 3.1 that posts
p1, p2, and p4 and applicants a5 and a6 must be matched in any popular matching M .
Furthermore, we deduce that M(p1) ∈ {a1, a2}, M(p2) ∈ {a1, a3, a4}, M(p4) = a5,
and M(a6) ∈ {p5, p6}.

We now begin working towards a generalized definition of s(a). For instances with
strictly ordered preference lists, s(a) is equivalent to the first post in a’s preference
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a1 : (p1 p2) p4 l1
a2 : p1 (p2 p5) l2
a3 : p2 (p4 p6) l3
a4 : p2 p1 p3 l4
a5 : p4 p3 p2 l5
a6 : (p5 p6) p1 l6

Fig. 3.3. An example with ties in the preference lists.

list that has degree 0 in G1. However, since Lemma 2.1 no longer holds, s(a) may
now contain any number of surplus f -posts. It will help us to know which f -posts
cannot be included in s(a), and for this we use the following well known ideas from
bipartite matching theory.

Let M1 be a maximum matching of some bipartite graph G1 = (A∪P, E1). (Note
that we are using notation that matches our use of this theory—so M1 = M ∩ E1,
and G1 is the graph G restricted to rank-one edges.) Using M1, we can partition
A∪P into three disjoint sets: A node v is even (respectively, odd) if there is an even
(respectively, odd) length alternating path (with respect to M1) from an unmatched
node to v. Similarly, a node v is unreachable if there is no alternating path from an
unmatched node to v. Denote by E , O, and U the sets of even, odd, and unreachable
nodes, respectively. The Gallai–Edmonds decomposition lemma, covered in detail in
[13], gives some fundamental relationships between maximum matchings and this type
of node partition.

Lemma 3.2 (Gallai–Edmonds decomposition). Let E, O, and U be the node sets
defined by G1 and M1 above. Then

(a) E, O, and U are pairwise disjoint. Every maximum matching in G1 partitions
the node set into the same partition of even, odd, and unreachable nodes.

(b) In any maximum-cardinality matching of G1, every node in O is matched
with some node in E, and every node in U is matched with another node in
U . The size of a maximum-cardinality matching is |O| + |U|/2.

(c) No maximum-cardinality matching of G1 contains an edge between two nodes
in O or a node in O and a node in U . Also, there is no edge in G1 connecting
a node in E with a node in U .

Example 3.3. In our example, it may be verified from a maximum matching, say,
{(a1, p2), (a2, p1), (a5, p4), (a6, p5)}, in Figure 3.2, that E = {a1, a2, a3, a4, p3, p5, p6, l1,
l2, l3, l4, l5, l6}, O = {a6, p1, p2}, and U = {a5, p4}.

Now, since M1 is a maximum-cardinality matching of G1, Lemma 3.2(b) gives us
that every odd or unreachable post p in G1 must be matched in M to some applicant
in f(p). Such posts cannot be members of s(a), and so we define s(a) to be the set of
top-ranked posts in a’s preference list that are even in G1 (note that s(a) �= ∅, since
l(a) is always even in G1). This definition coincides with the one in section 2, since
degree 0 posts are even, and whenever every applicant has a unique first choice, posts
with nonzero degree (i.e., f -posts) are odd or unreachable.

Example 3.4. Figure 3.3 displays the preference lists for our example instance,
annotated as before, with the f -posts in bold and the s-posts underlined. Note that,
when ties are present, f -posts and s-posts may coincide, as occurs here for appli-
cant a6.

Recall that our original definition of s(a) led to Lemmas 2.2 and 2.3, which restrict
the set of posts to which an applicant can be matched in a popular matching. We
now show that the generalized definition leads to analogous results here.
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Lemma 3.3. Let M be a popular matching. Then for every applicant a, M(a)
can never be strictly between f(a) and s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a) is strictly between f(a) and s(a).
Then since a prefers M(a) to any post in s(a) and because posts in s(a) are the top-
ranked even nodes in G1, it follows that M(a) must be an odd or unreachable node
of G1. By Lemma 3.2(b), odd and unreachable nodes are matched in every maximum
matching of G1. But since M(a) /∈ f(a), M(a) is unmatched in M ∩ E1. Hence M
is not a maximum matching on rank-one edges, and so by Lemma 3.1, M is not a
popular matching.

Lemma 3.4. Let M be a popular matching. Then for every applicant a, M(a) is
never worse than s(a) on a’s preference list.

Proof. Suppose for a contradiction that M(a1) is strictly worse than s(a1). Let
p1 be any post in s(a1). If p1 is unmatched in M , we can promote a1 to p1, thereby
constructing a matching more popular than M . Otherwise, let a2 = M(p1). There
are two cases:

(a) p1 /∈ f(a2). Select any post p2 ∈ f(a2), and let a3 = M(p2) (note that p2

must be matched in M , for otherwise Lemma 3.1 is contradicted). We can
again construct a matching more popular than M , this time by (i) demoting
a3 to l(a3), (ii) promoting a2 to p2, and then (iii) promoting a1 to p1.

(b) p1 ∈ f(a2). Now, since p1 ∈ s(a1) as well, it must be the case that p1 is an
even post in G1. It follows then that G1 contains (with respect to M ∩ E1)
an even length alternating path Q′ = 〈p1, a2, . . . , pk〉, where pk is unmatched
in M ∩ E1 (note that pk may be matched in M though). Now, let Q =
〈a1, p1, a2, . . . , pk〉 (i.e., a1 followed by Q′), and let M ′ = M \ {(a1,M(a1)}.
The remaining argument follows the proof of Lemma 3.1. If pk is unmatched
in M ′, M ′⊕Q is more popular than M . Otherwise, pk is matched in M ′. Let
ak+1 = M ′(pk), and note that pk /∈ f(ak+1). Remove (ak+1, pk) from M ′, and
then augment M ′ with Q. Select any pk+1 ∈ f(ak+1). If pk+1 is unmatched
in M ′, we promote ak+1 to pk+1. Otherwise, we demote a = M ′(pk+1) to
either l(a) (if a �= a1) or back to M(a1) (if a = a1), after which we can
promote ak+1 to pk+1. It is clear from this that at least one of a1 and ak+1

prefers M ′ to M . Also, at most one applicant (that is, a) prefers M to M ′,
though in this case both a1 and ak+1 prefer M ′. Hence, M ′ is more popular
than M .

The three necessary conditions we have just derived form the basis of the following
preliminary characterization.

Lemma 3.5. A matching M is popular in G if and only if
(i) M ∩ E1 is a maximum matching of G1, and
(ii) for each applicant a, M(a) ∈ f(a) ∪ s(a).
Proof. Any popular matching necessarily satisfies conditions (i) and (ii) (by Lem-

mas 3.1, 3.3, and 3.4). It remains to show that, together, these conditions are suffi-
cient.

Let M be any matching satisfying conditions (i) and (ii), and suppose for a
contradiction that there is some matching M ′ that is more popular than M . Let a
be any applicant that prefers M ′ to M . We want to show that there is a distinct
corresponding applicant a′ that prefers M to M ′.

The graph H = (M ⊕M ′) ∩ E1 consists of disjoint cycles and paths, each alter-
nating between edges in M ∩E1 and edges in M ′ ∩E1. We claim that M ′(a) must be
contained in a nonempty path Q of H. First, note that M ′(a) is an odd or unreachable
node in G1, since a prefers M ′(a) to M(a), and M(a) ∈ s(a) is a top-ranked even
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p4
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p6

Fig. 3.4. The reduced graph G′ for the example instance with ties.

node of G1 in a’s preference list. So by condition (i) and Lemma 3.2(b), M ′(a) is
matched in M ∩ E1. However, M ′(a) �= M(a), so M ′(a) is not isolated in H. Also,
M ′(a) cannot be in a cycle, since a is unmatched in M∩E1. Therefore, M ′(a) belongs
to some nonempty path Q of H.

Now, one end point of Q must be a (if M ′(a) ∈ f(a)) or M ′(a) (otherwise). So
for each such applicant a, there is a distinct nonempty path Q. Since M ′(a) is odd or
unreachable, every post p in Q is also odd or unreachable. It follows from Lemma 3.1
that all such posts must be matched in M ∩E1, and so the other end point of Q is an
applicant, say, a′. It is easy to see then that a′ prefers M to M ′, since M(a′) ∈ f(a′),
while M ′(a) /∈ f(a′).

Therefore, for every applicant a that prefers M ′ to M , there is a distinct corre-
sponding applicant a′ that prefers M to M ′. Hence, M ′ is not more popular than M ,
giving the required contradiction.

Given an instance graph G = (A ∪ P, E), we define the reduced graph G′ =
(A ∪ P, E′) as the subgraph of G containing edges from each applicant a to posts
in f(a) ∪ s(a). We remark that G′ need not admit an applicant-complete matching,
since l(a) is now isolated whenever s(a) �= {l(a)}.

Example 3.5. Figure 3.4 shows the reduced graph for our example instance.
Lemma 3.5 gives us that M is a popular matching of G if and only if M is a

maximum matching on rank-one edges, and M belongs to the graph G′. Recall that
all popular matchings are applicant-complete through the introduction of last resorts.
Hence, the following characterization is immediate.

Theorem 3.6. M is a popular matching of G if and only if
(i) M ∩ E1 is a maximum matching of G1, and
(ii) M is an applicant-complete matching of the reduced graph G′.
Example 3.6. By applying Theorem 3.6 to the reduced graph of Figure 3.4, it

may be verified that our example instance admits five popular matchings, two of size
6 and three of size 5, as listed below. (Clearly, in the three matchings of size 5, a1 is
matched with his last resort l1 in the reduced graph.)

M1 = {(a1, p1), (a2, p5), (a3, p2), (a4, p3), (a5, p4), (a6, p6)},
M2 = {(a1, p2), (a2, p1), (a3, p6), (a4, p3), (a5, p4), (a6, p5)},
M3 = {(a2, p1), (a3, p2), (a4, p3), (a5, p4), (a6, p5)},
M4 = {(a2, p1), (a3, p2), (a4, p3), (a5, p4), (a6, p6)},
M5 = {(a2, p1), (a3, p6), (a4, p2), (a5, p4), (a6, p5)}.
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Popular matching (G = (A ∪ P, E))

1. Construct the graph G′ = (A∪P, E′), where E′ = {(a, p) | p ∈ f(a)∪s(a), a ∈ A}.
2. Compute a maximum matching M1 on rank-one edges; i.e., M1 is a maximum

matching in G1 = (A ∪ P, E1).

(M1 is also a matching in G′ because E′ ⊇ E1)

3. Delete all edges in G′ connecting two nodes in the set O or a node in O with a node
in U , where O and U are the sets of odd and unreachable nodes of G1 = (A∪P, E1).

Determine a maximum matching M in the modified graph G′ by augmenting M1.

4. If M is not applicant-complete, then declare that there is no popular matching in
G.
Else return M .

Fig. 3.5. An O(
√
nm) popular matching algorithm for preference lists with ties.

3.2. Algorithmic results. In this section, we present the algorithm popular
matching (see Figure 3.5) for solving the popular matching problem. This algorithm
is based on the characterization given in Theorem 3.6 and is similar to the algorithm
for computing a rank-maximal matching [11].

The following lemma is necessary for the correctness of our algorithm.
Lemma 3.7. Algorithm popular matching returns a maximum matching M on

rank-one edges.
Proof. Since M is obtained from M1 by successive augmentations, every node

matched by M1 is also matched by M . Nodes in O and U are matched by M1 (by
Lemma 3.2(b)). Hence, nodes in O and U are matched in M .

First, we claim that G′ has no edges of rank greater than one incident on nodes
in O and nodes in U ∩ P. Let us consider any odd or unreachable node in P. This is
never a candidate for s(a), and hence no edge of the type (a, p), p ∈ s(a), is incident on
such a node. For odd nodes that belong to A, it is the case that they have first-ranked
posts that are even, and so s(a) ⊆ f(a). This proves our claim.

So the edges that we removed in step 3 are rank-one edges, and these edges cannot
be used by any maximum matching of G1, by Lemma 3.2(c). (So no popular matching
of G can use these edges.) Now the only neighbors of nodes in O are the even nodes
of G1 (call this set E), and similarly, the only neighbors of nodes in U ∩ P are nodes
in U ∩ A (by our edge deletions in step 3 and Lemma 3.2(c)). This means that M
must match all of the nodes in O with nodes in E and all of the nodes in U ∩ P with
nodes in U ∩ A.

So M has at least |O| + |U ∩ P| = |O| + |U|/2 edges of rank one. So M is a
maximum matching on rank-one edges (by Lemma 3.2(b)).

Thus the matching returned by the algorithm popular matching is both an
applicant-complete matching in G′ and a maximum matching on rank-one edges.
The correctness of the algorithm now follows from Theorem 3.6.

It is easy to see that the running time of our algorithm is O(
√
nm): We use

the algorithm of Hopcroft and Karp [9] to compute a maximum matching in G1 and
identify the set of edges E′ and construct G′ in O(

√
nm) time. We then repeatedly

augment M1 (by the Hopcroft–Karp algorithm) to obtain M . This gives us the
following result.

Lemma 3.8. We can find a popular matching, or determine that no such matching
exists, in O(

√
nm) time.
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It is now a simple matter to solve the maximum-cardinality popular matching
problem. Let us assume that the instance G = (A ∪ P, E) admits a popular match-
ing. (Otherwise, we are done.) We now want an applicant-complete matching in G′

that is a maximum matching on rank-one edges and which maximizes the number of
applicants not matched to their last resort.

Let M ′ be an arbitrary popular matching in G. We know that M ′ belongs to the
graph G′. Remove all edges of the form (a, l(a)) from G′ (and M ′). Let H denote
the resulting subgraph of G′. Note that M ′ is still a maximum matching on rank-one
edges, since no rank-one edge has been deleted from M ′ or G′, but M ′ need not be
a maximum matching in the graph H. Determine a maximum matching N in H by
augmenting M ′. N is a matching in G′ that

(i) is a maximum matching on rank-one edges and
(ii) matches the maximum number of non-last-resort posts.
N need not be a popular matching. Determine a maximum matching M in G′

by augmenting N . The matching M will be applicant-complete. Since M is obtained
from N by successive augmentations, all posts that are matched by N are still matched
by M . Hence, it follows that M is a popular matching that maximizes the number of
applicants not matched to their last resort.

The following theorem is therefore immediate.
Theorem 3.9. We can find a maximum-cardinality popular matching, or deter-

mine that no such matching exists, in O(
√
nm) time.

4. Concluding remarks. In order to obtain an idea of the probability that a
popular matching exists, we performed some simulations. The factors that affect this
probability are the number of applicants, the number of posts, the lengths of the
preference lists, and the number, size, and position of ties in these lists.

To keep this empirical investigation manageable, we restricted our attention to
cases where the numbers of applicants and posts are equal, represented by n, and all
preference lists have the same length k. We characterized the ties by a single parameter
t, the probability that an entry in a preference list is tied with its predecessor.

Tables 4.1 and 4.2 contain the results of simulations carried out on randomly gen-
erated instances with n = 10 and n = 100, respectively. We set t to a sequence of val-
ues in the range 0.0–0.8. For n = 10 we allowed k to take all possible values (1, . . . , 10),
and for n = 100 we investigated the cases k = 1, . . . , 10 and k = 20, 30, . . . , 100. We
generated 1000 random instances in each case. In both cases, the table shows the
number of instances admitting a popular matching.

Table 4.1

Proportion of instances with a popular matching for n = 10.

t
0.0 0.2 0.4 0.6 0.8

1 1000 1000 1000 1000 1000
2 986 988 996 997 1000
3 898 941 962 983 996
4 759 846 929 979 999
5 681 811 915 979 998

k 6 636 786 888 976 1000
7 578 737 893 978 1000
8 565 738 909 985 1000
9 553 759 906 980 1000
10 556 725 890 979 1000
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Table 4.2

Proportion of instances with a popular matching for n = 100.

t
0.0 0.2 0.4 0.6 0.8

1 1000 1000 1000 1000 1000
2 997 1000 999 1000 1000
3 884 956 985 990 1000
4 519 807 925 946 974
5 204 534 806 863 879
6 64 346 685 782 798
7 20 192 534 705 721
8 8 90 436 628 672
9 3 39 309 578 670

k 10 2 28 243 531 675
20 0 0 53 346 787
30 0 0 37 302 776
40 0 1 37 314 781
50 0 0 44 291 791
60 0 1 49 318 775
70 0 2 36 304 780
80 0 1 63 280 801
90 0 0 38 306 776
100 0 1 51 302 759

These results, and others not reported in detail here, give rise to the following
observations:

• When t = 0.0, i.e., there are no ties, the likelihood of a popular matching
declines rapidly as k increases and, for large n, is negligible except for very
small values of k.

• Not surprisingly, increasing the value of t, and therefore the likely number
and length of ties, increases the probability of a popular matching.

• For fixed n and t, increasing k initially reduces the likelihood of a popular
matching, but beyond a certain range this effect all but disappears.

Thus popular matchings do exist with good probability when the chance of ties
in the preference lists is high, which is likely to happen in real-world problems.

In fact, since the preliminary version of this paper [3] appeared, Mahdian [14] has
shown that a popular matching exists with high probability, when (i) preference lists
are randomly constructed and (ii) the number of posts is a small multiplicative factor
larger than the number of applicants.

Of course, for a given instance, it still may be the case that a popular match-
ing does not exist. Recently, McCutchen [16] considered the problem of finding a
least-unpopular matching, where the unpopularity of a matching M is defined as the
maximum ratio over all matchings M ′ of the number of applicants preferring M ′ to
M to the number of applicants preferring M to M ′. This definition of unpopular-
ity makes the problem NP-hard; however, it is not clear if this is the case for other
reasonable definitions.

The preliminary version also motivated the study of several other questions re-
lated to popular matchings. Manlove and Sng [15] have generalized the algorithms
of sections 2.2 and 3.2 to the case where each post has an associated capacity, indi-
cating the number of applicants that it can accommodate. (They described this in
the equivalent context of the house allocation problem.) They gave an O(

√
Cn1 +m)

time algorithm for the no-ties case and a O((
√
C + n1)m) time algorithm when ties
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are allowed, where n1 is the number of applicants, m, as usual, is the total length of
all preference lists, and C is the total capacity of all of the posts.

In [17] Mestre designed an efficient algorithm for the weighted popular matching
problem, where each applicant is assigned a priority or weight, and the definition
of popularity takes into account the priorities of the applicants. In this case the
algorithm for the no-ties version has O(n + m) complexity, and for the version that
allows ties, the complexity is O(min(k

√
n, n)m), where k is the number of distinct

weights assigned to applicants.
In [12], Kavitha and Shah give faster randomized algorithms for the popular

matching problem (for problem instances where preference lists contain ties) and a
weighted version of the rank-maximal matching problem. Their popular matching
algorithm runs in expected time O(nω), where ω < 2.376 is the best exponent for
matrix multiplication—this algorithm reduces the popular matching problem to the
bipartite perfect matching problem and uses the O(nω) algorithm for the latter prob-
lem [18]. The reduction works as follows: In the graph G′ (the reduced graph, refer to
section 3.2), let us first delete posts which are isolated; now each post in G′ is either
an odd or unreachable post in G1 or it is a most preferred even post in G1. Note that
these two sets are disjoint. Let there be k1 posts of the first type and k2 posts of the
second type. Add k1 + k2 − |A| new nodes to A, and make each of these new nodes
adjacent to each of the k2-posts of the second type (that is, most preferred even posts
in G1). It is easy to see that there is a perfect matching in this resulting graph if and
only if there is an applicant-complete matching in G′ that is a maximum matching on
rank-one edges. Thus it follows that the popular matching problem and the bipartite
perfect matching problem have equivalent time complexities.

Finally, in the preliminary version of this paper, we described the following open
problem. Suppose we have an instance that admits a popular matching, but we already
have a nonpopular matching M0 in place. Since the more popular than relation is not
transitive, it may be that no popular matching is more popular than M0. We define a
voting path then as a sequence of matchings 〈M0,M1, . . . ,Mk〉 such that Mi is more
popular than Mi−1 for all 1 ≤ i ≤ k, where Mk is popular.

Even though the more popular than relation is not acyclic, we were able to show
that, for every matching M0, (i) there is a voting path beginning at M0 and (ii)
the shortest such path has length at most 3. The open problem was to give an
efficient algorithm for computing a shortest-length voting path from a given matching.
Recently, Abraham and Kavitha [4] have shown that there is always such a voting
path of length at most 2 and have given a linear-time algorithm to find one.
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[2] D. J. Abraham, K. Cechlárová, D. F. Manlove, and K. Mehlhorn, Pareto-optimality
in house allocation problems, in Proceedings of ISAAC 2004: The 15th Annual Interna-
tional Symposium on Algorithms and Computation, Lecture Notes in Comput. Sci. 3341,
Springer-Verlag, Berlin, 2004, pp. 3–15.

[3] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, Popular matchings, in
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 424–
432.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POPULAR MATCHINGS 1045

[4] D. J. Abraham and T. Kavitha, Dynamic popular matchings and voting paths, in Proceedings
of SWAT 2006: The 10th Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Comput. Sci. 4059, Springer-Verlag, Berlin, 2006, pp. 65–76.

[5] D. Gale and L. S. Shapley, College admissions and the stability of marriage, Amer. Math.
Monthly, 69 (1962), pp. 9–15.

[6] P. Gardenfors, Match making: Assignments based on bilateral preferences, Behavioural Sci-
ences, 20 (1975), pp. 166–173.

[7] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms,
MIT Press, Cambridge, MA, 1989.

[8] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26–30.
[9] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite

graphs, SIAM J. Comput., 2 (1973), pp. 225–231.
[10] A. Hylland and R. Zeckhauser, The efficient allocation of individuals to positions, J. Polit-

ical Economy, 87 (1979), pp. 293–314.
[11] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch, Rank-maximal

matchings, ACM Transactions on Algorithms, 2 (2006), pp. 602–610.
[12] T. Kavitha and C. Shah, Efficient algorithms for weighted rank-maximal matchings and

related problems, in ISAAC ’06: The 17th International Symposium on Algorithms and
Computation, 2006, to appear.

[13] L. Lovász and M. D. Plummer, Matching Theory, Ann. Discrete Math. 29, North-Holland,
Amsterdam, 1986.

[14] M. Mahdian, Random popular matchings, in Proceedings of the 7th ACM Conference on
Electronic-Commerce, 2006, pp. 238–242.

[15] D. F. Manlove and C. Sng, Popular matchings in the capacitated house allocation problem, in
Proceedings of ESA 2006, the 14th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 4168, Springer-Verlag, Berlin, 2006, pp. 492–503.

[16] M. McCutchen, Least-Unpopularity-Factor Matching, manuscript, 2006.
[17] J. Mestre, Weighted popular matchings, in Proceedings of the 33rd International Colloquium

on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 4051, Springer-
Verlag, Berlin, 2006, pp. 715–726.

[18] M. Mucha and P. Sankowski, Maximum matchings via Gaussian elimination, in Proceedings
of the 45th Symposium on Foundations of Computer Science, IEEE, Piscataway, NJ, 2004,
pp. 248–255.

[19] A. E. Roth and A. Postlewaite, Weak versus strong domination in a market with indivisible
goods, J. Math. Econom., 4 (1977), pp. 131–137.

[20] Y. Yuan, Residence exchange wanted: A stable residence exchange problem, European J. Oper.
Res., 90 (1996), pp. 536–546.

[21] L. Zhou, On a conjecture by Gale about one-sided matching problems, J. Econom. Theory, 52
(1990), pp. 123–135.


