Information Processing Letters 21 (1985) 269-272
North-Holland

18 November 1985

A FAST ALGORITHM FOR RENAMING A SET OF CLAUSES AS A HORN SET

Heikki MANNILA

Department of Computer Science, University of Helsinki, Tukholmankatu 2, SF-00250 Helsinki 25, Finland

Kurt MEHLHORN

Fachbereich 10 — Informatik, Universitit des Saarlandes, D -6600 Saarbriicken, Fed. Rep. Germany

Communicated by J. Nievergelt
Received 30 November 1984
Revised February 1985

A set of clauses is a Horn set if each clause contains at most one positive literal. Lewis (1978) has given a polynomial-time
algorithm for testing whether a set of clauses can be renamed as a Horn set. His algorithm uses in the worst case O(c-v?) time,
where ¢ is the number of clauses and v the number of variables. We give an algorithm working in O(c-v-(log v)?) time. The
algorithm is based on an efficient depth-first search on a dense graph with a short description.

Keywords: Horn clause, renaming, depth-first search

1. Introduction

A clause (a set of literals) is a Horn clause if it
contains at most one positive literal. Sets of Horn
clauses (also called Horn sets) have a polynomial
satisfiability problem. They naturally occur in, e.g.,
logic programming [4] and database theory [3].

The class of Horn sets can be significantly
extended and still retain the polynomiality of the
satisfiability problem. Let S be a set of clauses and
A a set of variables. The A-renaming of S, r,(S), is
the result of replacing in S each literal whose
variable is in A by its complement. The set S is
renamable-Horn if r,(S) is Horn for some A.

Testing whether a set S is renamable-Horn is by
no means trivial. Lewis [5] gave a polynomial-time
algorithm for this problem. His algorithm also
produces a renaming if one exists, and thus it
shows that renamable-Horn formulas have a poly-
nomial satisfiability problem.

Lewis’ algorithm is based on the following
elegant result: if

S={C1,...,Cm} aﬂd Ci={Li|""’Lik(i)}’

then S is renamable-Horn if and only if the set
m

s*=U {{L;. Ly} 11 <j<k<k(i)}
i=1

is satisfiable.

Since S* contains at most two literals per clause,
its satisfiability can be tested in linear time [2].
This is done by constructing a directed graph
G(S¥*), whose vertex set is

{x, X|x is a variable of S},
and whose edge set is
{(L, M), (M, L) | {L, M} is a clause of S*}.

Now, S* is satisfiable if and only if for no literal L
both L and L are in the same strongly connected
component of G(S*). The strongly connected com-
ponents are found using depth-first search [1,6],
which is linear in the size of the graph.

Thus, Lewis’ result leads to a straightforward
algorithm for testing renamability, with worst-case
complexity O(c-v?), where v is the number of
variables and ¢ the number of clauses. Note that

0020-0190,/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 269

Volume 21, Number §

the size of the input is O(c - v). The desired renam-
ing is obtained from the truth assignment satisfy-
ing S*.

In this paper we describe an improved al-
gorithm for testing whether a formula is renama-
ble-Horn, with worst-case running time O(c-v-
(log v)?). The algorithm is based on Lewis’ result,
but it avoids the explicit construction of S* and
G(S*). We still test satisfiability of S* using
depth-first search on G(S*), but with the concise
representation of G(S*) given by S itself. This
makes it possible to avoid considering all edges of
G(S*).

Section 2 of this paper discusses our refinement
of depth-first search. It shows that for any graph
one has to consider at most a linear number of
edges to determine the strongly connected compo-
nents. Section 3 shows how we can quickly find
these edges.

2. Useful edges in depth-first search

We assume the reader to be familiar with
depth-first search (see, e.g., [1] or [6]). It divides
the edges of the graph into four disjoint classes:
tree edges, forward edges, cross edges, and back-
ward edges.

The search algorithm also gives a changing par-
tition of vertices. At each point of the algorithm
the cells of this partition contain the vertices which
are known to belong to the same strongly con-
nected component. In the beginning each cell con-
tains just one vertex; after the algorithm
terminates, the cells are exactly the strongly con-
nected components. In usual depth-first search,
the information about this partition is implicit; we
will use an explicit representation.

The partition changes when two of its cells are
merged. This happens when an edge is found
which makes the cells equal. There are thus only a
linear number of changes, since each change de-
creases the number of cells by one. Specifically,
there are at most n — 1 edges which force us to
merge two components, where n is the number of
vertices.

Suppose depth-first search has proceeded to
node v. Call an edge (v, w) useful if either it is a

270

INFORMATION PROCESSING LETTERS

18 November 1985

tree edge or following it forces us to merge two
cells. Since there are at most n—1 tree edges,
there are at most 2n — 2 useful edges. The useful
edges determine the same strongly connected com-
ponents as the original edges. Therefore, one has
to consider only useful edges in depth-first search.
Our strategy is to use data structures which enable
us to find these edges fastly.

Next we show how useful edges can be recog-
nized on the basis of the partition. Assume we are
currently inspecting node v. Denote by cell(u) the
cell of the partition containing vertex u, for all u.
Let (v, w) be an edge in the graph. We claim that
it is a useful edge if and only if cell(v) # cell(w)
and the component including w is alive, i.e., it has
not been output yet.

Suppose (v, w) is useful. If it is a tree edge, then
cell(v) # cell(w), since cell(w) = {w}, and it cannot
be output yet. If (v, w) causes two components to
be merged, the components must be disjoint at this
stage, i.e., cell(v) # cell(w). Since v belongs to the
same strongly connected component as w, the
strongly connected component containing w can-
not be output yet.

For the converse, suppose (v, w) is not useful,
i.e,, it is a forward, backward, or cross edge which
does not force us to merge cell(v) and cell(w).
Assume first (v, w) is a forward edge. If cell(w) is
alive, we must have cell(v)= cell(w), since the
search from w has already been completed.

Assume then (v, w) is a backward edge. In this
case, cell(w) is alive and there is a path from w to
v. Since (v, w) does not merge cell(v) and cell(w),
we must already have cell(v) = cell(w).

Finally, assume that (v, w) is a cross edge. If
cell(w) is alive, then there is a path from w to v.
Since (v, w) is not useful, we have already cell(v) =
cell(w).

This characterization of useful edges shows that
they can be recognized by using information about
the cells of the partition. The next section shows
how this information is organized so that it can be
used and updated efficiently.

3. Representing the graph G(S*)

Forming the graph G(S*), defined in Section 1,
can take c-v? steps. However, this graph is de-

Volume 21, Number 5

termined by S, which is of length O(c - v), i.e., the
graph has a short description. Using this descrip-
tion and the results of the previous section, we can
improve the algorithm of Lewis.

We will build a balanced search tree from each
clause of S. The clause (x,,...,x,) generates edges

(X, x)1 <i,j<k, i#®]
)

to G(S*). These edges will be represented by a tree
T, whose leaves contain the literals x,, ..., x,. Thus,
for each pair z, y of distinct literals in the leaves of
T, (z, y) is an edge of G(S*). Each interior node of
T contains a bit twocell(p), which indicates whether
the subtree rooted at p contains at least two liter-
als belonging to different cells, both alive. If this
condition does not hold, then p contains the name
of the cell to which all alive literals in p’s subtree
belong.

This representation makes it possible to find
useful edges efficiently. For each literal z we main-
tain a list of all trees where the literal Z occurs as a
leaf; these trees represent edges of the form (z, w).
Suppose we have in the depth-first search arrived
at literal z. We choose a tree containing z. We
want to find a leaf with literal y, different from z,
such that cell(y) # cell(z) and cell(y) has not been
output yet. Then, (z, y) is a useful edge. The search
for y can be done by starting upwards from z and
using the information given by the twocell-bits. At
an appropriate node the search turns downwards
and proceeds to a leaf containing y. If such a leaf
does not exist, then all the literals in the tree,
except possibly Z, are either already output or
belong to the same cell as z. Then the tree does not
represent any useful edge starting from z. There-
fore, another tree containing Z is chosen and the
process is repeated. This continues until a useful
edge is found, or all trees containing Z have been
searched. In the latter case we know that no useful
edge starting from z exists.

Next we estimate the time used for searching
useful edges. The search takes O(log v) time per
tree. Suppose z occurs in e, trees. Then, finding
one useful edge starting from z takes O(e, - log v)
time. If we later have to find more useful edges
starting from z, the search can be continued from
where it was stopped previously, since an edge

INFORMATION PROCESSING LETTERS

18 November 1985

cannot become useful after it was useless. Thus,
finding useful edges starting from z during the
whole depth-first search can be done in O(e, - log v)
time. As the sum of e,’s is bounded by ¢ v, the
total time needed for searching the useful edges is
O(c-v-log v).

We still have to show how the trees can be
updated efficiently. We maintain an array contain-
ing for each literal z the name of the cell in the
partition currently containing z. For each cell, a
linked list of its members is kept. When two
components are merged during the search, we
change the component names of the vertices in the
smaller cell. (This is the standard weighted union
rule for the union-find problem [6].) Therefore,
each literal changes component at most log v times.
When a literal z changes component, or the com-
ponent containing z is output, we have to update
the trees where z occurs. For one tree, O(log v)
time is enough; to update all trees where z occurs
takes O(e, - log v) time. Thus updating the in-
formation about z during the depth-first search
can be done in total time O(e, - (log v)?), and the
updates for all variables can be done in O(c-v-
(log v)?) time.

4. Remarks

We have described an algorithm for renaming a
set of clauses as a Horn set. The algorithm was
based on the concept of a useful edge. Since there
is only a linear number of such edges in any graph,
following only them can speed up depth-first
search. We showed that useful edges can be re-
cognized on the basis of component information.

The graph arising in our application is a dense
one, but it has a short description, the original
formula. This description is used to build tree
structures which make it possible to find useful
edges reasonably fast. We suspect that a similar
technique can be applied also to other classes of
graphs with concise descriptions.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and
Analysis of Computer Algorithms (Addison-Wesley, Read-
ing, MA, 1974).

271

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

[2] B. Aspvall, M.F. Plass and R.E. Tarjan, A linear-time [S] H.R. Lewis, Renaming a set of clauses as a Horn set, J.
algorithm for testing the truth of certain quantified Boolean Assoc. Comput. Mach. 25 (1) (1978) 134-135.
formulas, Inform. Process. Lett. 8 (3) (1979) 121-123. [6] K. Mehlhorn, Data Structures and Algorithms, Vol. 1:
[3) R. Fagin, Horn clauses and database dependencies, J. As- Sorting and Searching; Vol. 2: Graph Algorithms and NP-
soc. Comput. Mach. 29 (4) (1982) 952-985. Completeness; Vol. 3: Multidimensional Searching and
[4] R. Kowalski, Predicate logic as programming language, in: Computational Geometry (Springer, Berlin-Heidelberg—
J.L. Rosenfeld, ed., Information Processing '74 (North-Hol- New York-Tokyo, 1984).

land, Amsterdam, 1974) 569-574.

272

