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We present an algorithm for the routing problem for two-terminal nets in
generalized switchboxes. A generalized switchbox is any subset R of the planar
rectangular grid with no nontrivial holes, i.e., every finite face has exactly four
incident vertices. A net is a pair of nodes of nonmaximal degree on the boundary of
R. A solution is a set of edge-disjoint paths, one for each net. Our algorithm solves
standard generalized switchbox routing problems in time O(n(log n)?) where n is
the number of vertices of R, i.e., it either finds a solution or indicates that there is
none. A problem is standard if deg(v) + ter(v) is even for all vertices v where
deg(v) is the degree of v and ter(v) is the number of nets which have v as a
terminal. For nonstandard problems we can find a solution in time O(n(log n)> +
|U)?) where U is the set of vertices v with deg(v) + ter(v) is odd © 1986 Academic

Press, Inc

1. INTRODUCTION

In this paper we solve the routing problem for two-terminal nets in
generalized switchboxes. A generalized switchbox is any subset R of the
planar rectangular grid without holes, i.e., all finite faces of R have exactly
four incident edges (cf. Fig. 1). Let

B(R) == {v; v node of R and v has degree < 3}

be the nodes of 2 which do not have maximal degree. Note that all nodes
of B(R) are incicent to the infinite face. A two-terminal net is an unordered
pair of points in B(R). A generalized switchbox routing problem (GSRP) is
given by a zenerzlized switchbox R and aset N = {(s,.¢,): 1 <i <m} of
nets. A solution to the problemis aset P = { p,, 1 < i < m} of paths such
that

(1) p, connects s; and ¢, for 1 < m,
(2) p, and p; are edge-disjoint for i # j.
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F1G. 1. (a) A generalized switchbox, (b) not a generalized switchbox.

In this paper we present an algorithm which solves standard generalized
switchbox routing problems in time O(n(log n)?) where n is the number of
vertices of the routing region R. A routing problem is standard if deg(v) +
ter(v) is even for all nodes v where deg(v) is the degree of node v
and ter(v) is the number of nets which have v as a terminal. We call
deg(v) + ter(v) the extended degree of node v. For nonstandard GSRPs we
do slightly worse. We show how to find a solution in time O(n log?n + |[U|?),
where U is the set of vertices with odd extend degree.

A solution to a routing problem in the sense described above is usually
called a solution in knock-knee mode. Note that a vertex v of R is used by
either one wire or two wires which either go straight through v or bend in v
(cf. Fig. 2). Previous work on routing problems in knock-knee mode can be
found in Preparata-Lipski, Frank, Mehlhorn-Preparata, Becker—Mehlhorn,
Kramer-van Leeuwen, and Brady-Brown. Preparata—Lipski solve the
channel routing problem, Frank and Mehlohorn-Preparata solve the
switchbox routing problem. A switchbox is a rectangular subset of the plane
grid. The running time of their algorithm is O(nlogn) and O(ulogu),
respectively, where u is the circumference of the rectangle. Becker—
Mehlhorn consider a more general problem than the one considered here.
They consider arbitrary subsets of the planar grid (holes are allowed!!) and
solve the routing problem in time O(n3/?). Finally Brady-Brown consider

I

F1G. 2. (a) straight, (b) knee, (c) crossing, (d) knock-knee.
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the problem of layer assignment. They show that any layout in knock-knee
mode can be wired using four conducting layers.

All papers mentioned above (except Brady-Brown) and also the present
paper are based on a theorem of Okamura—Seymour on multi-commodity
flow in planar graphs. We review their theorem in Section 2. In Section 3
we refine their theorem to the special case of standard generalized switch-
boxes. In Section 4 we derive an algorithm for standard GSRPs and analyse
its running time. In Section 5 we deal with nonstandard GSRPs.

2. THE THEOREM OF OKAMURA-SEYMOUR

Let G = (V, E) be a graph and let N be a set of unordered pairs of
vertices of G; N = {(s;, t,); 1 <i<m}. A cutis a subset X C V of the
vertices of G. The capacity of a cut X is the number of edges in E with
exactly one end in X and the density of a cut X is the number of nets
(s, 1) € N with exactly one terminal in X, i.e.

cap(X) =|{e€ E;e=(a,b)andac X, b & X},
dens(X) = |{(s,1) EN;s€ X, t & X }|.
We will also use

CAP(X)={e€E;e=(a,b)anda € X, b & X}

and
dens( X}, X,) = {(s,1) EN;s€ X, 1€ X,}

forX;, X, CV, X,NX,=0.

THEOREM (Okamura-Seymour). If G is planar and can be drawn in the

plane such that s,,...,s,.t,,...,t, are all on the boundary of the infinite
region and cap(X) — dens(X) is nonnegative and even for all cuts X C V
then there are pairwise edge-disjoint paths p,, ..., p,, such that p, connects s,

andt,, 1 <i < m.

Okamura—Seymour give a constructive proof of their theorem; their proof
leads to the following algorithm which can be made to run in time O(n?) as
shown by Becker—Mehlhorn.

Let G be an embedding of G with s,,...,s,,?,,..., ¢, on the boundary
of the infinite face. We may assume w.l.o.g. that G is 2-connected. Then the
boundary of the infinite face consists of a circuit C which we regard as a
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subgraph of G. We say that a cut X is critical if X is connected, saturated,
Le., cap(X) = dens(X), and CAP(X) contains exactly two edges of C.
Thus if X is critical then C|(V(C) N X) and C|(V(C) — X) are both
paths.

We can now describe the algorithm.

let e = (v, w) be an arbitrary edge on the boundary C of the infinite face
of C;
if there is a critical cut X withv € X, w & X
then let X be such a critical cut with
| V(C) N X| minimal;
let (s, ) € N be a net with S € X, t & X such that the subpath of
C from w to ¢ not using v has minimal length; (cf. Fig. 3)
remove edge e from G;
replace net (s, t) by the pair (s, v) and (w, ¢) of nets;
construct a solution for the reduced graph using the algorithm
recursively and obtain the path for net (s, ¢) by connecting the
paths for nets (s, v) and (w, ¢) by edge e.
else remove edge e from G and add net (v, w) to the set of nets;
construct a solution for the reduced graph and throw away the
path for net (v, w)
fi

The correctness of this algorithm can be deduced from the paper of
Okamura-Seymour; a proof can be found in Becker—Mehlhorn.

We close this section with a collection of simple observations. For vertex
v € V let deg(v) be the degree of v and let ter(v) be the number of nets in
N which have v as a terminal. We call a routing problem (given as a planar

Fi1G. 3. Choice of (s, 1). The area between w and ¢: no net having a terminal in the interval
goes across cut.
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graph and a set of nets) standard if the extended degree deg(v) + ter(v) is
even for all v € V. We call it solvable if it has a solution.

LEMMA 1. Let G = (V, E) be a planar graph and let N be a set of nets
having their terminals on the boundary of the infinite face.

(a) The routing problem (G, N) is standard iff cap(X) — dens(X) is
even for every cut X.

(b) A standard routing problem (G, N) is solvable iff no cut X is
oversaturated, i.e., there is no cut with cap(X) < dens(X).

Proof. (a) Let X C V be arbitrary. We have
dens(X) = } ter(v) — 2[{(s,); (s,z) ENands, 1€ X}|

veXx
and
cap(X) = Y deg(v) — 2[{(a,b); (a,b) € Eand a,be X}|.

veX

This proves (a).

(b) If (G, N) is solvable then there is clearly no oversaturated cut.
Conversely, if dens(X) < cap(X) for every cut X then cap(X) — dens( X)
is nonnegative and even by part (a). Hence (G, N) is solvable by
Okamura-Seymour. O

3. CriticaL CUTS IN STANDARD GENERALIZED SWITCHBOXES

Let R be a generalized switchbox. We use C(R) to denote its boundary,
Le., the boundary of the infinite face. Let B(R) = {v € C(R); deg(v) < 3}
and let N C B(R) X B(R) be a set of nets. We assume throughout this
section that (R, N) is a standard problem, i.e., deg(v) — ter(v) is even for
all v e V.

Our first goal is to show that nodes v € C(R) with ter(v) = deg(v) are
easily handled.

LEMMA 2. Let v € B(R) be a node with deg(v) = ter(v). Let (v,t,),
1 <i < ter(v), be the sets which have v as a terminal and let b,1<i<
ter(v), be the neighbors of v. The following transformations turn a solvable
problem into a solvable problem.

(1) If ter(v) =1 then delete v and replace net (v, t)) by net (b, t,)

(2) If ter(v) =2 then let by, t,, t,, b, be the order in which these four
points lie on circuit C; consecutive points may be equal. Delete node v and
replace nets (v, t,),(v, t,) by (b,, t,) and (by, 15).
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(3) If ter(v) = 3 then let b, by be neighbors of v on circuit C. Let
by, t,, 15,5, by be the order in which these five points lie on circuit C;
consecutive points may be equal. Delete node v and replace net (v,t;) by
(b, t,), 1 <i<3.

Proof. We prove part (3) the other two cases being simpler. Consider a
solution p,,..., p,, for our routing problem. Assume w.l.o.g. that p, is the
path for net (v, t), 1 <i < 3. We may assume w.l.o.g. that paths p,, p,, p;
do not cross. Hence path p; passes through vertex b, for 1 < i < 3. Thus
the modified problem is solvable. O

Lemma 1 allows us to simplify routing problems. In a simplified standard
generalized switchbox routing problem (SSGS) there are no nodes v with
deg(v) = 1, and all nodes v with deg(v) = 2 (deg(v) = 3) satisfy ter(v) = 0
(ter(v) = 1). Also nodes with deg(v) = 4 satisfy ter(v) = 0. We will next
characterize the form of critical cuts in SSGSs.

Let (R, N) be a solvable SSGS. We may index the vertices of R by
integer coordinates. Let v be a left upper corner (i.e., deg(v) = 2 and the
left and top neighbor of v do not exist) of R with maximal y-coordinate.
Let w be the bottom neighbor of v (cf. Fig. 4). Note that no vertex of R
has y-coordinate larger then v.

We consider critical cuts X with v € X and w & X if there are any.
Among these cuts we select one with [I/(C) N X| minimal and among these
cuts we select one with | X| minimal. We denote this cut by X,,. One main
goal of this section is to show that X, has a very simple form. Its boundary
consists of at most two line segments (see Lemma 4 for a precise statement).
We start with several simple observations.

(1) R|X, is connected. Otherwise we could take as X, the connected
component of R|X, containing v, a contradiction to the choice of Xj,.

(2) R|X is a generalized switchbox. Assume otherwise. Let X’ 2 X
be obtained from X, by filling the holes. Then v € X',
w & X’, dens(X’) = dens(X,) and cap(X’) < cap(X,). Thus X’ is over-
saturated and our routing problem is not solvable.

(3) Let v and v’ be the endpoints of the path V(C) N X,,. Then every
node x € X, — {v, v’} has degree > 2 in R|X,. Assume otherwise. Con-

|

FiG. 4. Points v and w.
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sider cut X’ = X, — {x}. Then R|X" is still connected, V(C) N X" is still
a path and hence x & V(C), dens( X”) > dens( X,) and cap(X’) < cap(X,),
a contradiction to the choice of Xj,.

Consider the edges in CAP( X)), i.e., the edges with exactly one endpoint in
X,- We can view the “cut” X, as a polygonal line S intersecting exactly the
edges in CAP(X,). Line S consists of straight line segments s, 5,,..., 5,
where s, intersects the edge (v, w).

LEMMA 3. Each segment s, intersects an edge e = (x, y) € CAP(X,)
such that either x ory lies on the boundary C(R) of R.

Proof.  The claim is certainly true for segments s, and s,. Assume now
that there is a segment s,, 1 < i < k, which cuts no edge incident to a node
on the boundary. Assume w.l.o.g. that s, is vertical and that X, is to the
right of 5. Then s,_, and s,,, are horizontal.

Case 1. Either s,_, or s, extends to the right of 5,. Then we can
move s, one unit to the right and obtain a cut X’ with dens(X’) = dens( X)),
| X'| <|X,l cap(X’) < cap(X,) and |V(C) N X'|=|V(C)N X,|, a con-
tradiction to the minimality of X|,.

Case 2. 5, ; and s, extend to the left of s5,. Then we can move s,
one unit to the left and obtain a cut X’ with dens(X’) = dens( X,) and
cap(X’) = cap(X) — 2. Thus X’ is oversaturated, a contradiction to our
global assumption that we deal with a solvable problem. O

LEMMA 4. Line S consists of at most two segments. In addition, if there
are two segments then the angle < (s, s,) is concave relative to X,,.

Proof.  Assume first that angle « (s, s,) is convex relative to X, (cf.
Fig. 5). Then k = 2. Since ter(v) = 0 and ter(x) = 1 for all other nodes
X € X, cut X, cannot be saturated, a contradiction.

This shows that k > 2 implies that «(s,, 5,) is concave relative to X,,. It
remains to show that k > 2. Assume otherwise, i.e. k < 3. We have to
distinguish two cases

w

F1G. 5. Angle (s, s,) is convex and Ak = 2.
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|
F1G. 6. The boundary C(R) is shown solid.

Case 1. «x(s,, s3) is convex relative to X,,. We know from the proof of
Lemma 3 that there are points in C(R) immediately to the right of s,. Let a
be the lowest such boundary point above s,. Then either the point above or
below a is also a boundary point.

Case 1.1.  The point immediately below a is not a boundary point.
Then the point above a is a boundary point; call it b (cf. Fig. 6).

We consider the two cuts as shown in Fig. 6. Note that cut X, exists since
vertex a was chosen as the lowest boundary point to the right of 5,. We
have

cap(X) = cap(X,) + cap(X;)
and

dens( X) = dens( X;) + dens(X,) — 2 dens( X,, X,)

since vertex a has degree 4 (if @ had only degree 3 or less then R would not
be biconnected) and hence ter(a) = 0, dens(X) < dens(X,) + dens(X,).

FIGURE 7
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FIGURE 8

From cap( X) = dens(X) and cap(X;) = dens(X,) for i = 1, 2 we conclude
cap( X,) = dens(X;) for i = 1, 2. In particular, X, is saturated. This con-
tradicts the minimality of X,.

Case 1.2. The point below a is a boundary point and hence s, cuts only
one edge (cf. Fig. 7). If the point above a is also a boundary point then we
can certainly shorten cut X, and still have a saturated cut, a contradiction.
So let us assume that the point above a is not a boundary point. Let b be
the boundary point which lies above a and is closest to a. Then the
boundary C(R) either goes straight through b or bends in b.

Case 1.2.1. The boundary C(R) goes straight through b (cf. Fig. 8).
Then b must lie in the top row of R. We consider the cut X’ obtained by
moving s, one unit to the right (cf. Fig. 9). We have dens(X’) = dens( X,)
since ter(a) = 0 (note that deg(a) = 4). Also cap(X’) = cap(X,) and hence
X’ is saturated. This contradicts the minimality of cut Xj,.

Case 1.2.2. The boundary C(R) bends in vertex b (cf. Fig. 10).
Consider cuts X; and X, as indicated in Fig. 11. We have cap(X,) =
cap(X,) + cap(X,) and dens(X,) = dens(X,;) + dens(X,) —

FIGURE 9
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FIGURE 10

2 dens(X,, X,) < dens(X;) + dens(X,). Thus cap(X;) = dens( X;), a con-
tradiction to the minimality of X,.

Case 2. <«(s,,s,) is concave relative to X,. The proof of Lemma 3
implies that there is a boundary point immediately to the left of segment s,.

Case 2.1. s, cuts at least two edges. Then the boundary points to the
left of s, liein 4 (> 1) segments as shown in Fig. 12. Let £; be the number
of vertices in the segment between a, and b, inclusive, 1 < i < h. Note that
deg(a,) = deg(b;) = 4 and hence ter(a,) = ter(b,) = 0. We consider cuts
Xi, ..., X,,, as shown in Fig. 13. We have

cap(X) = cap(X,) + - +cap(Xpur) + 3 (64— 2) +2

i=1

since ¢, — 2 horizontal edges are not cut anymore in the ith segment and
two vertical edges are not cut anymore. These edges are indicated as dashed

FIGURE 11
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FIGURE 12

xh+l 'bh

FIGURE 13
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lines in Fig. 13. Also

h
dens(X,) < dens(X;) + --- +dens(X,.,) + X (£ —2)
i=1

since every net which goes across cut X also goes across one of the cuts X;
or has a terminal in one of the vertical segments between a; and b,. Since
cap(X,) = dens(X,) and cap(X,) > dens(X;), 1 <i < h + 1, we conclude

h
cap(X,) + -+ +cap(Xh + 1) + Y (£, —2) +2
i=1

= cap(X,)
= dens( X,)

h
< dens(X;) + --- +dens(X,,;) + X (£ —2)
i=1

h
<cap(X;) + -+ +cap(X,,;) + Z (4 -2),

i=1
a contradiction.

Case 2.2. S, cuts exactly one edge. Then the situation is as shown in
Fig. 14. Let ¢, be the number of vertices between and including a; and b,,
1 <i<h—1,let ¢, bethe number of vertices below and including a, and

FIGURE 14
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FIGURE 15

above s;. Consider cuts X, ..., X, as shown in Fig. 15. We have

h-1
cap(X,) = cap(X;) + --- +cap(X,) + > (£—-2)+ (£, —1) +2
=il
and
h-1

dens( X;) < dens(X;) + --- +dens(X,) + X (£ —2)+¢,— 1.
i=1

As in Case 2.1 we can now derive a contradiction. This finishes the case
analysis and proves Lemma 4. O

Lemma 4 is very crucial for the efficiency of our algorithm. It completely
characterizes the form of the minimal critical cuts X,, through edge (v, w).

4. THE ALGORITHM

Let R be a generalized switchbox with n vertices and let N be a set of
nets. Throughout this section we assume that (R, N) is a standard problem.
The goal of this section to describe an algorithm which solves any standard
generalized switchbox routing problem in time O(n(log n)?).

The algorithm is a special case of the general multicommodity flow
algorithm outlined in Section 2. It derives its speed from the clever use of
the characterization of minimal critical cuts derived in Section 3. The
algorithm processes the routing region R row by row starting at the top
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row. In every step it considers a left upper corner in the top row, say v, and
eliminates the vertical edge (v, w) incident to v as described in Section 2.
There are two main tasks which we have to solve (efficiently).

(1) Find the minimal critical cut X, through edge (v, w), if there is
any, and

(2) choose the appropriate net to route across cut X,,.

We use two data structures to solve these tasks efficiently. The first data
structure is a range tree for the set of nets and is global to the algorithm.
The second data structure is a priority queue for the free capacities of the
cuts through edge (v, w) and is local to each row of the routing region. We
assume that the vertices on the boundary C(R) of the routing region are
numbered in clock-wise order by the integers in range [1... M].

As the algorithm proceeds vertices in C( R) are deleted (always a left-upper
corner) and new nodes become boundary nodes. The new boundary vertices
inherit the number from deleted vertices as shown in Fig. 16. In this way
the numbering of the boundary vertices remains in increasing clockwise
order. However, adjacent boundary vertices are not necessarily numbered
by consecutive integers. From now on we identify nodes in C(R) with their
number. _

A net is represented as a pair of integers, namely by the pair of numbers
associated with its terminals. The set N = {(s;,¢;); 5, <t, 1 <i <m} of
nets is stored in a range tree. Range trees were introduced by Lueker and
Willard; see also Mehlhorn, Section VII.2.2. We briefly review range trees.
Range trees consist of a primary tree and a set of secondary trees, one for
each node of the primary tree.

In our case the primary tree is a static search tree for integers 1,..., M of
depth O(log M) = O(log n). Let v be a node of the primary tree and let
NL(v) = {(s, t) € N; the leaf labeled s is a descendant of v}. The sec-
ondary tree ST(v) associated with node v is a balanced tree (AVL-tree,
BB[a]-tree, or...) for the ordered multiset {#; (s,¢) € NL(v)}. In every
node of w of a secondary tree we store two auxiliary fields: the first field
contains the number of leaf descendants of w and the second field contains

a b
v X X
deleting v
- y
w ’y y

F1G6.16. How numbers are inherited, (b) y inherits v’s number.
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the maximal s such that net (s, ) € N is stored in that secondary tree and
the leaf ¢ is a descendant of w. It is clear that a range tree requires space
O(mlog M) = O(nlog n) since every net belongs to O(log M) node lists.
It supports the following operations in time O(log n)?.

(1) Insert a net into N or delete a net from N.

(2) Given a, b, ¢, d finds nets (s,¢) € N and (s’,¢’) € N with a < s,
s’ < b, c <t t' <d and ¢t maximal or s’ maximal, respectively. These nets
can be found as follows: Consider the search paths for a and b in the
primary tree and let C_ to be the roots of the maximal subtrees of the
primary tree between these paths. Then every net (s,t) € N witha <s < b
belongs to NL(v) for exactly one node v € C__. Also |C, | = O(log M).
For every node v € C,, we search for C in the secondary tree ST(v) and
find the maximal ¢(v) and s’(v) such that ¢ < #(v) < d, ¢ < t’(v) < d and
(s(v), t(v)) € NL(v) and (s’(v), t(v)) € NL(v). To find ¢(v) we only have
to inspect the leaf immediately to the left of the search path for d and in
order to find s’(v) we have to inspect the auxiliary fields of the nodes
between the search paths to ¢ and d. Finally comparing (s(v), t(v)) and
(s’(v), t'(v)) for all v € C_, allows us to find the desired nets (s, ) and
(s, t)).

(3) Given a < b find the number of nets (s,¢) € N with either
a<s<b<tor s<a<t<bh Let nj=1{(s,1); a<s<b<t}| and
ny=|{(s,1); s<a<t<b}. We can determine n, as follows; n, is
determined similarly. Define C,, as above. For every node v € C_ com-
pute |{(s, ) € NL(v); b < t}|in time O(log n) by a search in ST(v) using
the auxiliary information associated with the nodes.

The local data structures for the rows will be described below. We give the
algorithm first.

(1) initialize the range tree for the set N of nets

(2) while routing region nonempty

(3) do consider a top row of the routing region;

4) initialize the local data structure for the current row;

®) while row nonempty

6) do let v be the left corner of the row, let w be its bottom
neighbor and let x be its right neighbor;

@) if ter(v) = deg(v)

®) then route as given by Lemma 2 and delete v;

©) update data structures
(10) else find minimal critical cut X through edge (v, w);
(11) if this cut does not exist
(12) then delete node v add net (x, w)

(13) and update data structures
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(14) else find net (s, ¢) to be routed across

(15) cut X, s € X, t € X,; delete vertex v;

(16) delete (s, t) from the set of nets and add nets
(x,s) and (w, t);

17 update data structures

(18) fi

19) fi;

(20) split routing region if it is not biconnected anymore;

(21) od

(22) od

We will next describe the local data structure for each row. Let L be the
length of the top row. We consider cuts consisting of one horizontal
segment and one vertical segment or of only a horizontal segment. Let X,
be the cut where the horizontal segment intersects exactly i edges of the
routing region (cf. fig. 17). For every i let

feap( X,) = cap(X,) — dens(X))

be the free capacity of cut X,. We have to execute the following operations
on feap(X;), 1 <i < L.

(1) compute fcap(X;), 1 < i < L to initialize the local data structure in
line (4)

(2) find the maximal / with fcap(X;) = 0 to find the minimal critical
cut X, through edge (v, w) in line (10).

(3) decrease fcap(X;) by two for a < i < b to update the local data
structure in lines (9), (13), and (18).

We show first how to do the first task in time O(L(log n)?). Consider cut

v X
IV MMAMMIAAWAWIVEIVVAMAMMAMAMAMAMAAAVI A WAV xL+l
3 3 2 2 b3
& 4 < 2 S
b3 b R < < :»
2 2 P4 3 3
b3 23 < S 4
2 < S b <
< ? S 3 P
‘: < S < 3
b S b4 P .:
b < <
b3 < b3
$ < >
L P <
X X X X
1 2 3

Fi16.17. Thecuts X;,1 <i < L.
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X,. We know that X; N V(C) is a path and hence the numbers of vertices
X, N V(C) form an interval [h, j] with A < j or two intervals [, M], [1, j]
with A > j. Note that k& is the number of vertex v. The integer j is easily
found by computing in a preprocessing step for every vertex U of R the
highest vertex below u which lies on C(R). The capacity of cut X; is now
readily computed in time O(1) by adding the lengths of its constituting
segments. The density of cut X, is computed in time
O((log n)?) using the third property of range trees derived above.

It remains to show how to solve the other two tasks. We use priority
queues with updates as described in Galil-Naamad; see also Mehlhorn,
Section IV.9.1. They allow us to perform these tasks in time O(log ) each.

We will next discuss the lines of our algorithm in more detail. Lines (1)
and (4) were already described. In line (8) we route as given by Lemma 2.
Let (v, t;) and (v, t,) be the two nets having v as a terminal with v, ¢, ¢, in
clockwise order on C(R). Let i, be maximal such that 7, and 7, both
belong to X, for i < i,. Then fcap(X;) decreases by two for i < i,. We also
have to delete two nets from N and add two other nets. Thus the cost of
line (8) is O(log n + (log n)?) = O((log n)?). Line (10) takes time O(log n)
by property (2) of the local data structure. In line (12) we have to add one
net to N and to reduce fcap(X;) by two for all i.

In line (13) we first have to find the net (s, ) which has to be routed
across and cut X, i.e., s € X, t € X, and ¢ is as close to w as possible.
Since X, NV(C) is a path the boundary nodes in X, form an interval
[A, j]1 with h <j or two intervals [h, M] and [1, j] with A > j. In the
former case net (s, t) is either the net (s’,¢) with s’ < h’ < ¢’ <j and s’
maximal or the net (s, ¢”’) with h < s” <j < t” and " maximal. In the
latter case the net (s, t) is either the net (s’,¢’) with s’ < h < ¢’ < M and
s’ maximal or the net (s”,¢t”) with 1 < s” < h <t” <j and " maximal.

In line (16) we have to delete one net from N and add two other nets for
a cost of O((log n)?). In line (17) we have to change fcap( X,) for some cuts
X,. Let (s, t) be the net to be routed across X,. Let i, and i, be such that
s,t € X, fori <ijands,t € X, for i > i;. Then fcap( X;) decreases by two
for i < i, and i > i,. This change requires time O(log n).

We finally have to discuss line (20). Let y be the “diagonal” neighbor of
vertex v (cf. Fig. 17). Then y (and only y) may become an articulation
point by the removal of v. Vertex y becomes an articulation point if y
belongs to C(R) before the removal of v, i.e., if y was numbered prior to
the removal of v. Thus it is easy to test whether the routing region has to be

split.

" We split the routing region by finding the nets (s;, ¢;) which have to go
through y using property (3) of the range tree and by replacing them in
nets (s;, ), (¥, ;).
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We then apply the algorithm separately to both parts. It is important to
observe that we can use the same global data structure for both parts and
that we can continue to process the current row, using the current local data
structure.

This concludes the description of the algorithm and its data structures.
The analysis of the running time is also easily completed at this point. All
lines except line (4) takes time O((log n)?) and eliminate one vertex. Line
(4) takes time O(L(log n)?) where L is the length of the current row; i.e.,
time O((log n)?) per vertex. Thus total running time is O(n(log n)?). We
summarize in

THEOREM 1. Let (R, N) be a standard generalized switchbox routing
problem with a routing region of n vertices. Then a solution (if there is one)
can be constructed in time O(n(log n)?).

5. NONSTANDARD ROUTING PROBLEMS

This section is devoted to nonstandard routing problems. We show how
to find efficiently a solution for a nonstandard GSRP if there is one.

We review the next two basic lemmas from the paper of Becker-
Mehlhorn; the proofs can be found there.

LEMMA 5. Let (R, N) be a nonstandard GSRP which has a solution.
Then there is a solvable standard GSRP(R, N’) where N’ = N U P and P is
a pairing of U = {v; v has odd extended degree }.

We call (R, N’) a standard extension of (R, N). Our extension is based on
the concepts of U-minimal cut and canonical extension.

Let X be a saturated cut and let uy, u,,...,u,, be the clockwise
ordering of X N U. The cut X is U-minimal if X N U # & and there is no
simple saturated cut Y with Y N U= {u,, u,,y,...,u;} with 1 <i<j<

2k. The canonical extension of (R, N) with respect to X is obtained by
adding nets (u,,_,, 45,;), 1 <i < k. Note that adding these nets will make
the extended degrees of all vertices in X even.

LEMMA 6. Given a solvable nonstandard GSRP. An iterative application
of canonical extension with respect to U-minimal cuts leads to a solvable
standard GSRP.

Lemma 6 leads to the following algorithm for turning a nonstandard
problem into a standard problem.
(1) U « {v; extended degree of v is odd}
(2 U< U
(3) while U # @ do
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4) if there is an oversaturated cut
) then terminate and declare that the problen has no
solution
(6) fi
©) let X be a U-minimal cut (X = V is possible)
(8) construct the canonical extension
) U<U-X
(10) od

Becker—Mehlhorn showed how to implement this algorithm in time
O(bn + |Uy|*) = O(bn) where b is the number of vertices on the boundary
of the infinite face. Their algorithm works for arbitrary planar graphs where
every interior node has even degree. The algorithm consists of two phases.

(1) In phase one the free capacity of all cuts X is determined which
can conceivably become U-minimal during the extension of the algorithm.
This phase takes O(bn) and builds up data structure of size O(|U,|*) to be
used in the second phase.

(2) In phase two, the algorithm above is used to construct the standard
extension. Phase two takes time O(|U,|?).

We will show how to execute phase one in time O(n(logn)?) in our case.
This will give an O(n(log n)* + |U,|?) algorithm for solving nonstandard
problems.

The main idea for the improved running time is the following: We may
assume w.l.o.g. that U-minimal cuts have a very restricted form. Let X, be
a U-minimal cut. As in Section 3 we can view X, as a polygonal line S
intersecting exactly the edges in CAP(X,). Line S consists of several
straight line segments. We claim that two suffice.

LEMMA 7. Let (R, N) be a solvable generalized switchbox routing prob-
lem with U as its set of vertices of odd extended degree. Then there is a
U-minimal cut X, consisting of at most two straight-line segments.

Proof. If V is a U-minimal cut then the claim is certainly true. Assume
otherwise. Choose a U-minimal cut X, consisting of straight line segments
S1s--., 8, with k£ minimal. Note that & # X, N U # U since V is not
U-minimal. If k < 2 then we are done.

So let us assume finally that k > 3. We may assume w.Lo.g. that s, is
horizontal and the left end of s, intersects the boundary of R. Then s,
intersects an edge of R whose left endpoint lies of the boundary of R. As in
the proof of Lemma 4 we distinguish two cases.
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FIGURE 18

Case A. s, runs to the right as seen from the lower endpoint of s,.

Case Aa. extending s, for one segment of the left does not intersect a
boundary edge (cf. Fig. 18). Then the boundary points to the left of s, lie in
h (= 1) segments as shown in Fig. 18.

Let ¢, be the number of vertices in the segment between a, and b,
inclusive, 1 < i < h. Note that deg(a), = deg(b;) = 4 and hence ter(a;) =
ter(b;) = 0. We consider cuts Xj,..., X ,; as shown in Fig. 19. Let o, be
the number of vertices of odd extended degree in the segment between a;
and b,. We have

cap(X,) = cap(X,) + -+ +eap(Xper) + L (4= 2)
il

and

A
dens( X,) < dens(X;) + - -+ +dens(X,,,) + X (£ — o0, — 2).

i=1

Since cap( X,) = dens(X,) and cap(X;) > dens(X;) for all i (we deal with a
solvable problem) we conclude that o, = 0 for all i, 1 < i < h, and cap( X))
= dens(X;) for 1 <i < h + 1. Since o, = 0 for all i we conclude further
that UN X, = (UN X)) U--- WU N X,,,) and hence one of the cuts X;
is U-minimal. This contradicts the choice of cut X,

Cases Ab (= not case Aa) and B (not Case A) are similar and are left to
the reader. O
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3

h +1

FIGURE 19

Lemma 7 tells us that we need only consider cuts with at most one bend
when searching for U-minimal cuts. Let e = (x, y) be an edge on the
boundary of R and let Z(e) be the length of a cut through e which consists
of a single straight line segment.

Clearly ¥ ¢(e) < O(n) where the sum is over all edges on the boundary
of R. Also there are only 2 /(e) cuts through e with exactly one bend.
Hence only O(n) cuts must be considered as candidates for U-minimal cuts.
For every single cut we can compute its free capacity in time O(log n)? as
shown in Section 4. Thus time O(n(logn)?) suffices to compute the
information required for the second stage of the algorithm in Becker—
Mehlhorn). We summarize in

THEOREM 2.  Nonstandard routing problems with n vertices and U vertices
of odd extended degree can be solved in time O(n(log n)?) + |U|?).

Proof. By the discussion above one can extend the nonstandard prob-
lem to a standard problem in time O(|U|* + n(log n)?). The standard
extension can be solved in time O(n(log n)?) by Theorem 1.

CONCLUSION

We exhibit a routing algorithm for two-terminal nets in generalized
switchboxes. The algorithm runs in time O(n(log n)?) and finds a solution
—if there is one—in the case of standard problems. Several open questions
remain.
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(1) Can the running time be improved?

(2) Can we also solve non-standard problems optimally in time
O(n(log n)?)?

(3) Can one extend the result to more general routing regions and /or
multiterminal nets?
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