Routing Problems in Grid Graphs

Michael Kaufmann and Kurt Mehlhorn

1. Introduction

The routing problem lies at the heart of VLSI design. A routing problem is given
by a routing region and a set of nets. In this paper the routing region will always
be a grid graph, ie., a finite subgraph of the integer grid.

Definition. The integer grid has vertices x € Z? and edges {x, y} where x = (x1, x2),
y = (1,y2) and |x; — y1| + |[x2 — y2| = 1.

Grid graphs model the popular constraint that wires in a VLSI layout can only
run horizontally and vertically in a natural way. A net or demand is specified
by a pair of vertices (also called terminals of the net); a rough routing (also
called global routing or homotopy) may also be specified. A solution to a routing
problem called layout consists of a set of grid paths, one for each net, such that
the following two conditions hold:

1) The paths are pairwise edge-disjoint.

2) For each net, the path for this net connects the two terminals of the net. In
addition, if a rough routing for the net is specified, then the path must be
homotopic to the rough routing; cf. Section 3 for a definition of homotopy.

A routing problem is naturally viewed as a multi-commodity flow problem.
Each net represents the demand to send one unit of flow of a certain commodity
from one terminal to the other terminal of the net; also each edge has capacity
one. The additional constraint is that a commodity has to be sent along a single
path and cannot be split up into pieces. If all nets have the same terminals then
Menger’s theorem provides us with a solution: The number of edge-disjoint paths
is given by the capacity of a minimum cut. In other words, a set of demands can
be satisfied, if there is no oversaturated cut, i.e., the cut condition holds. Okamura
and Seymour extend Menger’s Theorem to multi-commodity flow problems in
planar graphs where all terminals lie on the boundary of the same face. They show
that the cut condition together with an evenness condition implies solvability.
This theorem together with an algorithmic version of it is discussed in Section 2;
cf. also Frank’s paper in this volume. In Section 3 we then turn to the homotopic
routing problem in grid graphs. The terminals are now allowed to lie on the
boundary of many faces; however global routings have to be specified. Again,
the cut condition together with evenness implies routability. Section 4 is then
devoted to a discussion of the evenness condition. Section 5 deals with special
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cases of the problem of Section 2. It is shown that for grid graphs without holes,
e.g. rectangles or convex polygons, faster algorithms than for the general case
can be obtained. Section 6 discusses the routing problem for grid graphs with a
single hole. Terminals are allowed to lie on both non-trivial faces (the outer face
and the hole) and no rough routing is given.

Mathematical models frequently suppress important features of real life prob-
lems. This is also true for the routing problem as discussed in Section 2 to 6;
in particular, layer assignment is not dealt with and multi-terminal nets are not
treated. They are the subject of Sections 7 and 8.

2. Edge-Disjoint Paths in Planar Graphs

Problem. Planar Edge-Disjoint Paths Problem (PED).

Input:

a) An embedded planar graph G = (V, E).

b) A set A" of nets where each N € .4 is a pair of vertices on the boundary of
the unbounded face of G.

Output: A family {p(N); N € 4"} of paths such that
1) if N = {s,t} then p(N) is a path with endpoints s and t.
2) p(N) and p(N’) are edge-disjoint for NN’ € 4, N # N'. o

Subsets X = V are also called cuts in the sequel. For a subset X < V we
define the capacity cap(X) of X as the number of edges having exactly one
endpoint in X and the density dens(X) of X as the number of nets having
exactly one terminal in X, i.e.,

cap(X) = {{a,b} € E;|{a,b} N X| =1}
dens(X) = {{s,t} € ¥ ;|{s,t} N X| = 1}.

The free capacity of X is then given by fcap(X) = cap(X) — dens(X). A cut
X is saturated if fcap(X) = 0 and oversaturated if fcap(X) < 0. An edge-disjoint
path problem (V, E, A") is even if fcap(X) is even for every cut X; it satisfies the
cut condition if fcap(X) > O for all cuts X.

Theorem 1 (Okamura/Seymour). Let P = (V,E, A") be an even planar edge-
disjoint path problem. Then P is solvable iff P satisfies the cut condition.

For a proof of this result we refer the reader to the paper by A. Frank in this
volume. The proof directly yields an algorithm which we now discuss. Let P be
an even problem. The idea is to construct a sequence P, Py, ... of problems such
that
1) Py=P;

2) P;;; has one less edge than P;;
3) P;is even;
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4) if P; satifies the cut condition then P;y; does;
5) if P;y; is solvable then P; is solvable.

The construction ends when the algorithm either detects a violation of the cut
condition or reaches a problem P, = (Vy, Em, # ) Which has an empty set of
nets and is therefore trivially solvable. The problem P;.; is constructed from P;
as follows. Let eg,ey,...,ex—; be the edges on the boundary of the outer face in
clockwise order with ey = {a,b}. Let us call a cut X simple if there are precisely
two edges e; having exactly one endpoint in X and let us call a cut X a cut
through ey if a ¢ X and b € X. We now distinguish cases.

Case a): There is a simple cut through ey with negative free capacity: Stop and
declare the problem unsolvable.

Case b): There is no saturated simple cut through eg: Then P;y, is obtained by
deleting the edge eo and adding the net {a, b} to the set of nets.

Case c): There is a saturated simple cut through e: Let X be a saturated simple
cut through ey of minimal cardinality and let {s, ¢} be a net such that s € X,t ¢ X
and t is as close as possible to a in a counterclockwise traversal of the boundary
of G. We delete the edge ey and replace the net {s,t} by the two nets {a,t} and
{b,s}. If a =t then {a,t} is not added and if b = s then {b, s} is not added. Case
c) is illustrated by Figure 2.

In the above case distinction it is assumed that the first case which applies
is taken. For the proof of correctness of this algorithm, we again refer the
reader to the paper by A. Frank. The problem of implementation is discussed by
Matsumoto/Nishizeki/Saito [MNS85] and Becker/Mehlhorn [BM8S5].

Theorem 2 [BMS85]). Let P = (V,E, /) be an even planar edge-disjoint path
problem with n = |V|.

a) The solvability of P can be decided in time O(n*). Moreover, within the same
time a solution can be constructed, if there is one.
b) If (V,E) is a grid graph then time O(n*?) suffices.

Open Problem. Improve the running time.

For the following Sections it is useful to have a more “topological” definition
of cuts and nets. Consider the dual of the planar graph G = (V,E) and let
M = {F.u}; here F,y denotes the unbounded or external face. A cut C (in the
new sense) is any non-trivial simple path in the dual having both of its endpoints
in M. A cut C in the new sense induces a cut in the old sense as follows: Re-
move the edges intersected by C from G and let X be one of the two connected
components obtained in this way. For two distinct cuts C; and C, starting with
the dual of the same edge e¢q it is natural to define the ordering relation “C;
is left of C,” as follows. Traverse C; and C; starting at their common origin until
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G

G

Fig.1 C; is left of C;

they separate. If at the point of separation the situation is as shown in Figure 1
then C; is left of C,. With this definition, we can reformulate the selection of cut
X in case ¢) as follows:

Cut Selection Rule. Let X be the leftmost saturated cut through eg, ie., X is
saturated and X is left of any other saturated cut through ey, cf. Figure 1.

b 5

Fig.2 X is left of Y, {a,t,} is right of {a, 15}

Let us turn to the selection of the net N next. For N = {s,t},s € X,t ¢ X
let us call the net {a,t} the tail of the decomposition of N with respect to the
edge ey = {a,b}. We may view the tail {a,t} as a path from a to ¢ running
counterclockwise along the boundary of G and turning to the right at ¢. With
this interpretation the selection of {s, ¢} in part c) can be formulated as follows:

Net Selection Rule. Choose N = {s,t},s € X,t ¢ X, such that the tail of the
decomposition of N with respect to the edge e is rightmost, cf. Figure 2.
3. Homotopic Edge-Disjoint Path Problems

We first state the problem and then define the concepts net, grid path and
homotopy used in its definition.



Routing Problems in Grid Graphs 169
Problem. Homotopic Routing Problem in Grid Graphs (HRP).
Input: A grid graph R and nets qy,..., qx.

Output: Pairwise edge-disjoint grid paths py,..., px such that p; is homotopic to
gi, 1 <i <k, or an indication that no such paths exist. ]

We call a bounded face F of R trivial if it has exactly four vertices on its boundary
and nontrivial otherwise. We use M to denote the set of nontrivial bounded faces
together with the unbounded face F,,; and @ to denote the union of the interiors
of the faces in M. A nontrivial face is also called a hole.

A path P is a continuous function p : [0,1] — IR —@. A path p is called a net
if {p(0),p(1)} = ¥V N OO where 30 is the boundary of ©. Two paths p and q are
homotopic, denoted p ~ g, if there is a continuous function F : [0,1] x [0,1] —
R?> — O such that F(0,x) = p(x) and F(1,x) = q(x) for all x € [0,1], and
F(t,0) = p(0) and F(t,1) = p(1) for all t € [0, 1]. A path p is called a grid path if
p(x) belongs to R for all x. Fig. 3 gives an example of an HRP.
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Fig. 3

Remark. In the previous Section all terminals had to lie on the infinite face. With
M = {Feq} any two paths with the same endpoints are homotopic. It therefore
sufficed to specify a net by its endpoints.

Theorem 3 [KM86]. Let P = (R, ") be an even bounded HRP. Here R is a grid
graph and A" a set of nets:

P is solvable if and only if fcap(X) > O for every cut X.

As before, a cut is a simple path in the dual of R connecting two (not
necessarily distinct) faces in M. The capacity cap(C) of a cut C is the number of
intersections with edges of R. If C is a cut and p is a path then cross(p, C) is the
number of intersections of p and C and mincross(p, C) = min {cross(q,C);q ~ p}.
Finally, the density dens(C) of cut C is defined by
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dens(C) = z mincross(p, C)
pEN

and the free capacity fcap(C) is given by
feap(C) = cap(C) — dens(C).

A cut C is saturated if fcap(C) = 0 and oversaturated if fcap(C) < 0.

An HRP is even if fcap(C) is even for every cut C.

Let v be a vertex in R. We denote the degree of v by deg(v) and the number of
nets having v as an endpoint by ter(v). An HRP is bounded, if deg(v) + ter(v) < 4
for all vertices v.

Remark. The definition of density given above extends the definition in the
previous Section. Clearly, in the situation discussed there, mincross(p,C) = 1 if
the endpoints of p lie on different sides of the cut C and mincross(p,C) = 0
otherwise.

The algorithm to solve HRP’s is very similar to the algorithm given in the
previous Section. We assume for simplicity that P satisfies the cut condition. We
again construct a sequence Py, P;,... of HRP’s such that

1) Po =P E

2) P;;; has one less edge than P;;

3) P;is even and bounded;

4) if P; satisfies the cut condition then P;; does;
5) if Py is solvable then P; is solvable.

The construction stops when a trivial problem is reached. The problem P;; is
obtained from P; as follows. Again we have to distinguish several cases. In all
cases we use juxtaposition to denote concatenation of paths, i.e., if p and g are
paths with p(1) = q(0) then pq(4) = p(24) for 0 < 1 < 1/2 and pq(1) = q(21—1)
for 1/2 < A < 1. We also use a more careful definition for the ordering relation
“right-of” on nets. If N is a net let can(N) be the shortest path homotopic to
N. We think of can(N) as slightly extended into the incident non-trivial faces at
both its terminals, cf. Figure 4a. Consider now two nets N; and N, with the same
starting point. Then, if Ny # N>, can(N;) is not a prefix of can(N3_;) for i = 1,2.
We say that N is right-of N, if can(N;) and can(N;) separate as shown in Figure
4b.
We are now ready for the algorithm. Again we distinguish cases:

Case a): There is a cut X with cap(X) = 1: Let N be the unique net with
mincross(N, X) = 1, let e be the edge intersected by X and let N; and N, be
such that N ~ NjeN, and mincross(N, X) = mincross(N,, X) = 0. Delete e and
replace N by the nets N; and N,.



Routing Problems in Grid Graphs 171

N
can(N,)
can(N)
f can(N;)
Fig.4a can(N) Fig.4b The relation “right-of”

Case b): There is a vertex v with deg(v) = ter(v). Let v be a vertex with
deg(v) = ter(v); let e;,1 < i < 2, be the edges incident to v and let N;,1 <i <2,
be the nets incident to v where the edges are numbered as shown in Figure 5 and
N is right-of N,. Let Ny ~ ¢;N| where Nj does not use edge e;; remove edge
ey, reserve it for net Ny and replace net N; by net Nj.

Fig.5 A vertex v with deg(v) = 2 and the edges incident to it. The face in @ is shown
hatched

Case c): No cut of capacity one exists and ter(v) < deg(v) for all v. Let vertex a
be the left upper corner of the routing region, ie. there is no vertex with either
larger y-coordinate or smaller x-coordinate and same y-coordinate. Let b be the
lower neighbor of a and e* = {a,b}. The edge e* plays the role of the edge e in
Section 2.

A cut is called a straight-line cut if it consists of a sequence of horizontal and
vertical straight-line segments. For this definition to make sense, we view the dual
as a grid graph. A straight-line cut is a I-bend cut if it consists of at most two
segments. The 1-bend cuts play the role of the simple cuts in Section II.

Case cl1): There is no saturated 1-bend cut through e*: Remove edge e* and add
net N where N is the path from a to b following the boundary of the trivial face
incident to e".

Case c2): There is a saturated 1-bend cut through e*. We use the same cut
selection rule as in Section II, i.e., we let X be the leftmost saturated 1-bend cut
through e*.
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Let us turn to net selection next. For a net N with mincross(N, X) > 0, a decom-
position with respect to X and e° is a triple (Ny,e*, N;) such that N ~ Nye'N,
and mincross(Ny, X) 4+ mincross(N,, X) = mincross(N,X) — 1. A decomposition
(N1,e*,Ny) is rightmost if N, is right-of M, for all decompositions (My,e", M;)
of nets M with mincross(M, X) > 0.

Net selection rule: Choose a net N with a rightmost decomposition (Ny,e*, N;)
with respect to X and e°.

Delete edge e* and replace N by N; and N,.

For the proof of correctness of this algorithm we refer the reader to [KM86].
We turn to the running time of the algorithm next. In order to measure the size
of the input we assume that the nets are specified as polygonal paths. Then n
denotes the number of vertices of the grid graph plus the total number of bends
in the paths. In [KM86] an O(n?) algorithm to solve even, bounded HRP’s was
given. This was recently improved.

Theorem 4 [KMS88]. The solvability of even, bounded HRP’s can be decided in
linear time O(n). Moreover a solution can be determined in time O(n) if there is
one.

What can be done beyond grid graphs? [K87] showed that Theorem 3 is also
valid for other types of grids, e.g. the grids shown in Figure 6. In these cases an
instance is called bounded if deg(v) + ter(v) < odeg(v) for all vertices v, where
odeg(v) is the degree of v in the infinite grid of the respective type.

Fig. 6

Theorem 5 [K87]. Theorem 3 is also valid for subgraphs of the grids shown in
Figure 6. The runtime of the algorithm is O(n?).

The most general type of graphs for which Theorem 3 is known to hold are
straight-line graphs. Let G be an embedded planar graph and let ¢ be the union
of some of its faces (including the outer face) considered as open sets. The pair
(G, 0) is called a straight-line graph if there are line segments Ly, ..., L, such that
the endpoints of each L; lie in the boundary of @, such that the vertices of G
are exactly the endpoints and intersections of the line segments, and such that
the edges are exactly the induced fragments of the line segments. Boundedness is



Routing Problems in Grid Graphs 173

defined as above; the odeg(v) of a vertex v on the boundary of a face in ¢ is the
degree of v plus the number of lines ending in .

Theorem 6 [S87]. Theorem 3 holds for straight-line graphs. Moreover, solvability
can be decided in polynomial time.

Open Problem. Design an algorithm for homotopic routing in straight-line graphs
with quadratic or even linear running time.

Open Problem. Extend Theorem 3 beyond straight-line graphs. Note that the the-
orem does not hold for planar graphs as Figure 7 shows. What is the appropriate
theorem for planar graphs?

Fig.7 Nets are indicated by dashed lines and finite non-trivial. This problem is even and
satisfies the cut condition. It is not solvable, however

4. The Evenness Assumption

In Theorems 1 and 3 we assumed the routing problem to be even. Figure 8
shows that this assumption is crucial. What can be done without the evenness
assumption?

Fig.8 An unsolvable, non-even problem satisfying the cut condition

For PED this problem was treated by Frank and Becker/Mehlhorn. Let us
call an instance of PED half-even if the degree of every vertex v which does
not border the outer face is even. Frank extends the cut condition so that it
applies to half-even instances; we refer the reader to his paper for the details.
Becker/Mehlhorn consider the algorithmic side.

Lemma. Let P be an instance of PED. fcap(X) is even for every cut X iff deg(v)+
ter(v) is even for every vertex v.
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We call deg(v) + ter(v) the extended degree of v.

It is easy to see that each solvable half-even instance can be extended by
adding some nets (called fictitious) which have vertices with odd extended degree
as terminals, such that the new instance is even and solvable. Becker/Mehlhorn
give an algorithm to find an appropriate extension of any given solvable half-even
instance.

Theorem 7 [BM86]. The solvability of half-even instances of PED can be decided
in time O(bn) where b is the number of vertices bordering the outer face.

The main idea in their method is captured in the following definition:

Definition. Let P be a solvable half-even instance. Let U be the set of vertices
with odd extended degree and let X be a saturated cut. Let uy,us,...,uz be the
vertices in X N U in clockwise order along the boundary of the outer face.

a) X is U-minimal if X N U # @ and there is no saturated cut Y with Y N U =
{ui,...,u;} where 1 < j—i+1<2k.

b) The canonical extension of P with respect to X is given by adding the nets
(u2i—1,u2),1 < i <k, to the set of nets in P.

The following lemma is crucial for the correctness of their method.

Lemma. Let P be a solvable half-even instance. If X is a U-minimal cut, then the
canonical extension of P with respect to X is a half-even solvable instance.

The algorithm determines a U-minimal cut and extends the problem canon-
ically with respect to this cut. This preserves solvability and reduces the size of
U. After at most O(b) iterations U is empty. Each-iteration takes time O(n).

If the routing region is a grid with no non-trivial inner face we can take
advantage of the fact that we only need consider 1-bend cuts to find U-minimal
cuts. Hence, each step can be executed in time O(|U|).

Theorem 8 [KMS85]. Half-even instance of PED on grids with n vertices and no
non-trivial inner face and |U| vertices of odd extended degree can be extended to
even problems in time O(log’n + |U|2).

Open Problem. For grid graphs, even instances can be solved in time O(n*/?), but
extending a half-even instance to an even instance takes time O(bn); b might be
as large as Q(n). Find a faster algorithm for half-even grid graph problems.

For the homotopic routing problem in grid graphs the situation is more
complicated. As before, we call an instance half-even, if the degree of v is even
for every vertex not on the boundary of a non-trivial face. We call an instance
locally even, if deg(v) + ter(v) is even for every vertex v. If all terminals of nets are
on the outer face then a locally even instance is necessarily even, but in general
this is not the case.
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As before we know that for any solvable half-even instance there exists an
extension to a solvable locally even instance by adding some fictitious nets.

Furthermore every solvable locally even instance can be extended to a solvable
even instance by adding some non-trivial circular nets. Circular nets are simple
cycles of a certain homotopy (Kaufmann/Maley). Unfortunately, the extensions
are not easy to find in this case.

Theorem 9 [KMa88]. The homotopic routing problem in grid graphs is NP-complete
for locally even instances.

Kaufmann/Maley also obtained a positive result. Suppose that we allow to
move modules by one unit.

Theorem 10 [KMa88]. The homotopic routing problem with movable modules is
solvable in linear time in the case of locally-even instances and is NP-complete in
the case of half-even instances.

5. Routing Regions Without Holes

In this Section we come back to the problem considered in Section 2, i.. all
terminals lie on the boundary of the outer face. The algorithm discussed in
Section 2 solves this problem in time O(n2) for general planar graphs and O(n*/?)
for grid graphs. We now turn attention to grid graphs where all bounded faces are
trivial. Such graphs are called generalized switchboxes. In the case of generalized
switchboxes we only need to consider a special kind of cuts, namely straight cuts
(they consist of only one straight path segment) or 1-bend cuts (consist of at
most two straight segments).

Lemma [KMS85]. Let P be an even bounded instance of PED on a grid.

a) If there is an oversaturated cut then there is an oversaturated 1-bend cut.

b) If there is an oversaturated cut then there is an oversaturated 0-bend cut or an
oversaturated 1-bend cut connecting two concave corners.

A concave corner is a pair ((v/,v), (v,v”)) of boundary edges of some nontrivial
face sharing a vertex v of degree 4. A 1-bend cut connects 2 concave corners
(', v), (v,v")) and ((W',w), (w,w")) if the rectangle defined by the two corners v
and w is non-empty and does not contain any boundary vertices except v and w.
We call two such corners rectilinear visible.

Using the algorithm of Kaufmann/Mehlhorn for homotopic edge-disjoint
paths we can solve each solvable generalized switchbox problem in time O(n).
However simpler and/or faster algorithms are known for some cases of general-
ized switchboxes.

Kaufmann/Mehlhorn [KM85] give an algorithm to solve PED for generalized
switchboxes in time O(n log2 n+ |UJ?). It works for half-even instances; U is the
set of the vertices with odd extended degree. Although the runtime is worse than
the runtime of the algorithm for the homotopic case, the implementation is much
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less complicated. The algorithm is almost the same as in the planar case, but
takes advantage of the fact that nets and cuts are given by their endpoints and
that the capacities of 1-bend cuts are easily computed by the difference of the
coordinates of their endpoints. Nets and possibly critical cuts are represented by
intervals and are stored in a range tree. This data stucture supports the necessary
operations like “determine the leftmost saturated cut X and “find the rightmost
net crossing X” in time O(log2n). This is the most important point to get a
runtime O(nlog? n).

Simpler and faster algorithms are known for convex grids. Nishizeki/Saito/
Suzuki [NSS85] define convex grids as the subclass of generalized switchboxes,
where any two vertices can be connected by a path with at most 1 bend. They
show that in convex grids only straight cuts have to be considered in this case.
Based on this observation they achieve a runtime linear in the size of the routing
region by a simple algorithm. Lai and Sprague [LS86] show the correct condition
for the solvability of half-even instances in this class.

Kaufmann [K87] extends the notion of convex grids to generalized switch-
boxes where any horizontal or vertical line crosses the boundary at most twice.
He shows that the instances in this class are extremely simple to solve. The
algorithm works roughly as follows:

If there is a vertex v with deg(v) = ter(v) = 2, route both nets to the adjacent
boundary vertices in the obvious way. If not, consider any certain corner v, and
an adjacent boundary vertex w. If any net starts at w, then route it on the edge
(v,w) and throw (v, w) away. If not, add a net {v, w} and throw (v, w) away. Iterate
until the routing region is empty.

Note that for this class straight cuts and cuts with 1 bend have to be
considered, but only in the correctness proof of the algorithm. In the algorithm
itself no cuts are considered. The runtime is O(n).

The same algorithm works also for generalized switchboxes where any hor-
izontal line crosses the boundary at most twice. This problem class is called
half-convex grids. A weakness of the algorithm is that it can only be applied to
even instances.

Open Problem. Find a condition for the solvability of half-even instances of PED
in half-convex grids.

|

Fig.9 A half-convex region
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All algorithms mentioned so far remove one or two edges per step such that
runtime O(n) is optimal in a certain sense. Mehlhorn/Preparata [MP83] show
that for rectangular routing regions better results are achievable. They present
an algorithm for even and half-even instances with runtime O(blogb) where b
is the perimeter of the rectangle. The main idea is to avoid to produce layouts
as shown in Figure 10a (such layouts are typically produced by the algorithm of
Section 2) and instead to route as shown in Figure 10b. Note that in the case of
n nets the layout of Fig. 10a has O(n?) bends but the layout of Fig. 10b has only

O(n) bends.
T
- -
(a) (b)
Fig. 10

r

Kaufmann/Klir [KK188] extend the result to generalized switchboxes without
rectilinear visible corners and gets an algorithm for the solution of even and half-
even instances of runtime O(blog? b).

Fig.11 A generalized switchbox without any rectilinear visible corners

Open Problem. Extend the last algorithms to larger problem classes like the
homotopic routing problem.

6. Routing Regions with Exactly One Inner Hole

We consider routing regions with exactly two non-trivial faces one of which is
the outer face. Also, all terminals of nets are supposed to lie on the boundary of
these faces and no homotopies are given.

Okamura [O83] gives necessary and sufficient conditions for the solvability
of such problems on planar graphs in the same style as Okamura/Seymour. In her
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paper the positions of the terminals are restricted in the following way: For each
net both terminals have to lie on the same nontrivial face.

Matsumoto/Nishizeki/Saito give an algorithm with time complexity
O(bn*logn) for this class of problems. Here n denotes as usual the size of
the graph and b denotes the number of vertices on the boundary of the two
non-trivial faces.

From now on we restrict ourselves to a very simple case: The routing region
is a grid graph with two non-trivial faces (we call them the inner and the outer
face) and the boundaries of both non-trivial faces are rectangles. Different types
of problems are obtained by putting different restrictions on the positions of the
terminals.

Under the restriction that both terminals of a net lie on the same face
Suzuki/Ishiguro/Nishizeki [SIN87] give an algorithm with a running time linear
in the size of the graph. It is based on the principles developed by Okamura and
Matsumoto et al.

An alternative technique is the following: First determine a fixed homotopy
for each net, such that no cut condition is violated. Then use the algorithm for
homotopic routing [KM86] or a similar algorithm to find the final edge-disjoint
paths.

This techniques can be used in the case where all terminals lie on the inner
face. The first algorithm was given by LaPaugh [L82]. We describe a solution
due to Suzuki et al. They propose to replace the routing region by a cycle with
multiple edges. The length of the cycle is equal to the perimeter of the inner
rectangle. The multiplicity of an edge e of the cycle is given by the capacity of
the straight-line cut through the corresponding edge of the inner rectangle, cf.
Figure 12.

é cap (X) edges

s

AMMAAAA

Fig. 12

The reduced problem can be solved by any of the standard algorithms for
planar graphs [MNS85,BM86]. This determines the homotopies for the nets. The
second step is then a standard homotopic routing problem. In [SNSFT88] a
special data structure is used which supports the necessary operation efficiently
such that a runtime of O(k + n) for the first step and O(min(b,u, klogk)) for
the second step can be achieved. k denotes the number of the nets and b, the
number of the vertices on the boundary of the outer face. The correctness proof
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for this method is based on the observation that only a limited set of cuts have to
be considered, namely cuts which consist of two straight-line segments connecting
the outer and the inner face. The capacity and density of such cuts is the same
for the original and the reduced problem. Furthermore the solutions are 2- resp.
3-layer wireable, cf. Section 7 for a discussion of wireability.

If the terminals may lie anywhere on the two faces but not in the four corners
of the outer rectangle (cf. Figure 13), the same technique is applicable, since also
in this case only 2-segment cuts have to be considered. In [SIN87] an algorithm
with O(n) runtime for this problem class is presented.

\/MMM/LMMNWMAW« X

Jb—e—e ]

Fig. 13

Kaufmann/Klir ([KKI88]) extend their technique and get faster algorithms
(O(klogk)) for wider problem classes.

Open Problem. Is there an efficient algorithm for problems without any restric-
tions on the terminal positions?

7. Layer Assignment

A layout is a set of edge-disjoint paths. The problem of wiring a given layout in a
grid is as follows: We have k copies of the routing region stacked vertically on top
of each other. The k copies of each vertex are connected in the form of a line. We
call the obtained graph the wiring graph and each copy of the routing region a
layer. A layer assignment or wiring lifts a grid path p into a path P in the wiring
graph such that p is the vertical projection of P. We require that the liftings of
different paths p and g are vertex-disjoint. A layer assignment is a k-layer wiring
if only k layers are used. Clearly, if the layout consists of vertex-disjoint paths,
it can be wired within one layer. If the paths may cross each other but are not
allowed to bend on a common vertex (knock knee), we call the layout Manhattan
mode layout. Manhattan layouts can always be wired in two layers by assigning
horizontal path segments to layer 1 and vertical segments to layer 2.

For arbitrary layouts in grids the situation is more complex. First of all, it is
easy to find examples which are not 2- and 3-layer wirable.
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Lipski [L84] showed that it is NP-complete to decide whether an arbitrary
layout can be wired using three layers. Brady and Brown [BB84] showed that
every layout can be wired using four layers. Both papers use the concept of
two-colorable maps which we now briefly discuss. We show first that any layer
assignment gives rise to a two-colorable map. We start by shifting the infinite
grid by one-half unit in x- and y-direction. The squares of the shifted grid are
called wiring tiles, cf. Figure 14. A wiring tile is either used by only one path and
is then called trivial or by two paths. In the latter case the two paths either cross
in the tile or bend in the tile (knock-knee). Trivial tiles can be removed because
arbitrary layer changes can be performed in these tiles. This leaves us with the
non-trivial tiles. In a non-trivial tile containing a crossing the horizontal wire
segment either runs above the vertical segment (color I) or below the vertical
wire segment (color II). In a non-trivial tile containing a knock-knee the tile is
divided by a 45° or 135° degree line as shown in Figure 14. In one part of the
tile the horizontal wire segment uses a higher-numbered layer (color I) and in
the other part the vertical wire segment uses the higher-numbered layer (color
I). In this way any layer assignment gives rise to a two-colorable map. The
boundary between differently. colored regions consists of diagonals which “cut”
the knock-knees and horizontal and vertical tile boundaries, cf. Figure 14 c.

(b)

Fig. 14 (a) shows a layout consisting of 16 tiles, (b) shows a 3-layer wiring (layer 1 =
.-+, layer 2 = «~~~, layer 3 = —) and (c) indicates the corresponding 2-colorable map

The problem of layer assignment can now be formulated as follows. Start
with the diagonals induced by the knock-knees. Then add horizontal and vertical
tile boundaries so as to turn the layout into a two-colorable map. In addition,
avoid either the patterns shown in Figure 15 or the patterns shown in Figure 16.
In the former case the layout is 3-layer wirable and in the latter case the layout is
4-layer wirable. Brady and Brown have shown that the pattern shown in Figure
16 can always be avoided and hence every layout is 4-layer wirable.

An alternative technique for 4-layer wiring which is not based on two-
colorable maps, but on constraint graphs, was recently proposed by Tollis [T88].
His algorithm uses the 4th layer only if it is necessary and thus frequently uses
only three layers.
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A different approach is to produce the layout and the wiring simultaneously
and not in separate phases. Preparata/Lipski [PL82] show in the first paper on
3-layer wirability that three layers are sufficient to solve a two-terminal channel
routing problem with the minimum number of tracks. Gonzalez/Zheng [GZ88]
extend this result to 3-terminal and multiterminal net channel routing.

Open Problems. Prove or disprove that every grid graph routing problem has a
three-layer wiring.

Investigate techniques to modify and/or stretch the layout by a small factor to
get a 2- resp. 3-layer wirable layout. Some results on the second problem can be
found in [GZ88] and [BS87].

8. Multiterminal Nets

In the previous Sections we have considered nets with two terminals. We now
allow nets with more than two terminals and call such nets multi-terminal nets. A
layout is now a collection of edge-disjoint trees, one for each net. The tree for a
net must connect the terminals of the net. The PED-problem with multi-terminal
nets is difficult even for the simple case of channel routing. In channel routing
the routing region is a rectangle and all terminals lie on the horizontal sides
of this rectangle. The height of the rectangle is called the channel width and
the goal is to minimize channel width. Sarrafzadeh [Sa87] shows that it is NP-
complete to solve multiterminal net problems in knock-knee mode with optimal
channel width. Mehlhorn et al. [MPS86] give simple approximation algorithms
with unified approach for 2-, 3- and multiterminal net problems. For 2-terminal
nets their method achieves optimal channel width, for 3-terminal nets it yields
solutions being within a factor 3/2 of the optimum and for multi-terminal nets
it achieves a factor of 2. Gao and Kaufmann [GK87] showed recently that the
factor 3/2 + o(1) can always be achieved.
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All these results are based on the same principle: The idea is to split the
multiterminal nets into simpler parts such as 2-terminal nets or nets with all
terminals on the same side of the channel. These simple parts are then routed
independently as indicated in Figure 17.

:)/.1 t47- / / / Upper-sided net/_s // / //Tj_éJ:_

0
'
L

L]_LL%/_L’/' 1 I_ZT_/I 1

2-terminal nets R,

The one-sided nets are routed close to the shores of the channel and the
two-terminals nets are routed in the “middle” of the channel. The crucial step is
to find a decomposition which does not increase channel density too much.

Consider a net N with terminals v,...,v;—;. Assume that the terminals appear
in that order in a clockwise traversal of the boundary of the rectangle. If one
replaces each net N by the I two-terminal nets {v;viyiymoa 1, 0 < i < I}, then
the density of every horizontal or vertical cut is at most doubled. Thus, if the
original instance satisfies the cut condition and if one inserts a new grid column
and row between every pair of columns and rows, then an instance satisfying the
cut criterion is obtained. The obtained instance can be solved by the algorithm
of [MP86].

Open Problems. Develop better approximation algorithms for multi-terminal net
problems in rectangles.

Give a nontrivial lower bound for the multiterminal net problem in a chan-
nel.
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