SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, November 1985 005

SEARCHING SEMISORTED TABLES*

HELMUT ALTY aAND KURT MEHLHORN{#

Abstract. A ‘“‘semisorted table” is a one-dimensional array containing n data, which are not necessarily
sorted, but can appear in p different permutations of the ascending order. We consider the problem of
searching in such a table without knowing, in which one of the p permutations the data are stored (SST).
It is shown that any deterministic search algorithm for SST needs at least 57p comparisons in the worst case.
This lower bound is generalized to average case performance even for nondeterministic algorithms. Some
examples are given where the lower bound is tight.

Key words. searching, implicit data structures, comparison trees

1. Introduction. This paper deals with searching semisorted tables (SST), by which
we mean the following problem:

Let U be an infinite, totally ordered universe. Let IT be a set of permutations of
{1,- -+, n}, and p=|II|. Assume that n elements of U may be stored in an array A
according to any permutation s € I of their ascending order. How many comparisons
are necessary to search for a given xe U?

Note, that the restriction of our search problem to data stored in an array is not
essential. In fact, even if they are stored in some arbitrary data structure, for a given
problem instance the assignment of elements of the universe U to the memory locations
of that structure will be unique and never will be changed. So we can give these
locations a fixed numbering 1, - - -, n, such that the statement that data are “stored
according to the permutation 7 of their ascending order” is well defined.

Lower and upper bounds for the degenerate cases of the problem are well known:

If p=1, i.e., the data can appear in only one fixed permutation, a (modified)
binary search can be done and |log n] +1 comparisons are necessary and sufficient.
If p=n), i.e., data can appear in any permutation, linear search has to be done with
n comparisons being necessary and sufficient. Our problem is to find lower bounds
for any p somewhere between 1 and n!.

In § 2 a comparison tree argument will show that Q(('/;) is a lower bound in the
worst case. This argument and, thus, the lower bound are then extended to nondeter-
ministic algorithms, and finally to the average complexity of SST. The final section of
the paper shows that these lower bounds are tight for some, but not for all cases.

Note, that our lower bound only depends on the number p of possible arrangements
of data, and does not restrict the way to arrange them. One possible restriction is, for
example, to consider only data structures, where all possible arrangements of data are
compatible with a given partial order. Most of the standard comparison based data
structures like all versions of binary search trees, sorted arrays etc. have that property,
but others, like, e.g., rotated lists [MS], do not. For data structures satisfying the partial
order restriction an exact lower bound for searching has been found in a recent paper
by Linial and Saks [LS]. They show that any search algorithm for a given data structure
has to make at least log N comparisons, where N is the number of ideals of the
underlying partial order. That method can be applied to instances of SST which satisfy
a given partial order and gives better lower bounds in some of these cases (cf. second
example in § 4).

* Received by the editors July S, 1983, and in revised form May 30, 1984.

t Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania
16802.

} Fachbereich 10, Universitat des Saarlandes, 6600 Saarbriicken, West Germany.

840

SEARCHING SEMISORTED TABLES 841

The SST problem by itself seems interesting to us, but there also exists one
seemingly important application: Finding lower bounds for a case of partial match
retrieval in implicit data structures (cf. [MS], [R]), as has been done in [AMM].

The deterministic worst case lower bound for the SST problem was investigated
concurrently and independently by S. Cook ([B]).

The model of computation used here requires that comparisons are done only
between the element x searched for and some array element. It is an interesting open
question, if the lower bounds still hold, if comparisons between different array elements
are allowed, as well.

2. A worst case lower bound for SST. Let us now define the SST problem more

formally:

Let U be an infinite, totally ordered universe, let S={x]1=i=n}< U where
X, <x;<--++<x, Anarray A[1:n]is used to store S. If 7 is a permutation of {1, - - -, n}
then we say S is stored according to =, if and only if A[7(i)]= x..

Let I1 be a set of permutations of {1, -, n}. Then SST (II) is the following
problem:

input: some xe U
problem: decide, if x€ S under the precondition that S is stored according to
some 7 € I1 (which one is not known though).

The following model of computation will be used:

Algorithms are based on comparisons of the form x? A[i] where x is the element
searched for and i€ {l,- - -, n}. So any such algorithm can be illustrated by a com-
parison tree T, each node of which is labelled by some i€ {1, - - -, n}, meaning that at
this point x is compared to A[i]. If the outcome of that comparison is “<” (*>"") the
algorithm proceeds using the left (right) subtree, if it is “="" the algorithm halts giving
a positive answer.

Certainly a computation (= path starting from the root) in T only depends on the
permutation of I in which the data are stored and the relative position of x within
the data but not on the particular choice of data. (For example, a search for 3 in a
table containing 43 512 in that order would take the same path in the comparison
tree as searching for 5 in the table 7592 3.)

Now a lower bound for SST (II) will be shown, depending on the number p of
elements of II and on the number n of data.

THEOREM 1. Foralln e N, II any set of p permutations of {1, - - -, n}, any algorithm
solving SST (I1) makes at least ('/; comparisons in the worst case.

Proof of Theorem 1. Call a sequence iy, -+, i, (1=k=n) valid if there exists a
m €Il such that 7(j)=1i; (1=j=k), i.e., if the k smallest elements may be stored in
table positions iy, - - -, i,.. Denote by £ the empty sequence over {1,- - -, n} and let it
be valid by definition. Clearly a permutation = is in II exactly if #(1),: - -, w(n) is
valid. Let T be a comparison tree solving SST (I1) and let s be its depth, i.e., s+1 is
the maximum number of comparisons for a search.

We will show that the number of permutations for which T works correctly is at
most (s+1)".

LEMMA 1. Any valid sequence of length k (0= k <n) can be extended in at most
s+1 ways to a valid sequence of length k + 1.

Proof. Let i, - - -, iy (the empty sequence ¢ if k =0) be a valid sequence and 7 €Il
some permutation which makes it valid (i.e., w(j)=1i, 1=j=k; any 7 eIl will do in
the case k = 0). Assume that data are stored in the table according to =, i.e., A[7(i)] = x..
In particular the k smallest elements are stored in ascending order in A[i,], - - -, A[ic].

842 HELMUT ALT AND KURT MEHLHORN

Consider the path in T which is taken by a search for some x € U with x, < x <Xy,
ie., xg8, x>A[i]if ief{i, " -,i}, x<A[i] otherwise (x < A[i] for all i if k=0).
Such an x exists w.l.o.g. since U is infinite and the algorithm only depends on the
permutation in which data are stored (i.e., we can assume that there are ‘‘gaps’’ between
the data stored in the table.) This path now depends only on iy, - -, i, (is unique if
k =0). In fact it can be described by the rule: start in the root, take the >-branch if
the current node is labelled by some i; (1=j = k), take the <-branch otherwise (in the
case k =0 always take the <-branch).

Let L={l,, -, 1} be the set of labels encountered on the above path which are
not in {i,, - - -, ix}, i.e., on the path they are the ones, whose left child is visited next
(see Fig. 1).

FiG. 1

Let iy, = w(k+1), i.e., Alix+,] contains Xx;.,.

We claim: i, € L. Assume otherwise. Then x would not be compared to x,., and
the outcome of all comparisons would be the same if we traverse T with x;., instead
of x. So the same path would be taken and T would give the same answer for x,,, as
for x, namely that it is not in S, a contradiction. Now L depends on i, - -, i, only
and it has =s+ 1 elements, since they are some of the labels of one particular path in
T. So the valid sequence i, - - -, i, can be extended in at most s+1 ways to a valid
sequence i,, - - -, I, i+, Which proves Lemma 1.

Now, applying Lemma 1 repeatedly, we have that there are at most (s +1)* valid
sequences of length k (1=k=n). Since all permutations in II give different valid
sequences of length n we have P=(s+1)", i.e., the number of comparisons s+ 1 gl’/p,
which proves Theorem 1.

3. Nondeterministic and average case lower bounds. In this section we want to show
that the lower bound of § 2 also holds for nondeterministic algorithms and for the
average search time.

SEARCHING SEMISORTED TABLES 843

A nondeterministic comparison based search, in one step of the computation
compares, just like a deterministic one, the element z searched for to some table entry
A[i]. But for any outcome “<” or “>" it may have several choices to which entry to
compare x next. So the comparison tree is not necessarily binary any more. The answers
the algorithm gives at the end of a computation may be “yes” (x€S) “no”, or
“undetermined”. We require the algorithm to be complete and consistent: If xe S
there must not be any computation for x answering “no” and there must be at least
one computation answering ‘‘yes”. If x ¢ S there must not be any computation answering
‘‘yes” but at least one answering “no’’.

Of course, if x€ S, this can be determined by a nondeterministic algorithm in
constant time: Choose nondeterministically any table position i, answer ‘“‘yes” if
x = A[i]. We show that the same lower bound as in § 2 holds in the nondeterministic
case for x¢ S.

THEOREM 2. Forallne N, Il any set of p permutations of {1, - - - , n}, any algorithm
solving SST (I1) makes at least ¥ p comparisons in the worst case, i.e., for any set S< U,
|S| = n there exists an x € U such that the shortest computation searching for x in S and
leading to a ““yes” or ‘‘no”-answer has length %i'/;.

Proof. The proof is essentially the same as the one for Theorem 1.

Assume 0=k<n, i,,* -, i is a valid sequence, 7 €Il a permutation making it
valid, and data are stored according to 7. Now again any search for xe U with
X, < x < x4, leading to a “no” answer has to compare x with x, . So only the positions
appearing on every path in the comparison tree leading to a “no” answer for x can
be used to store xi4;. So if s, is the shortest length of such a path, there are at most
sk+1 possibilities to extend the above valid sequence to one of length k+ 1. So there
are at most s,, s, * * *, 5, valid sequences of length n, we need at least p to make the
algorithm work for all permutations in I1. So there existsand i€ {1, - - -, n} with §; = i'/;
So the shortest search for an x with x;_, < x < x; makes at least i'/; comparisons.

Next it will be shown that the lower bound of Theorems 1 and 2 even holds for
the average case of unsuccessful searches, even for nondeterministic algorithms. Any
unsuccessful search can be associated with an interval (x; x;,,) ={y € U|x; <y <xi11},
namely the one containing the element x searched for.

We assume that all these intervals have the same access-probability. Let II be a
set of permutations of {1, - - -, n}, for which we consider SST (II). To II a tree Ty, is
associated in the following way:

The nodes of T;, except the root, are labelled with numbers of {1, - - -, n}. There
are exactly p =[] leaves representing the permutations in II. Call the leaf associated
with well, [,.

For any 7 €Il the sequence of labels on the path from the root to I, exactly
corresponds to the permutation 7. (So Ty; has height n.)

As an example consider: n=7, Il the set of all permutations of {1,---,7} not
displacing 1, - - -, 4. So p=3!=6. A suitable search strategy is to do binary search on
the first 4 positions and linear search on the others. The corresponding search tree (a
square denotes an unsuccessful search), is shown in Fig. 2.

The tree Ty, in this case, is shown in Fig. 3.

Furthermore, by definition, the labelling i,, - -, i, (k=0) of any path in Ty
starting in the root, is a valid sequence. By the proofs of Theorems 1 and 2 a valid
sequence of length k (0= k < n) can only be extended to one of length k+1 by using
the nodes on a certain path in the comparison tree. This path corresponds to an
unsuccessful search for an element x € U with x, < x < xx,,. So the outdegree of the
node in T;; corresponding to the valid sequence i,,- - -, i, is a lower bound on the

844 HELMUT ALT AND KURT MEHLHORN

number of comparisons for the above unsuccessful search, assuming that the elements
Xy, * * *, X, are stored in positions iy, - - -, i

For a permutation well let c(w) be the average number of comparisons for
searches for elements x € U with x;, <x < x4, (0= k < n) assuming that all “gaps” are
equally likely.

For a tree T and any leaf ! of T let Pr(l) be the set of ancestors of I Then by
the considerations above

(1) c(w)%-l- Y deg(v).

ve Pr (L)

SEARCHING SEMISORTED TABLES 845

So, additionally assuming that all permutations are equally likely, the average number
of comparisons for an unsuccessful search is

1 En c().

This expression is because of (1) greater than or equal s(T;;) where for any tree T
with p leaves we define

1 1
=1 L5 o4
S())4 llea;of Tdepth (l) uel'z’-:r(') °8 (v)

which is the average outdegree of T's nodes weighted according to their number of
descendants.

CLAIM. For any tree T with p leaves all having depth h=1:
p=s(T)"
Proof. (by induction on h). If h=1, the tree has the form of Fig. 4.

FiG. 4

Assume that the root has outdegree k. Then p = s(T) = k and thus, the claim is true.

For the inductive step assume that we have a tree T of height A+ 1 and that its
root vp has outdegree k. Let Ty, - - -, T} be the subtrees of the root and p,, * - -, p; their
numbers of leaves respectively (see Fig. 5).

FIiG. §
Then
S(T) =P(h + 1) llea;of T ve;,—(l) deg (v)
1 k
= d 0
) p(h+1) .-‘.;1 lleufzof T, I:ue:%,(l) deg (v)+deg (v)]

- p(h+1) igl Lpk+ pihs(To)]

since deg (v,) = k and by definition of s(T;).

846 HELMUT ALT AND KURT MEHLHORN

We have to show
p§S(T)h+l

or, because of (2)

B h+1
phi= thl(kp+h)X p.s(T))] :

Since by inductive hypothesis p, = s(T;)" and hence s(T;)=(p,)"/" it suffices to show
y

8 l h+1
h+2< k +h l+l/h)] .
p h+1(p Z p

Now note that

x 1+1/h
El Pi
is minimal (subject to the constraint Z:;, pi=p) if p;=p/k for all i
Therefore, it suffices to show:
B

1 h+1
h+2 + l+l/h]
P |y ket hk(p/k)YT)

or

r

@) P+t

h+1
(k+h(p/k)”")] .

The left-hand side of this inequation does not depend on k. Therefore, the proof
is finished, if it is possible to prove inequation (3) for that k, for which the right-hand
side is minimal. So, consider

Sf(k)=k+h(p/k)"".
Then, the derivative
fr(k) =1 _pl/h . k—l/(h+l)
equals 0, if and only if
kh+l =p’
ie.,
k= pl/(h+l).
So, by (3), it suffices to show

- 1 V(h+1) L p(p1=1/(h+D)1/h e
p= [(P h(pI A

The right-hand side equals

h+1
[—hi1(P”“””+hp'/(h+”):| =[p" Pt =p,

which finishes the proof of the claim.
Applying the claim to the tree Ty gives

pl/" §S(Tn).

SEARCHING SEMISORTED TABLES 847

So, since s(Ty) is a lower bound on the average number of comparisons for
unsuccessful searches in SST (II), we have the following result:

THEOREM 3. Forall ne€ N, I1 any set of p permutations of {1, - - - , n}, any nondeter-
ministic algorithm solving SST (I1) makes at least %/ p comparisons on the average.

4. Tightness of the lower bounds. Theorems 1 through 3, of course, only give
nontrivial lower bounds, if the number p of possible permutations is “‘sufficiently high”.
In fact, p needs to grow more than exponentially in n, in order to have i'/; not bounded
above by a constant.

One case in which the lower bounds are tight, is p=n! So every possible
permutation is allowed and by linear search we have O(n) worst case and average
algorithms. On the other hand Theorems 1 and 3 give an Q(('/n 1) =Q(n) lower bound,
showing that linear search is asymptotically optimal. (Of course, this lower bound can
be shown by a much easier argument.) Linear search can be generalized in the following
way:
Let s=Q(log n) and assume w.l.o.g. that s divides n. Let II be the set of all
permutations of {1, - - -, n} obtained in the following way:

{1, - -, n}isbroken upinto n/s blocks of size s. The first block contains {1, - - - , s},
the second one contains {s+1, -, 2s} etc. Within a block the order of elements is
arbitrary.

So p=(s!)"* and the lower bounds from Theorems 1 and 3 are

Yp=(s)"*=0(s).

On the other hand, we have the following algorithm to solve SST (II):

Do a binary search on positions 1, s+1, 2s+1, etc,, i.e., the first positions of the
blocks in order to find the only two blocks which possibly may contain the element
searched for. Then do a linear search in these blocks.

This algorithm performs in the worst case and on the average

O(log (n/s)+s)=0O(logn—log s+s)
=0(s)
comparisons since s =()(log n). So the lower bound given by Theorems 1 through 3
are tight in all these cases. Note, that while s ranges from log n to n, p ranges from
O(2"'°8'°8 ") to B(n!).
But not in every case are the lower bounds of this paper tight. As a counter

example let II be the set of all permutations, where the elements {1, - - -, n/2} are in
their original positions, the other ones are permuted arbitrarily. Clearly

p=(n/2)!
and
Yp=(n/2)1=0[(n/2)"*]=O(n).

On the other hand it is clear, that no algorithm can do better than ®(n) even on the
average, because on the second half of the data a linear search has to be performed.

REFERENCES

[AMM] H. ALT, K. MEHLHORN AND J. I. MUNRO, Partial match retrieval in implicit data structures,
Inform. Proc. Lett., 19 (1984), pp. 61-65.
[B] A. BORODIN, Oral communication.

848

(LS]
(M]
[MS]

[R]
(Y]

HELMUT ALT AND KURT MEHLHORN

N. LINIAL AND M. E. SAKS, Information bounds are good for search problems on ordered data
structures, Proc. 24th IEEE Symposium on Foundations of Computer Science, Tucson, AZ,
1983, pp. 473-475.

J. 1. MUNRO, A multikey search problem, Proc. 17th Annual Allerton Conference, October 1979.

J. 1. MUNRO AND H. SUWANDA, Implicit data structures, Proc. 11th Annual ACM Symposium
on Theory of Computing, May 1979, pp. 108-117.

R. L. RIVEST, Partial match retrieval algorithms, this Journal, 5 (1976), pp. 19-50.

A. C. YAO, Should tables be sorted?, Proc. IEEE Symposium on Foundations of Computer
Science, 1978, pp. 22-27.

