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Simultaneous Inner and Outer Approximation of Shapes'’

Rudolf Fleischer,? Kurt Mehlhorn,? Giinter Rote,> Emo Welzl,*
and Chee Yap’

Abstract. For compact Euclidean bodies P, Q, we define A(P, Q) to be the smallest ratio r/s where
r>0,s> 0 satisfy sQ' = P = rQ". Here sQ denotes a scaling of Q by the factor s, and @', Q" are some
translates of Q. This function A gives us a new distance function between bodies which, unlike previously
studied measures, is invariant under affine transformations. If homothetic bodies are identified, the
logarithm of this function is a metric. (Two bodies are homothetic if one can be obtained from the
other by scaling and translation.)

For integer k > 3, define A(k) to be the minimum value such that for each convex polygon P there
exists a convex k-gon Q with A(P, Q) < A(k). Among other results, we prove that 2.118... < A(3) < 2.25
and A(k) = 1 + O(k~2). We give an O(n? log? n)-time algorithm which, for any input convex n-gon P,
finds a triangle T that minimizes A(7, P) among triangles. However, in linear time we can find a triangle
¢ with A1, P) < 2.25.

Our study is motivated by the attempt to reduce the complexity of the polygon containment problem,
and also the motion-planning problem. In each case we describe algorithms which run faster when
certain implicit slackness parameters of the input are bounded away from 1. These algorithms illustrate
a new algorithmic paradigm in computational geometry for coping with complexity.

Key Words. Polygonal approximation, Algorithmic paradigms, Shape approximation, Computa-
tional geometry, Implicit complexity parameters, Banach-Mazur metric.

1. Introduction. Most motion-planning problems, except for the simplest exam-
ples, have at least a quadratic time complexity in the worst case (see, for example,
[14]). Our basic goal is to circumvent this apparent bottleneck by using heuristics.
Yap [14] describes two general heuristics: the so-called simplification heuristic in
which we try to replace a complicated robot body P by a simpler shape Q, and
the local expert heuristic in which we invoke some specialized algorithm when the
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robot is in some stereotyped environment (such as the vicinity of a door). Of
course, the real challenge for theoretical robotics is to quantify precisely such
heuristics. This paper provides a method for quantifying the simplification heuris-
tic.

In real life we can often see instantly when a motion is possible or when a
motion is impossible. This suggests that it may be possible to develop algorithms
whose complexity reflects this phenomenon: it should run quickly for inputs where
the possibility of a motion is “easy to see.” Before we proceed to explain this idea,
we should say that this idea is related to the concept of output-sensitive algorithms,
but only in the sense that our algorithm also depends on some implicit complexity
parameter of the input. After all, there does not seem to be an obvious connection
between “easy-to-see-ness” and output size in our setting.

Let us formalize the idea of an implicit parameter. Assume that we want to
move a convex polygon P amidst obstacles E from placement Z to Z'. We define
the slackness parameter s(P) (=s(P, E, Z, Z')) to be the supremum of s > 0 such
that there exists a motion for the body sP. Here sP denotes the scaling of P by s.
To make this notion well defined, we assume that, in the initial and final positions
Z and Z/, P is surrounded by enough free space that the existence of a motion
for sP is independent of the center of scaling for sP (as long as this center lies
within P); see also Alt et al. [2]. Intuitively, we think of P moving from a large
room to another large room through narrow doors and hallways.

Clearly, there exists a motion for P if and only if s(P) > 1. Now it is intuitively
obvious that it is “easily seen” that no motion exists if the slackness parameter is
very small (i.e., close to zero); likewise, it is “easily seen” that a motion exists if
the slackness parameter is very large (i.e., s(P) > 1). When s(P) =~ 1, it is difficult
to decide immediately whether a motion for P is possible.

What we would like to have is a simple substitute Q for P which should come
as close as possible to satisfying the following conditions:

(i) If there is a motion for Q, then there is also a motion for P.
(i) If there is no motion for Q, then there is no motion for P.

Of course, the only way to ensure these two conditions in general is to set Q = P.

So we relax (ii):

(ii") If there is no motion for Q, then there is no motion for P, except when it is
“difficult to see” that there is a motion for P.

In other words:

(ii") If there is no motion for Q, then s(P) < 1 or s(P) = 1.

We can make this more precise by choosing a constant s, > 1 and defining

1
sS(P)x1 <« — <s(P)<s,,
So

and thus our condition now becomes
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Fig. 1. A triangle Q is enclosed between P and s,P.

(i) If there is no motion for @, then s(P) < s, (i.e., there is no motion for s,P).

We can achieve (i) by having P contained in Q, and we can achieve (ii’) by
having Q contained in (a translate of) s,P (see Figure 1).
Of course we can also weaken (i) instead of (ii), and we get:

(i') If there is a motion for @, then s(P) > 1/s,.
(ii) If there is no motion for @, then there is no motion for P.

We can achieve this by having (1/s,)P < @ and Q < P.

So if Q fulfills (i) and (ii’), then @ = (1/s,)Q fulfills conditions (i') and (ii), and
vice versa. We see that both pairs of conditions lead in fact to the same
approximation problem:

SHAPE APPROXIMATION PROBLEM. Given a convex figure P in the plane, find a
“simple” polygon Q such that P = Q < 5P, where P’ is a translate of P.

“Simple polygon” might for example mean triangle, quadrangle, rectangle, or
ellipse. A set P and a scaled and translated copy s(P + a) of it are called (positively)
homothetic, for s > 0. It is clear that the roles of P and Q are interchangeable in the
above statement, and thus we might as well look for a pair of homothetic simple
polygons Q and s,Q’ for which @ = P = 5,0’ holds (see Figure 2). This is in fact
the formulation that we are going to work with. The two figures Q and s,Q’
approximate P from inside and from outside, motivating the title of our paper.

One of our results is that, for s, = 3, we can find a triangle Q which fulfills the
above relation in time linear in the number of vertices of the approximated
polygon. For our application, this means that:

1. If there is no motion for the triangle Q, then there is no motion for P.
2. If there is a motion for 5,Q’, then there is a motion for P.
3. Otherwise, the solution is not “easy to see” (i.e., 1/sy < s(P) < so).
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s0Q

Fig. 2. A pair of triangles Q and s,Q approximating a polygon P.

We can decide which of these three cases holds by running any known motion-
planning algorithm for Q and for s,Q'. Note that in the third case, we can continue
testing with a good approximating k-gon, for k =4,5,.... Thus we obtain an
algorithm for motion planning whose running time degrades gracefully as the
slackness parameter approaches 1. Note that we could run a standard motion-
planning algorithm for P at the same time, so that the worst-case complexity can
be guaranteed to be no more than the usual bound. (Alternatively, this can be
guaranteed by letting k grow sufficiently fast.) This paradigm of making use of the
slackness parameter depends on the ability to find good approximating pairs of
k-gons efficiently.

By insisting that the two approximating polygons are homothetic we make sure
that our application works even if rotations are not allowed in the robot motion.
If we allowed rotations as well, then we could take better (i.e., smaller) values of
so. For example, in the case of triangular approximations we could take s, = 2:
Let ¢ with vertices u, v, and w be a largest area triangle in the polygon P, and let
T be the triangle with an edge through u parallel to vw, an edge through v parallel
to uw, and an edge through w parallel to uv. Then t = P = T,and —2tis a translate
of T.

The above paradigm can be applied to the problem of polygon containment,
again yielding an algorithm whose performance degrades gracefully as the implicit
slack parameter approaches 1. Recall that the current fastest algorithm for placing
a convex n-gon Q inside a convex m-gon P runs in time O(nm?) [3].

The preceding discussion motivates the following concept of approximation:
For any two compact subsets Q, P of Euclidean space, let A(Q, P) be the infimum
of the ratio r/s where r, s > 0 satisfy

sQ'cPcrQ’
and Q', Q" are some translates of Q.

With this notion, our shape approximation problem can be formulated as
follows:

Given a convex figure P in the plane, find a “simple” polygon Q which
minimizes A(Q, P).
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In this paper we take “simple polygon” to mean a k-gon, for any fixed integer
k > 3, and we study the maximum value of A(Q, P) which we may expect in the
worst case.

In the Euclidean plane, for any integer k > 3, we define A(k, P) to be the infimum
of A0, P) as Q ranges over all convex k-gons, and define A(k) to be the supremum
of Ak, P) over all convex P. As mentioned above, we shall show that A(3) < 2.

For the distance measure A(P, Q), the size and position of P and Q are irrelevant;
AP, Q) depends only on the shape of P and Q. We have A(P, Q) = 0 if and only
if P and Q are positively homothetic. If homothetic bodies are identified, the
logarithm of the function A(Q, P) turns out to be a metric, which is invariant under
affine transformations. We study properties of this metric in Section 2.

Section 3 presents bounds for A(3), i.e., for approximation by triangles, and
develops an O(n? log? n) algorithm for finding the best triangle approximation. In
Section 4 we study the asymptotic behavior of A(k), and we discuss a number of
open questions in Section 5. Finally, in an appendix we prove that the ratio
between the area of a convex hexagon and the area of its largest contained triangle
is at most 9/4; we need this result for our estimate of A(3).

This paper is an extended version of the conference paper [6].

2. A Metric on Shapes. There are many different distance measures between
convex bodies, like the Hausdorff distance, symmetric difference metric, perimeter
deviation metric (see, for example, the survey by Gruber [8]). Typically, the
definition of these metrics is motivated by the desire to approximate a convex
body P in some Euclidean space by another body Q, where the metric function
d(P, Q) measures the quality of the approximation. The function A(P, Q) that we
have defined in the introduction is different from the classical metrics in some
important aspects. One notable property is that it is invariant under affine
transformations: For any affine transformation z, we have A(tQ, TP) = A(Q, P). The
classical metrics d(Q, P) are invariant under rotations and translations, but not
under other affine transformations. For example, if 7 is a scaling by the factor g,
then we usually have

d(zQ, tP) = |u|*- d(Q, P),

where g is some integer between 1 and the dimension.

With suitable precautions, the logarithm of 1 is a metric. By a (planar) body P
we mean a compact subset of the plane. For any body P, let P denote the class
of bodies equivalent to P under translation and positive scaling, i.e., the homothets
of P. We call such equivalence classes shapes. We say two bodies P, Q have the
same shape if P = Q.

We first observe that A is in fact a function on shapes: that is, if P, P’ have the
same shape and if Q, Q' have the same shape, then A(P, Q) = A(P’, Q). Hence the
notation A(P, Q) is meaningful. The following theorems are easy to prove.

THEOREM 2.1. The function X(P, Q):= log (P, Q) defines a metric on shapes.
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THEOREM 2.2. The functions 4, 1 are invariant under affine transformations, that
is, if © is an affine transformation, then A(P, Q) = AP, 1Q).

The metric 4 has also been used by Kannan et al. [10] under the name of the
Banach—Mazur metric. (It is a variation of the classical Banach—-Mazur distance
which applies to centrally symmetric bodies and allows arbitrary affine transforma-
tions, not just scalings.)

3. Approximation by Triangles. In this section we give lower and upper bounds
for A(3) and present an algorithm which constructs an optimal triangle approxima-
tion for a given n-gon in time O(n* log? n).

First, it is useful to introduce the following general concept: for two bodies
0, ¢ with the same shape, and for a body P, we call (Q, Q') an approximating
pair for P if Q = P = Q'; the expansion factor of (Q, Q') is the factor by which Q
must be scaled in order for it to have the same size as Q'. Given a body P and a
triangle ¢ contained in P, let Tp(f) be the smallest triangle of the same shape as ¢
that contains P. Then (¢, Tx(¢)) is an approximating pair for P, and its expansion
factor is denoted by yp(?). Note that A(¢, P) < xp(?), where equality holds if and
only if ¢ is a largest triangle of its shape contained in P.

The Maximum Area Heuristic. Computing the value A(k, P) (for k and P) seems
to amount to finding an approximating pair (Q, Q') for p such that Q is a k-gon
and the expansion factor equals A(k, P). There is a natural candidate for (Q, Q')
namely where Q is the largest convex k-gon contained in P. The next theorem
shows how well this maximum area heuristic performs in case of the triangle.

THEOREM 3.1. For any convex body C, any largest triangle t contained in C has
the property that

At, C) < 9/4.

PrROOF. We can apply an affine transformation that maps ¢ to an equilateral
triangle with unit side length; so we may assume that ¢ is equilateral with unit
side length from the beginning. Each edge of the triangle T = T(f) touches C in
at least one point; this gives three points which together with the vertices of ¢
form a polygon P with at most six vertices; in general this will be a hexagon (see
Figure 3). Let & and H denote the heights of ¢ and T, respectively, and let
d:=d; + d, + d; where the d; are the distances between corresponding edges of
tand T. Then H = h + d, because ¢ is equilateral. Let us denote by areaQ the area
of body Q. We have areat = h/2 and areaP = areat + 4(d, + d, + d3) = H/2. So
the expansion factor of (¢, T) equals H/h = areaP/areat. In the appendix we show
that areaP/areat < 9/4 if P is a convex polygon with at most six vertices, and ¢ is
a triangle of largest area contained in P. The theorem follows. O

COROLLARY 3.2. For any convex n-gon, we can find in O(n) time a triangular
approximating pair (t, T) with expansion factor at most 9/4.
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H

Fig. 3. The hexagon P in the proof of Theorem 3.1.

This follows from the fact that the largest area triangle contained in a convex
polygon can be found in linear time [4]. We will see below that the maximum
area heuristic is, in general, suboptimal.

Rigid Approximating Pairs. For the construction of an optimal triangle approx-
imation of a given convex n-gon P, we look for a triangle ¢ contained in P that
minimizes yp(t); clearly, this triangle also minimizes A(#, P) and thus determines
A(3, P). In a first step we reduce the set of possible candidates for z.

Let (1, T) be an approximating pair of triangles for P. A pair (v, ¥) of
corresponding vertices of (¢, 7) is free if (i) v ¢ OP or (ii) v € 0P, but it is not a vertex
of P and the two edges of T incident to ¥ are not flush with edges of P (3P denotes
the boundary of P). We call (¢, T) rigidif it has no free vertex pair and T = T(?).

For example, in the pair of triangles in Figure 2, every pair of corresponding
vertices is free. In Figure 4 (4, U) and (w, W) are not free for the pair (Auvw,
AUVW), but (v, V) is free. The following two lemmata will lead to a theorem that
justifies that we restrict our attention to rigid approximating pairs.

LEMMA 3.3. Let t be a triangle contained in P such that y,(t) = A3, P). Then all
vertices of t lie on the boundary OP of P.

Fig. 4. llustrating the proof of Lemma 3.3.
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T(x)

.............

Fig. 5. Illustrating Lemma 3.4 (and the proof of Theorem 3.5).

Proor. See Figure 4. Suppose that ¢ = Auvw has vertex v not in 0P. Consider
T = Tp(t). Without loss of generality, we assume that 7 = 1, i.e., the scaling center
of t and T is the origin. Since ¢ is the largest triangle of its shape in P, ut is not
in P for any u > 1; therefore, either uu or uw lies outside of P (not on dP) for
every u > 1, say this holds for uu. Hence, the vertex U = Ju of T corresponding
to u has to lie outside of P.

Consider now a point v’ on the boundary of P such that the triangle ¢ = Auv'w
contains ¢ and has v in its interior. Let 7' = AUV'W, where V' = Av'. Then (¢, T")
is an approximating pair for P with the same expansion factor as (z, T'). However,
since the edge UV does not touch P, it cannot be optimal; we use here that U ¢ dP,
and that the rest of edge UV does not even touch T, since V lies in the interior
of T'. O

The following lemma can be proved “directly” by some analytic calculations;
we present a short proof (using cross-ratios) based on notes by Rolfdieter Frank
[7]. It turns out that this is essentially a new Schliefungssatz equivalent to
Pappus’ theorem as was pointed out by Armin Saam [12]. The lemma is illustrated
in Figure 5, in a way that indicates already how we want to use it.

LEmMMA 3.4. Let T be a triangle with a base of length B, let R and S be points on
the other two edges of T (but not on the base), and let g be the line which contains
the base of T. If we move the base of T on g to the left (or right) by an amount x
while preserving its length, this new base together with the (fixed) points R and S
defines a triangle T(x). Then, in a corresponding similar triangle t(x) with a fixed
base, the third vertex v(x) (i.e., the vertex not on the base) moves on a straight line
as x varies.



Simultaneous Inner and Outer Approximation of Shapes : 373

N U w

Fig. 6. Illustrating the proof of Lemma 3.4.

Proor. Instead of moving the base of T and keeping the points R and S fixed,
we keep the basis fixed and move the points R and S horizontally by equal
amounts, see Figure 6. We want to show that /" moves on a line. We proceed as
follows: assume that the base UW is horizontal and take two triangles AUV, W
and AUV, W “generated” by points R,, S, and horizontally shifted points R;, S|,
respectively. Now we move the point ¥ on the line through V,,, V; and watch the
intersections R and S of the sides UV and VW with the horizontal lines through
RyR, and S,S,, respectively. We will prove the lemma by showing that the
distances Ry R and S,S are equal.

Let us recall from projective geometry that the cross-ratio (A, B, C, D) of four
collinear points is defined as

AC BD
(A9 B, C, D) =Z_3ﬁ,

_— — — —
where the sign of the directed distances AC, AD, BC, and BD has to be taken
th respect to a fixed chosen orientation of the line containing the points; the
value of the cross-ratio is independent of this choice of orientation. If one of the
points, for example 4, is at infinity, the value of AC/AD is taken as 1. In this case,
the cross-ratio (oo, B, C, D) simplifies to the ratio BD:BC. It is an elementary fact
of projective geometry that the cross-ratio is invariant under central projections.
To use this fact for our proof, we denote by N the intersection of the base line
through UW with the line on which vertex ¥ moves. If we project the four points
N, V,, V1, and V on the horizontal lines through R,R,; and S,S, from the centers
U and W, respectively, we get

e — —_—
RoR:RoR; = (0, Ry, Ry, R) = (N, Vo, Vi, V) = (o0, So, Sy, S) = §05:5,8;.

—_ —_— . —
However, RoR, and S,S, are equal by choice, and thus RyR and ﬁ are also
equal. O
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THEOREM 3.5. For any convex polygon P, there is a rigid approximating pair (t, T')
with expansion factor A(3, P).

Proor. Let (¢, T) be an approximating pair with expansion factor A(3, P). We
know from Lemma 3.3 that every vertex of ¢ is on 6 P. Suppose there is a free vertex
pair (v, ¥). Then each of the two edges of T incident to ¥ touches P in one point
only, say in point R and in point S, respectively. If R is a vertex of T, then we
can make T smaller by rotating the edge RV about R until it is flush with an edge
of P. We get a triangle T, which forms with the analogously manipulated triangle
¢ in P an approximating pair with the same expansion factor, and this approxima-
ting pair has one free vertex pair less. Continuing to transform the pair in this
way we obtain a rigid pair.

So we may assume that R and S are not vertices of 7, and the assumptions of
Lemma 3.4 are satisfied. We move the base (the edge not containing V') on its line
while preserving contact with P in points S and R. Until an edge gets flush with
an edge of P, the vertex v of a similar triangle with the same base as t moves on
a line. If this line intersects the interior of P, then we get a contradiction to the
optimality of (¢, T') via Lemma 3.3 (see Figure 5). Thus this line contains the edge
on which v sits and we can perform this motion while preserving the expansion
factor, until either v meets a vertex of P or one of the two edges of T containing
R and S, respectively, gets flush with an edge of P; then (v, V') is not free. O

So we can find the optimal approximating pairs of triangles by considering only
rigid approximating pairs. Every rigid approximating pair (¢, T') falls into at least
one of the following classes:

A. All three vertices of ¢ are also vertices of P.

B. One vertex of ¢ is also a vertex of P and the opposite edge of T is flush with
an edge of P.

C. Two edges of T are flush with edges of P.

These classes are not disjoint but we will find the overall optimum vy computing
the optimum of each class. The pairs in each class can be further classified by the
incidences between the edges and vertices of the inner and outer triangle on one
side, and of the approximated polygon on the other side. We call this the type of
a rigid approximating pair.

For Class A a type is specified by the three vertices of P which are the vertices
of t; this completely determines (¢, T), because T = Tp(t). The situation gets slightly
more subtle in the other classes, because the type does not always completely
determine the triangles, and a type may contain a continuous family of solutions.
Fortunately, we only have to deal with one-parametric families of solutions, and
thus it is easy to find the optimum.

The type of a Class B pair (¢, T') is specified by a vertex v of ¢ and the vertex of
P which coincides with v, the edge e of P which is contained in the edge of T
opposite to ¥V (V is the vertex of T corresponding to v) and the portions (edges
or vertices) of P which contain the other vertices of ¢, and the portions which
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y(h) o(h)
E o (h)-bih

o

w(h)-alh

Fig. 7. How to compute the optimum of a given type in Class B.

are contained in the other edges of 7. There is one case where the type does not
uniquely determine the triangles ¢ and 7, namely when the other vertices (different
from v) of ¢ are both on edges of P (not vertices), and the other edges of 7 both
touch P in vertices (not edges). However, the expansion factor of a pair (of fixed
type) is a rational function of the form (c,;4 + c¢,)/(csh* + c4h) in the height A of
the smaller triangle (the c;’s are constants depending on the type); this should be
clear from Figure 7. Note that ¢ and y are linear functions in A. The base of ¢
has length (k) + ¢(h), and the base of T has length y(h)a/h + ¢(h)b/h + c, where
a, b, and ¢ are constants. The expansion factor is the ratio of these two expressions.
Hence the optimum of a given type can be found by solving a quadratic equation
and checking whether the roots of this equation correspond to valid pairs (¢, T)
of the type. It may happen that the optimum occurs at a boundary position of
the type, but this would already be a different type, and therefore such a solution
is taken care of correctly.

In Class C we have two edges e and f of P which are contained in edges UV
and VW of T. This also determines the vertex V. In addition, to completely specify
the type, we have to say on which vertex or edge of P each vertex of ¢ lies, and
which vertex or edge of P is touched by the edge UW. The only case in which the
solution is not unique occurs when the vertices u, v, and w of ¢ are contained in
edges (not vertices) of P, and the edge UW of T touches P at some vertex R (not
at an edge). In this cdse the distance VR is constant (see Figure 8). Therefore, xx(?)
is inversely proportional to the corresponding distance vr in the small triangle ¢.
Let us assume that the line VR is vertical, and let d be the distance of v from the
next vertex of P on the left. The coordinates (u,, u,), (v,,v,), and (w,, w)) of the
points u, v, and w are then linear functions of d. By dividing the triangle ¢ into
the triangles Avrw and Avru we can see that the area of ¢ is half the length of vr
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Fig. 8. How to compute the optimum of a given type in Class C.

times the horizontal distance between w and u. This gives the following formula
for vr:

Uy — U Wy — Uy

Uy — 0y, Wy —1,

U, — Wy

Y =

Setting the derivative of this rational function to zero yields a quadratic equation
for d, and thus the minimization problem for this type can be solved by elementary
means.

An Operation on Triangles. For the analysis of the algorithm we are going to
describe, we need the following argument. If (¢,, T,) and (¢,, T,) are approximating
pairs of a convex polygon P with the same expansion factors, then—under certain
circumstances to be specified later—we can continuously deform one pair into the
other via approximating pairs (¢,, T,), 0 < u <1, while preserving the same
expansion factor. For t, = Augvowo and t; = Auv,w;, we define ¢, as the triangle
A — wug + puy)(1 — woe + po,)(1 — wwe + pwy) and we define 7, in an
analogous way as an intermediate triangle between T, and T; note that in the
definition of ¢, the order of the vertices defining 7, and 7, makes a difference for
the resulting ¢,.

Observe right away that 7, and T, have the same shape, that (7,, 7,) has the
same expansion factor as (¢, T,) and (¢, T;), and that #, is contained in P. The
first two properties can be easily checked by plugging in the formulas, and the
last property follows from the fact that the vertices of z, are contained in the
convex hull of 75U t,.

However, in general, 7, will not contain P. The following lemma, though, will
ensure that in the situations we consider.



Simultaneous Inner and Outer Approximation of Shapes 377

©v

Fig. 9. Illustrating Lemma 3.6 and its proof.

LeEMMA 3.6 (see Figure 9). Let V, U,, W, be three noncollinear points in the
plane, let U, be a point on the open segment VU,, and let W, be a point on
the open segment VW,. For u, 0 < pu < 1, we define U, = (1 — p)U, + pU, and
W,=01— W, + uW,. Then AU, VW, contains AU VW, AU VW, for all
O<p<l.

Proor. It suffices to prove that AU, VW, contains the point x of intersection
between segments U, W, and U, W, . Consider the line / parallel to U,V containing
W,, let W, be the point where 4 intersects the line containing U,W,, and let
W, =1 — wWg, + uW,. Then U, W, contains x. However, W) can be obtained
also by intersecting the line parallel to W, W, through W, with 4. The lemma now
follows easily. O

COROLLARY 3.7. If (o, Ty) and (t,, T,) are approximating pairs of P such that T,
has two edges flush with edges of P and T, has two edges flush with the same two
edges of P, then all (t,, T,) for 0 < u < 1 are approximating pairs of P.

COROLLARY 3.8 (see Figure 10). Let Ty = AUV W,y and T, = AU, VW, be
two triangles such that the base segment U, W, of T is contained in the base segment
U,W, of T, and the vertex V is contained in T,. Then T, contains T, L T, for
al0<pu<l.

Proor. The line through ¥, and V; intersects the basis U, ¥, and thus separates
each of the triangles T, and T, into two triangles, to which Lemma 3.6 can be
applied. O
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Fig. 10. Illustrating the proof of the unimodularity of y(k) in Class B.

Computing an Optimal Approximating Pair. The algorithms for each class are as
follows:

For Class A we investigate all pairs u, w of vertices of P and look for a third
vertex v which minimizes yp(Auvw). For fixed vertices u and w, we abuse notation
and write x(x) as short for yx(Auxw), where x is a point in P. We want to show
that y(x) is unimodal as x moves from u to w on 0P (on either side of uw). Suppose
x(x') = x(x") for two points x" and x” on JP, both on the same side of uw. Let
T' = AUX'W be the triangle Tp(Aux'w),andlet T" = AU"X"W" = Tp(Aux"w).

Now we apply Lemma 3.4. The bases of 7' and T'” lie on the same line, and
since (Aux'w, T') and (Aux"w, T") have the same expansion factors, the bases of
T’ and T " have the same lengths. Since all edges of T’ and T” touch P, the segment
U'X’ must intersect U”X” in a point R, and W'X’' must intersect W”X" in a
point S. Now move the base of T" toward the base of T”, and consider the triangles
with this base and the other two edges containing R and S; all these triangles
contain T" N T” 2 P. As we observe similar copies with base uw, Lemma 3.4 tells
us that the third vertex moves monotonically on a line from x’ to x". Hence
every point x on 0P between x’ and x” satisfies y(x) < x(x'), and so y is unimodal.

LEMMA 3.9. The optimal approximating pair in Class A can be computed in time
O(n? log? n).

Proor. For every pair u, w of vertices P, and for both sides of uw, we perform
a Fibonacci search for the vertex v that minimizes yp(Auvw). This needs O(log n)
vertices to be visited, and for each such vertex v we have to compute Tp(Auvw),
which takes O(log n) time. This gives the claimed time bound. O
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In Class B we fix an edge e and a vertex v of P, and consider all triangles Auvw,
with u, w on 0P, and uw parallel to e. We write y(h) as short for ys(Auvw), if A
is the height of Auvw at base uw. Again we show that y(/) is unimodal.

Let hy > hy with y(ho) = x(h,). For i=0,1, let ¢, be the triangle Auw;
with height A;, with u;, w; on 0P, and uw; parallel to e, and let T; = Tp(z;). Note
that the base of T, (containing e) is completely contained in the base of T, and
that the third vertex V; of T, is contained in T, (see Figure 10). Hence, the line
through ¥, and the third vertex V, of T, intersects the bases of T, and T,. By
Corollary 3.8 we know that the triangles 7, contain TonT, 2 P for all p,
0 < u < 1. Now it easily follows that y(h) < x(h,) for all & between A, and h;.

LEMMA 3.10. The optimal approximating pair in Class B can be computed in time
O(n? log? n).

Proor. For every pair of an edge e and a vertex x of P, we search for the type
that contains the optimal triangle ¢t = Auvw with one vertex v on x, and the
opposite edge uw parallel to e. First we perform a Fibonacci search for the optimal
position for the vertex u of T among the vertices of P. This will limit the possible
positions of u to one vertex and two edges of P. Then we similarly identify two
possible edges and a possible vertex for w. Finally, we search among the edges of
P where the edge UV of T may lie flush, again using Fibonacci search. This gives
us a possible edge and two possible vertices where this edge touches. After a similar
search for the edge VW, we find the optimum in each of the resulting types in
constant time, either by computing the ratio for the unique solution or by
optimizing locally as described above (see Figure 7). O

Finally, we have reached Class C. Let e and f be edges of P. For point v on
OP, consider the triangle ¢ = Auvw with u, w on 0P, uv parallel to e, and vw
parallel to f. We write x(v) as short for yx(f). Using Corollary 3.7 it is now easy
to show that y(v) is unimodal as v moves on 0P between e and f'in the part where
Tp(?) has edges flush with e and f.

LEmMMA 3.11.  The optimal approximating pair in Class C can be computed in time
O(n? log? n).

ProoF. For every pair e, f of edges of P we select a few possible types of
approximating pairs where the outer triangle has edges flush with e and f. This is
carried out similarly as in Class B: Let 7 be the common vertex of these two outer
edges, as in Figure 8. By first searching among all vertices of P as possible positions
for v we identify the two possible edges and one possible vertex where v may lie.
This is done by Fibonacci search in O(log? n) time. Subsequently, we identify two
possible edges and a possible vertex for u, and then for w; each by a separate
Fibonacci search. Finally, we search among the edges of P where the third edge
UW of T may lie flush. This gives us a possible edge and two possible vertices
where this edge touches. We end up with a small number of types, which have
either a unique solution, or can be handled as described before. O



380 R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. Yap
We conclude with:

THEOREM 3.12.  Given an n-gon P we can compute an optimal triangular approxima-
ting pair (t, T) and the value (3, P) in time O(n* log® n).

Approximating the Regular Pentagon. We conclude this section by determining
the optimal approximating pair for the regular pentagon. It will provide us with
a lower bound for A(3). Somewhat surprisingly, this bound is tighter than the
bound A(3, D) = 2 for a disk D.

The optimal approximation (¢, 7) for a regular pentagon turns out to be in Class
B, with a common vertex v of ¢ and the pentagon, and an edge of T flush with
the edge of the pentagon opposite to v. All other types and classes are boundary
cases of this type or symmetric to it, or they can be dismissed as worse by direct
calculations. Figure 11 depicts the optimal situation for a regular pentagon, where
the indicated distances refer to a pentagon of side length 1. The distances are
labeled according to Figure 7. The slope of the lower right edge of the pentagon
is 1/tan 18°, the vertical distance of the base of ¢ from the base of the pentagon is
H — h = (cot 18°)/2 — h. Thus y(h) = ¢(h) = 3 + (H — h) tan 18° = 1 — A tan 18°.

H = YA cot 18°

=cos I8

¢ (h)
v(h) sin 18°

c=1+2sin18°

Fig. 11. The optimal approximation for the regular pentagon.
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The formula derived above for Class B gives
Y(ha/h + ¢p(h)b/h + ¢ (2 — 2h tan 18°) cos 18°/h + 1 + 25in 18°
w(h) + ¢h) 2 —2htan 18°
_ h+2cos 18°
~ 2h —2h*tan 18°

1

By setting the derivative to zero and solving the resulting quadratic equation
we get the optimal value of 4:

2
h = cos 18°(—2 + \/4 it > = cos 18°(\/6 + 2,/5 — 2) = cos 18°(/5 — 1),

sin 18°

using the value of sin 18° = (\/3 — 1)/4. Substituting this into expression (1) gives
an expansion factor of 1 + \/3/2.

THEOREM 3.13. \/3
2.118... =1 +TS1(3)S

ENIR=

We conjecture that the regular pentagon is indeed the worst case for approxima-
tion by triangles, and that A(3) is equal to 1 + \/3/2.

4. Upper Bounds for k-gons. The maximal area heuristic applied to quadrilaterals
can be seen to yield an approximating pair (Q, Q') with an expansion factor at
most 2. Hence A(4) < 2, but, in fact, Schwarzkopf et al. [13] have recently shown
that we may assume that Q is rectangular and such a rectangular approximating
pair can be computed in time O(log® n) if P is a polygon with its n vertices given
sorted in a linear array. Furthermore, this bound of 2 is optimal when restricted
to rectangular approximation.

The rest of this section is devoted to the asymptotic behavior of A(k). Any disk
D can be approximated by a regular k-gon Q with A(Q, D) = 1/cos(n/k), which is
optimal. This gives us a lower bound on A(k):

LeEMMA 4.1.  A(k) > 1/cos(n/k) > 1 + n?/(2k?).

In fact this lower bound on A(k) — 1 is tight up to a constant factor, as will be
shown below. The idea of the proof is to reduce our approximation problem to
approximation with respect to the Hausdorff distance, for which an O(1/k?) bound
is known. For any two bodies P and R, their Hausdorff distance d(P, R) is defined
as follows:

d(P, R) = max{sup inf Xy, sup inf 'ﬁ}

xeP yeR YeER yeP
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We invoke the following result:

LEMMA 4.2 (see [8]). Let a convex body P of perimeter U be given, and let k > 3.
Then P contains a k-gon R with

sin(n/k) n
dP,R)<U % <U TES

However, for polygons that are very long and thin, the Hausdorff distance d is
not a good approximation to our distance 4. This is because d measures the actual
Euclidean distance from each point to the nearest point in the other body, whereas
/. measures a relative scaling factor so that the effect of a point on 4 is somehow
inversely proportional to its distance from the scaling origin. Therefore, first we
have to apply an affine transformation to our body P to make it roughly “round.”
We expect that for “round” bodies, there will not be too much difference between
the Hausdorff distance and our distance measure 4. The following lemma makes
this precise.

LEMMA 4.3. Let P be a convex body containing a convex body R such that
d(P, R) < ¢, and suppose that R contains a disk of radius a. Then A(P, R) < 1 + ¢/a.

PrROOF. Let us take the center of the disk of radius a as our origin 0. We claim
that P = (1 + ¢/a)R, where the scaling of R is centered at O. To see this, look at
a half-line # emanating from O which intersects the boundaries of R and P in
points r and p, respectively (see Figure 12). Let us draw a supporting line of R
through r, and denote the points on this line closest to O and p by O and p/,
respectively. By considering similar triangles, we can conclude that

Fig. 12. Illustrating the proof of Lemma 4.3.
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LEMMA 4.4. For k > 5, Ak) < 1 + 2n%/(k* — 2x?).

ProOF. Let P be a convex body to be approximated by a k-gon. We know by
a result of John [9] (see also [11]) that there is an ellipse E < P, such that P < E',
where E' is the ellipse E scaled by a factor of 2 about its center. Now we choose
an appropriate affine transformation such a that E becomes a unit disk. Since P
is contained in E' and since E has perimeter 4n we know that the perimeter of P is
at most 47. By Lemma 4.2, we can find a k-gon R contained in P such that
d(P, R) < 4n%/(2k?). Let &:= 2n*/k*. Since P contains the unit disk E, R must
contain a disk of radius 1 — ¢, and applying Lemma 4.3 with a = I — ¢ gives the
result. (Note that 1 —¢ > 0 for kK > 5.) O

We can summarize the results of this section as follows:

THEOREM 4.5. A(k) = 1 + O(1/k).

5. Further Research.

e The algorithm for constructing an optimal approximating triangle is slow but
it is not clear how the exhaustive search used in Theorem 3.12 can be made
considerably faster.

e Even the triangle approximation of the regular pentagon (lower bound in
Theorem 3.13) is not fully understood. It turns out that the scaling center for
the optimal approximating triangle pair is just the midpoint of the pentagon
but we do not know if there is a deeper reason for this.

e For small k we would like to have explicit tight bounds on A(k) instead of the
asymptotic bounds in Section 4. Furthermore, we would like to find algorithms
which efficiently construct optimal (or nearly optimal) k-gons. One candidate
for such an algorithm is the maximum area heuristic. Currently we do not have
general bounds on the performance of this heuristic.

e What can be said about the minimum enclosing polygon [1] heuristic? Again
we know that in general it is not optimal (the example of the regular pentagon
again).

e We have not considered higher-dimensional problems.

Appendix. Largest Area Triangles in Hexagons. We want to prove that for a
convex polygon P with at most six vertices the ratio between its area and the area
of the largest triangle contained in P is at most 9/4. For a convex body C, we
denote the ratio between its area and the area of the largest triangle contained in
it by ratioC. For arbitrary convex bodies C (without restriction on the number of
vertices) a tight bound of ratioC < 41:/(3\/3) =241...is known [5].

We need some notation. Given a convex polygon P, a critical triangle is a
triangle of largest area whose vertices are vertices of P. It is easily seen that there
is always a critical triangle that has largest area among all triangles contained in
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P. If P is a hexagon with vertices 4, B', C, A’, B, C' in clockwise order, then a
triangle ¢ is called alternating ift = ANABCort = AA'B'C, and it is called diagonal
if AA’, BB, or CC' is an edge of ¢. Note that if ¢ is neither alternating nor diagonal,
then it is formed by three consecutive vertices of P.

A largest-ratio instance is a convex polygon P with at most six vertices that
maximizes ratioP. A compactness argument shows that such a largest-ratio
instance exists, and we can show that there are largest-ratio instances with many
critical triangles.

LEMMA A.l. There exists a largest-ratio instance, where every vertex participates
in at least two critical triangles.

Proor. Let P be a largest-ratio instance with the minimum number of vertices,
and among those with the minimum number of vertices with the maximum number
of critical triangles. If a vertex A participates in no critical triangle, then we can
move 4 while increasing areaP without changing the area of the largest triangle
contained in P. If 4 participates in one critical triangle AABC, then there is a
closed half-plane where we can move 4 without decreasing areaP, and there is a
line on which we can move A4 without changing areaAABC. Hence there is a
possibility of moving 4 without decreasing ratioP and keeping A ABC critical. At
some point either a vertex of P degenerates, or a new critical triangle is born;
both situations contradict our choice of P. O

It follows that we may assume that a largest-ratio instance P has at least
2n/3 critical triangles, where n is the number of vertices of P. The next three
lemmas show that certain configurations of critical triangles imply a bound on
ratio P.

LEMMA A2. Let P be a convex polygon, and let t = N\ABC be a critical triangle
with A, B, C three consecutive vertices of P in that clockwise order. Then ratioP < 2.

ProoF. Let g be the line through 4 and B, and let g’ be the parallel line through
C. Then P has to lie in the strip between g and g'; otherwise there is a triangle
larger than ¢ in P. Similarly, for the line 4 through B and C, and its parallel line
K’ through 4. Hence, P is contained in the quadrilateral Q with vertices 4, B, C,
and g’ N /. Since areaQ = 2 areat, the lemma follows. O

Along similar lines, the next lemma can be proved.

LeEmMMA A.3.  Let P be a convex polygon, and let t = NABC and NACD be critical
triangles such that the vertices A, B, C, D of P lie on the boundary of P in that
clockwise order (not necessarily consecutively). Then P is a parallelogram and
ratioP = 2.

In other words, the lemma states that if two critical triangles share a common
edge, and the respective third vertices lie on opposite sides, then the considered
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B

Fig. 13. The worst-case example of Lemma A.4, Case 2, with § = %

polygon is a parallelogram. The next lemma considers the case, where the
respective third vertices lie on the same side, and all involved vertices are
consecutive on the boundary of the polygon.

LEMMA A4. Let P be a convex polygon, andlet t = N ABD and N\ACD be critical
triangles of P with A, B, C, D four consecutive vertices of P in that clockwise order.
Then ratioP < 9/4. The ratio 9/4 is obtained by a hexagon, which is unique up to
affine transformations.

PrOOF. BC has to be parallel to AD. So we may assume (by an affine transforma-
tion) that 4 = (0,0), B = (0, 1), D = (1,0), and C = (8, 1) with é a parameter that
varies between 0 and 1, see Figure 13. (If 6 > 1, then'area AABC > area AABD.)
Let f be the line through B and D, and let /' be the parallel line through 4.
For ¢ to be a critical triangle, P must lie completely above f'. Similarly, if g is the
line through 4 and C, and ¢’ is the parallel line through D, then P must lie
above g'. We also want to ensure that BC is not the base of a triangle in P with
area larger than 4. This can be guaranteed iff P lies above the horizontal line
W:y=1—1/5. Note that the y-coordinate of f'ng’ equals —1/(1 + é). So if
1 —1/6 < —1/ (1 + J), then the restriction of 4" is redundant. This happens
iff 62 + 6 — 1 < 0 which is equivalent to ¢ < é(\/g —1)in the range 0 < d < 1.

Case1:0<0 < %(\/g —1). P must be contained in the pentagon Q = ABCDE,
where E = f ng'. The area of Q equals 3 (for the area of AA4BD) plus 1 (for the
area of AACD) plus 16(1 — 1/(1 + 9)) (for the area of ABC(f ng)). Note that
AABD and AACD “overcount” by the area of AAD(f ng) which, however,
equals the area of AADE. Hence, areaQ = 1 + ¥6%/(1 + ) which increases as
 increases for 6 > 0. So the maximum is obtained for é = 3(/5 — 1) when
areaQ = %\/g Consequently, ratioP = areaP/areat < areaQ/} < /5 < 9/4 which
settles this case.

Case 2: %(\/g —1) <6 <1. P must be contained in the hexagon Q = ABCDEF
with E=g' nkh and F=f"nh. Since the slope of f' is —1, we have
F=(1/6 — 1,1 — 1/5). Furthermore, C and E have the same x-coordinate J, since
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LA,
~ XL

NG

Fig. 14. A more symmetric affine transformation of the example of Figure 13.

the triangles AE(1,1 — 1/6)D and AC(1, 1)(1, 1/0) are congruent. Now we can
calculate the area of Q: We consider the rectangle R between the vertical lines
x =0 and x = 1 and between the horizontal lines y = 1 and /4. Then the area of
O equals 1/ (the area of R) minus 4(1/6 — 1)® (for the area of the triangle
AAF0,1 — 1/8) in R not covered by Q) minus 3(1/5)(1 — 6) (for the triangles
ACD(1,1) and ADE(1,1—1/8) in R not covered by Q). We obtain that
areaQ = 4(3/6 — 1/6%). The derivative (d areaQ)/dd equals 0 for 6 = § which lies
in the range of § considered in this case. For § = %, we have areaQ = 9/8 which
is a maximum. We have shown that areaP/areat < 2 areaQ < 9/4, which proves
the inequality of the lemma in Case 2.

The above argument not only proves the upper bound of 9/4, it also demon-
strates that the only possibility to attain that ratio is that P equals the hexagon
Q in Case 2 for § = % (or an affine image of this hexagon). Figure 13 shows this
situation, and Figure 14 is an affine image of that same worst-case hexagon that
exhibits its symmetry more clearly.

It remains to show that there is no triangle of area larger than 4 contained in
Q. Consider the cyclic sequence of triangles:

AD||BC AC||DE CE||AB BC||EF

AABD —— NACD NACE ABCE——

BF||CD BD|| AF

ABCF —— ABDF——— ABDA.

Each triangle is obtained from its predecessor by moving one vertex on a line
parallel to the line through the two other vertices, as indicated above the arrows:
We have observed before that C and E have the same x-coordinate, and so CE
is parallel to 4B. The fact that BF is parallel to CD follows by symmetry. The
other four cases are immediate from the construction of Q. Thus, all triangles
involved in this cyclic sequence have the same area, and it can be easily verified
that all other triangles with vertices from Q have smaller area. O

REMARK. If P in the statement of the preceding lemma is a pentagon, then
ratioP < ./5 can be shown; equality holds iff P is an affine image of a regular
pentagon.

Before we prove the theorem, we need the following interspersing lemma on
which algorithms for computing largest area contained triangles are based (see

[4D).
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LEMMA A5. Let P be a convex polygon, and let t and t be critical triangles.
The vertices of t and t' which are not common to both triangles alternate on the
boundary of P.

Thus, if two critical triangles of a hexagon do not share a vertex, then they must
be the two alternating triangles.

THEOREM A.6. ratioP < 9/4 for every convex polygon P with at most six vertices;
the bound is tight, and it is achieved by a hexagon which is unique up to
affine transformation.

Proor. Let P be a largest-ratio instance, where every vertex participates in at
least two critical triangles. We know that ratioP > 9/4; so P must have at least
five vertices. From Lemma A.2 it follows that at most one edge of a critical triangle
is also an edge of P; so at least two edges of a critical triangle must be chords of
P, ie., line segments connecting nonadjacent vertices of P.

Case 1: P has five vertices. Then P must have at least 2-5/3, i.e., at least four
critical triangles. Since each critical triangle has two chords of P as its edges, there
must be a chord 4B that participates in two critical triangles with vertices C and
C'. Cand C must lie on the same side of 4B (see Lemma A.3), and the assumptions
of Lemma A.4 are satisfied, which shows ratioP < 9/4.

So P has to be a hexagon AB'CA’'BC', vertices in clockwise order. There are at
least (2-6)/3 =4 critical triangles. If one of the diagonals AA4’, BB, or CC
participates in two critical triangles, then Lemmas A.3 and A.4 immediately prove
the theorem. So we assume that a diagonal participates in at most one critical
triangle. Now there are at most five critical triangles, two alternating and three
diagonal; we conclude that there is at least one alternating critical triangle.

Case 2: P is a hexagon, and it has exactly one alternating critical triangle. Without
loss of generality let this alternating critical triangle be AA4BC. Note now that
every vertex participates in exactly two critical triangles, since there are only four
critical triangles. So A participates in the alternating critical triangle AABC, and
in the diagonal critical triangle that uses the diagonal 4A4’; similarly, for B and
C. It follows that the diagonal critical triangle using AA4’ is either AAA'B’ or
ANAA'C'; say, without loss of generality, it is AAA'B’. Then the two other
diagonal triangles have to be ABB'C' and ACCA’, but now AA'CC and
AA'B'A contradict Lemma A.5, which settles Case 2.
The final case leads us once more into analytic calculations.

Case 3: P is a hexagon with two alternating critical triangles. 1If P has only two
diagonal critical triangles, they cannot share a common vertex, and we get a
contradiction to Lemma A.5. Hence, there are three diagonal critical triangles,
and so two must share edges with the same alternating critical triangle; say with
AABC, and the shared edges are AC and BC (the two edges have to be different,
since no edge forms critical triangles with three vertices on the same side). Now
these diagonal critical triangles are fixed to be AACA’ and ABCB'; other
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possibilities are excluded by Lemma A.3 or A.5. The third diagonal critical triangle
cannot be ACC'B or ACC A, since then BC (or AC) would be an edge of three
critical triangles. The two remaining vertices A’ and B’ are symmetric, so without
loss of generality let us assume that ACC'B' is critical. Note now that because
of critical triangles AB'CB and AB'CC, B'C and C'B have to be parallel, and
because of ABCA and ABCC, BC and A'C have to be parallel. So the
position of C' is already determined by the five remaining vertices. We are free to
choose A4, B, and C in fixed positions, so we have to vary only 4’ and B’ and
investigate the position which maximizes ratioP.

Welet A =(—1,0,B=(1,0,C=(0,1),4 =(y + 1,7),and B' = (—(é + 1), )
forsome 0 <y<1land 0 < < 1. Now

-0 +1) y+1 1 —6+1)
CI = =
< s JTH,-1)= )TN 51
for appropriate p and n. Any instance generated in this way has the property

that our five critical triangles have the same area. We climinate u and get
n =1 + y/(8y — 1). Therefore, the y-coordinate of C’ equals

Y 1-v
neo —1)= < 6+1—6y>’

The area of P now equals 1 (for AABC) plus %ﬁ(éﬁ) (for AACB') plus
1/2(4/2) (for ACBA') plus $2(—& + (1 — »)/A1 — 8y) (for AABC) which gives
14+ 79+ (1 —9)/1 —dy). As is easily seen, this area is increasing as é increases.
Since P is a largest-ratio instance, there must be another critical triangle, which
contradicts our assumption that there are only five critical triangles.
Consequently, the only largest-ratio instances are those constructed in the proof
of Lemma A.4. O
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