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Abstract

We give tail estimates for the efficiency of some randomized incremen-
tal algorithms for line segment intersection in the plane. In particular, we
show that there is a constant C such that the probability that the run-
ning times of algorithms due to Mulmuley [Mul88] and Clarkson and Shor
[CS89] exceed C times their expected time is bounded by e−Ω(m/(n ln n))

where n is the number of segments, m is the number of intersections, and
m ≥ n ln n ln(3) n.

1 Introduction

Randomized incremental algorithms have received considerable attention re-
cently; cf. [CS89], [Mul88] and [BDS+92]. They solve a large number of ge-
ometric problems, including the construction of Voronoi diagrams and convex
hulls and the intersection of line segments, in optimal expected time and space.
In this paper we discuss the randomized line segment intersection algorithms of
Clarkson and Shor [CS89], Mulmuley [Mul88] and Boissonnat et al. [BDS+92]

∗Supported in part by GIF project No. I-135-113.6/89 and by the ESPRIT II Basic Re-
search Actions Program of the EC under contract no. 7141(project ALCOM). A preliminary
version of this paper was presented at the 3rd ACM-SIAM Symposium on Discrete Algorithms,
1992.
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and prove a tail estimate for the running time of two algorithms in [Mul88] and
[CS89] and for the space efficiency of the algorithms in [BDS+92]. More pre-
cisely, we show that there is a constant C such that the probability that the run-
ning time (space efficiency) exceeds C times its expected value is e−Ω(m/(n ln n)),
where n is the number of line segments, m is the number of intersections, and
m ≥ n ln n ln(3) n. The tail estimate is shown is Section 3. In Section 2 a simple
probabilistic lemma is proven; it extends a lemma shown in [CMS92]. In the
preliminary version of this paper we only claimed a tail estimate for the space
efficiency of the algorithm in [BDS+92]. Jirka Matoušek and Raimund Seidel
have pointed out to us that our method also implies a tail estimate for the run-
ning time of two of the intersection algorithms. A tail estimate for the running
time of Mulmuley’s algorithm was also claimed in [MS92]. Unfortunately, the
argument in [MS92] is flawed (personal communication by the authors).

2 A Probabilistic Lemma

Let IN denote the set of nonnegative integers and let IR≥0 denote the set of
nonnegative reals. For functions M : IN → IR≥0 and d : IN → IR≥0 and
integers n and r with n ≥ r ≥ 0, call a rooted tree T an (n, r)-tree respecting
M and d if either r = 0 and T consists of a single node, or r > 0, the root of
T has n subtrees each of which is an (n − 1, r − 1)-tree respecting M and d,
and the n edges incident to the root are labeled with non-negative weights di

so that di ≤ d(n) for 1 ≤ i ≤ n and
∑

1≤i≤n di ≤ M(n).

For a path π in T , let X = Xπ be the sum of the weights of the edges along
the path. The uniform distribution on the n(n − 1) · · · (n − r + 1) paths in T
makes X a random variable with expectation

E(X) ≤
∑

0≤i≤r−1

M(n − i)

(n − i)
.

Lemma 1 : For all t > 0 and B ≥ 0:

Prob (X ≥ B) ≤ exp



−tB +
∑

0≤i≤r−1

M(n − i)

(n − i)d(n − i)
(etd(n−i) − 1)



 .

Remark: Lemma 1 is related to Azuma’s inequality [ASE91, Section 7] for
martingales but does not follow from that inequality. Note that one can easily
derive a martingale from the tree T : Label each node v of T by E[Xπ|π goes
through v] and for i, 0 ≤ i < r, let Yi be the label of a random node of depth i.
Then Y0, Y1, . . . , Yr is a martingale. The proof of Lemma 1 is an adaptation of
the standard proof for Hoeffding’s inequality, cf. [Hoe63]. The case r = n and
d(i) = M(i) for all i was previously treated in [CMS92].

Proof: Let I0, . . . , Ir−1 be independent random variables where Ii, 0 ≤ i ≤
r − 1, is uniformly distributed on [1..n − i]. The variables I0, . . . , Ir−1 select a
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path π of T in a natural way: I0 selects the first edge of π, I1 selects the second
edge of π, and so on. For i ∈ [0..r − 1] let Xi be the weight of the (i + 1)-st
edge on the path π. Then X =

∑

0≤i≤r−1 Xi and, for all t > 0,

Prob(X ≥ B) = e−tBetB
Prob(etX ≥ etB)

≤ e−tB
E(etX) = e−tB

E





∏

0≤i≤r−1

etXi



 ,

using Markov’s inequality in step two. We now prove for all j, 0 ≤ j ≤ r − 1,
and all integers i0, i1, . . . , ir−1 with il ∈ [1..n − l]

E





∏

j≤i≤r−1

etXi |I0 = i0, . . . , Ij−1 = ij−1





≤ exp





∑

j≤i≤r−1

M(n − i)

(n − i)d(n − i)
(etd(n−i) − 1)



 .

For j = 0 this is the claim of the lemma. We use backward induction on j. For
j = r both sides are equal to one. So assume j ≤ r − 1. We have

S := E





∏

j≤i≤r−1

etXi |I0 = i0, . . . , Ij−1 = ij−1





=
∑

1≤l≤n−j

1

n − j
· E





∏

j≤i≤r−1

etXi |I0 = i0, . . . , Ij−1 = ij−1, Ij = l



 .

Let d1, . . . , dn−j be the weights of the edges emanating from the node cor-
responding to i0, i1, . . ., ij−1. Then I0 = i0, . . . , Ij−1 = ij−1, Ij = l implies
Xj = dl. Thus

S =
∑

1≤l≤n−j

etdl

n − j
E





∏

j+1≤i≤r−1

etXi |I0 = i0, . . . , Ij−1 = ij−1, Ij = l





≤ exp





∑

j+1≤i≤r−1

M(n − i)

(n − i)d(n − i)
(etd(n−i) − 1)



 ·
∑

1≤l≤n−j

etdl

n − j
,

where the inequality comes from the induction hypothesis. Since dl ≤ d(n − j)
for 1 ≤ l ≤ n − j and

∑

1≤l≤n−j dl ≤ M(n − j), and by the convexity of the
exponential function, the last expression is maximized when bM(n−j)/d(n−j)c
weights dl are equal to d(n − j), one weight is equal to M(n − j) − bM(n −
j)/d(n−j)cd(n−j) and the remaining weights are equal to zero. Let x = M(n−
j)/d(n−j)−bM(n−j)/d(n−j)c. Then 0 ≤ x < 1 and hence, by the convexity
of the exponential function, exp(x · t · d(n− j)) ≤ 1− x + x exp(t · d(n− j)). It
follows that

∑

1≤l≤n−j

etdl

n − j
≤

M(n−j)
d(n−j) etd(n−j) + n − j − M(n−j)

d(n−j)

n − j
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= 1 +
M(n − j)

(n − j) d(n − j)
(etd(n−j) − 1)

≤ exp

(

M(n − j)

(n − j)d(n − j)
(etd(n−j) − 1)

)

,

where the last inequality follows from 1 + y ≤ ey for all real y. This completes
the induction step and the proof of the lemma.

If d(·) is a non-decreasing function then the upper bound of Lemma 1 be-
comes more manageable.

Theorem 1 Let d(n) be a non-decreasing function of n and let

A ≥
∑

0≤i≤r−1

M(n − i)

n − i
.

Then

Prob(X ≥ B) ≤
(

e

1 + B/A

)B/d(n)

for all B ≥ 0.

Proof: If d(·) is a nondecreasing function, then

etd(n−i) − 1

d(n − i)
≤ etd(n) − 1

d(n)

since (ex−1)/x is an increasing function of x for x > 0 (compute the derivative).
This simplifies Lemma 1 to

Prob (X ≥ B) ≤ exp(−tB + A · etd(n) − 1

d(n)
) .

Put t = (1/d(n)) ln(B/A + 1). Then

Prob (X ≥ B) ≤ exp

(

− B

d(n)
ln

A + B

eA

)

.

3 Tail Estimates for the Efficiency of Randomized

Line Segment Intersection Algorithms

Randomized incremental algorithms for line segment intersection were described
by Clarkson and Shor [CS89], Mulmuley [Mul88], and Boissonnat et al. [BDS+92].
All these algorithms have expected running time O(n log n+m), where n is the
number of segments and m is the number of intersections. We first discuss
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an algorithm due to Mulmuley [Mul88] and prove a tail estimate for its time
complexity. At the end of the section we briefly discuss the other algorithms.

Here is a brief account of Mulmuley’s algorithm (called second algorithm in
[Mul88]). Let S be a set of non-vertical line segments in the plane. We assume
for simplicity that the x–coordinates of all endpoints and all intersection points
are distinct. For a subset R ⊆ S let T (R) be the trapezoidal decomposition
defined by the segments in R plus the endpoints of the segments in S \ R, cf.
Figure 1. T (R) is obtained from the segments in R and the endpoints of the
segments in S \ R by emanating an upward and a downward vertical ray from
each endpoint and each intersection point. The rays extend up to the next
segment. We call this a vertical bar. When we talk about an edge, then we
mean an edge in the arrangment of R – such an edge may be touched by several
vertical bars. Mulmuley constructs T (S) incrementally starting with T (∅) and
adding the segments in S one by one in random order. For R ⊆ S and s ∈ S \R
the decomposition T (R∪{s}) is constructed from T (R) as follows. Starting at
an endpoint of s walk along s through T (R). The vertical bar extended from
this endpoint determines the first trapezoid of T (R) entered by s. If s leaves
a trapezoid through a vertical (bar) boundary then the trapezoid entered by s
can be determined in constant time since the vertical boundary of a trapezoid is
incident to at most two other trapezoids (by our general position assumption).
If s leaves through a segment (edge) boundary the situation is more involved.
Assume for concreteness that s leaves a trapezoid T through its upper boundary
contained in edge e and that e is part of the segment t ∈ R. The walk then
proceeds from the intersection s∩t to one of the endpoints of e (this is either an
endpoint of t or an intersection t∩ s′ for some s′ ∈ R) and then along the other
side of t back to s ∩ t, cf. Figure 1. When the walk reaches s ∩ t at the other
side of t the trapezoid entered by s is known and the walk proceeds along s. At
the end of the walk all trapezoids intersected by s are known and T (R∪{s}) is
readily constructed from T (R). It is not hard to see that the time for the walk
dominates the time to construct T (R ∪ {s}) from T (R).

For R ⊆ S and s ∈ R \ S let t(R, s) be the time needed to construct
T (R∪{s}) from T (R). To be more concrete, we define t(R, s) as the number of
vertical segments touching s or edges incident to s in T (R∪{s}) (this accounts
also two for every intersection of s with R). Clearly, this quantity is proportional
to the insertion time for s. For the analysis of the total running time, we define
a tree T0 as follows. The nodes of depth i of T0, 0 ≤ i ≤ n, have exactly
n − i children. The nodes of depth i correspond to the subsets of S of size
n − i in a natural way. The root corresponds to S and if a node v corresponds
to a subset R ⊆ S then the children of v correspond to the sets R − {x},
where x ranges over R. The edge connecting the nodes corresponding to R and
R − {x} is labeled by t(R − {x}, x). For a path π in T0, let X(π) be the sum
of the edge labels on path π. Then X(π) is the total running time when the
elements of S are inserted in the order specified by π, i.e., a walk along π from
leaf to root specifies a permutation of S and X(π) is the running time of the
algorithm for this insertion order. In other words, T0 represents all possible
”backward” executions of the insertion process [Sei91]. Let X = X(π) be the
random variable defined by the uniform distribution on the paths in T0.
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Figure 1: A trapezoidal decomposition T (R) for a subset R of three segments
(shown solid) of a set S of five segments. The segment s (shown dotted) and the
segment with endpoints a and b do not belong to R. When s is added to R the
indicated walk (shown dashed) through T (R) is performed.

Let
T (R) =

∑

x∈R

t(R − {x}, x) ,

M(r) = max{T (R); R ⊆ S, |R| = r} ,

and
d(r) = max{t(R − {x}, x); R ⊆ S, |R| = r, x ∈ R} .

Then T0 is an (n, n)-tree respecting M and d and hence Theorem 1 can be used
to prove a tail estimate for the running time. In order to apply Theorem 1 we
need bounds on d(r) and M(r). These bounds are provided by Lemmas 2 and
3.

Lemma 2 Let R ⊆ S and r = |R|. Then d(r) ≤ βnα(n), where α is the
functional inverse of Ackermann’s function and β is some constant independent
of r.

Proof: This Lemma was already shown in [Mul88]. We enclose its proof
for completeness. Let A(R) be the arrangement defined by the segments in R.
Let s ∈ R be arbitrary and let E be the set of edges in the arrangement A(R)
having at least one vertex on s (i.e. incident to s). Recall that t(R \ {s}, {s})
is the number of vertical bars touching s or an edge incident to s in T (R). To
count these vertical bars we distinguish two kinds of bars. The type I bars are
incident to an endpoint of a segment in S \ R and the type II bars are not.
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There are clearly only at most 2n type I bars. To count the number of type
II bars consider an arrangement A(R′) obtained from A(R) as follows: Split
every segment in R \ {s} intersecting s at its intersection with s and move the
two new endpoints slightly away from s. Then the number of type II bars is at
most proportional to the complexity of the face of A(R′) containing s. Since
|R′| ≤ 2r this complexity is O(rα(r)), cf. [GSS89, Theorem 3.1].

For R ⊆ S, let m(R) be the number of pairs of intersecting segments in S.
We have

Lemma 3 (a) Let R ⊆ S. Then T (R) ≤ γ(n + m(R)) where γ is a constant
independent of r.

(b) M(r) ≤ γ(n + min{r2, m}) for all integers r, 0 ≤ r ≤ n.

Proof: Part (b) follows immediately from part (a) and the fact that m(R) ≤
min{|R|2, m}. For part (a) we say that an edge e of A(R) contributes to t(R \
{s}, s) for s ∈ R if e ⊆ s or e is incident to s; the contribution of e is the number
of vertical bars touching it (in this way the overall contribution to t(R \ {s}, s)
is at least t(R \ {s}, s)). Every edge contributes to t(R \ {s}, s) for at most
three segments s ∈ R; a vertical bar touches at most three edges.

Summing up, we have that T (R) is bounded by 9 times the number of
vertical bars; the number of vertical bars is 2(2n + m(R)).

Substituting the bounds of Lemmas 2 and 3 into Theorem 1 gives us our
first tail estimate.

Theorem 2 Let β and γ be defined as in Lemmas 2 and 3 and let

A = 2γ(n ln n + m ln(n/
√

m)).

Then for all c ≥ 0

Prob(X ≥ cA) ≤
(

e

1 + c

)cA/(βnα(n))

.

Proof: We have M(r) ≤ γ(n + min{r2, m}) for all r and hence

∑

1≤r≤n

M(r)

r
≤ γ





∑

1≤r≤n

n

r
+

∑

r≤√
m

r +
∑

√
m<r≤n

m

r





≤ γ(nHn + m + m(Hn − H√
m))

≤ 2γ

(

n ln n + m ln

(

n√
m

))

.

The bound now follows directly from Theorem 1.
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The bound of Theorem 2 is quite good for small m (m = O(n)) and large
m (m ≈ n2). In these cases the quantity A is of the same order as the expected
running time. We will next derive a better bound for intermediate values of m.
In the proof of Lemma 3 we bounded m(R) by

(|R|
2

)

. However, the expected

value of m(R) for a random subset of R of S of size r = |R| is only m r(r−1)
n(n−1)

[CS89, Lemma 4.1]. The idea is now to prove a tail estimate for (a quantity
related to) m(R) and to argue that one can essentially replace m(R) by its
expected value in the bound for M(r) without invalidating Theorem 1.

Theorem 3 There are absolute constants C, δ > 0 such that

Prob(X ≥ Cm) ≤ exp(
−δm

n ln n
) for m ≥ n ln n ln(3) n .

Proof: Put x = ln n. Let a1 = 4e2, a2 = 16e, let γ be as in Lemma 3, and
redefine M(r) as M(r) = 4γ(a1mr/n + a2m/x).

For r, 1 ≤ r ≤ n, define the random variable Yr on the paths of T0 so that
Yr(π) = 1 if γ(n + m(R)) > M(r) for the set R corresponding to the node of
depth n − r on path π, and 0 otherwise. Let Y = max

1≤r≤n
Yr.

Let T1 be the following (n, n)–tree respecting M and d, where d(r) = βnα(n)
and β is as in Lemma 2. Let v be any node of T0, let R be the set corresponding
to v, and let w be the node corresponding to v in T1. If γ(n+m(R)) ≤ M(|R|),
then the labels of the edges emanating from w in T1 are identical to the labels
of the edges emanating from v in T0; if γ(n + m(R)) > M(|R|), then the labels
of the edges emanating from w are arbitrary, but respect M and d. Let X1 be
the random variable defined by the sum of the edge labels along the paths in
T1.

The following three claims imply the theorem.

Claim 1 Prob(X ≥ B) ≤ Prob(X1 ≥ B) + Prob(Y = 1) for any B ≥ 0.

Claim 2 Prob(Y = 1) ≤ exp(−m/(nx)).

Claim 3 There is a constant C such that

Prob(X1 ≥ Cm) ≤ exp

(

−Ω

(

m

nα(n)

))

.

We now prove the three claims in turn.

Proof of Claim 1: For paths π with Y (π) = 0 we have X(π) = X1(π). Thus

Prob(X ≥ B) ≤ Prob(Y = 1) + Prob(X ≥ B and Y = 0)

= Prob(Y = 1) + Prob(X1 ≥ B and Y = 0)

≤ Prob(Y = 1) + Prob(X1 ≥ B) .
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Proof of Claim 3: The tree T1 respects M(r) = 4γ(a1mr/n + a2m/x) and
d(r) = βnα(n). Now apply Theorem 1 with A = C1m ≥ ∑

1≤r≤n M(r)/r and
C1 sufficiently large.

Proof of Claim 2: This claim is the hardest to prove. We will first define
a quantity D(R) related to m(R) and then show that Y (π) = 1 implies that
D(R) is large for some set R on the path π. We will then use Theorem 1 to
bound the probability that D(R) is large.

For a line segment s ∈ S, let deg(s) be the number of intersections between
s and the other segments in S. For R ⊆ S, let D(R) =

∑

s∈R deg(s). Then,
clearly, D(R) ≥ 2m(R); in fact, D(R) counts all intersections between segments
in R and segments in S, where intersections between two segments in R are
counted twice.

Claim 4 Let π be a path in T0. If Y (π) = 1 then there is some r = 2l ≤ n/2,
l ∈ IN, such that D(R) ≥ a1mr/n + a2m/x, where R is the set corresponding
to the node of depth n − r on path π.

Proof: If Y (π) = 1 then there is an r′, 1 ≤ r′ ≤ n, such that γ(n + m(R′)) >
M(r′), where R′ is the set corresponding to the node of depth n− r′ on π. Let
r = 2dlog r′e. Then r ≤ n/2, since γ(n + m(R′)) ≤ M(r′) for all r′ ≥ n/4. Let R
be the set corresponding to the node of depth n − r on path π. Then R′ ⊆ R
and hence γ(n + m(R)) ≥ γ(n + m(R′)) > M(r′) ≥ M(r)/2. The claim now
follows from D(R) ≥ 2m(R), m/x ≥ n, and a2 ≥ 1.

Claim 5 Let 1 ≤ r ≤ n. Then

Prob(D(R) ≥ a1mr/n + a2m/x) ≤ min

{

e−a1mr/n2
,

(

xr

4n

)a2m/(nx)
}

,

where R is a random subset of S of size r.

Proof: For r ≥ 2n/a1 there is nothing to prove since D(R) ≤ 2m always holds.
For r < 2n/a1 ≤ n/2, we use Theorem 1, as follows. Consider the following
(n, r)–tree T . The nodes of T of depth i, 0 ≤ i ≤ r, correspond to subsets of S
of cardinality i; the correspondence is many to one (the correspondence between
nodes and permutations of subsets is one to one). If node v of T corresponds
to R′ ⊆ S then the n− |R′| children of v correspond to the sets R′ ∪{s}, where
s ∈ S − R′. Also, the edge connecting R′ and R′ ∪ {s} is labeled with deg(s).
In this way, the edge labels on a leaf-to-root path sum to D(R), where R is the
subset of S corresponding to the leaf. Also, with d(i) = n and M(i) = 2m, the
tree T respects d and M and, by symmetry, each subset R ⊆ S with |R| = r
corresponds to the same number of leaves of T . We now apply Theorem 1 with
A = 4mr/n. Note that

∑

0≤i≤r−1 M(n − i)/(n − i) = 2m
∑

n−r+1≤i≤n 1/i and
∑

n−r+1≤i≤n 1/i ≤ ∫ n
n−r(1/i)di ≤ ln(n/(n − r)) ≤ ln(1 + r/(n − r)) ≤ 2r/n

where the last inequality follows from r ≤ n/2 and ln(1 + x) ≤ x.
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Let B = a1mr/n + a2m/x. Then

Prob(D(R) ≥ B) ≤ (e/(B/A))B/n

≤ min

{

exp(−a1mr/n2),

(

xr

4n

)a2m/(nx)
}

,

where the first bound follows from B ≥ a1mr/n and a1 = 4e2 and the second
bound follows from B ≥ a2m/x and a2 = 16e, and that this bound is relevant
only if xr/4n < 1.

We can now complete the proof of Claim 2. Let

f(r) =

{

e−a1mr/n2
if r ≥ n/x

(

xr
4n

)a2m/(nx)
if r < n/x

.

Then

Prob(Y = 1) ≤
blog nc−1
∑

l=0

f(2l)

according to the two preceding claims. Next observe that this sum can be split
into two subsums, the first is

∑

r∈[n/x,n/2]

r=2l for some l

f(r) ≤ e−(a1m/n2)·(n/x) ·
blog(x/2)c
∑

i=0

e−(a1m/n2)2i

≤ e−a1m/(nx) · log x

and the second is

blog(n/x)c−1
∑

l=0

f(2l) =

(

x

4n

)a2m/(nx)

·
blog(n/x)c−1

∑

l=0

(2a2m/(nx))l

≤
(

x

4n

)a2m/(nx)

2a2m/(nx)·blog(n/x)c

≤
(

x

4n
· n

x

)a2m/(nx)

≤
(

1

2

)16em/(nx)

≤ e−4e2m/(nx)

(because
(

1
2

)4
< e−e). Hence

Prob(Y = 1) ≤ log(2x) · e−4e2m/(nx) .

Since m ≥ nx ln ln x, we have −4e2m/(nx) + ln log(2x) ≤ −m/(nx), so that
Prob(Y = 1) ≤ e−m/(nx). This completes the proof of Claim 2 and hence the
proof of Theorem 3.
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We now discuss the other randomized line segment intersection algorithms.
Clarkson and Shor [CS89] describe two algorithms. Both algorithms maintain
the trapezoidal decomposition D(R) defined by the segments in R. When a
segment s ∈ S \ R is to be added, the two algorithms use different methods
to find the trapezoids intersected by s. The first algorithm maintains for each
s ∈ S\R the set of trapezoids of D(R) intersected by s and for each trapezoid the
set of segments intersecting it (the so-called conflict graph). Our methods do not
seem to imply anything for this algorithm. The second algorithm maintains for
each trapezoid the set of segment endpoints contained in it. When a trapezoid
is split during execution of the algorithm this list of points is scanned and the
points are distributed among the resulting trapezoids. When a segment s ∈ S\R
is to be added to D(R) the set of trapezoids intersected by s is determined by a
walk through D(R) as described above for T (R). The walk through D(R) takes
no longer than the walk through T (R) since T (R) is a refinement of D(R). We
still need to estimate the time needed to maintain the conflict information.

Lemma 4 Let p ∈ IR2 be arbitrary and let X be the number of times p changes
trapezoids during the incremental construction of D(S). Then Prob(X ≥
6cHn) ≤ (e/c)cHn for all c ≥ 0.

Proof: We use Theorem 1 with M(i) = 6 and d(i) = 1 for all i. Consider the
tree T representing the backwards execution of the algorithm. Label the edge
connecting vertices associated with sets R and R \ {x} by 1 if the segment x
is incident to the trapezoid of D(R) containing p and by 0 otherwise. Then at
most six edges incident to any vertex are labeled 1 and hence T is an (n, n)–tree
respecting M and d. Also X is the sum of the edge labels along a random path
of T and

∑

1≤i≤n M(i)/i = 6Hn. Thus Prob(X ≥ 6cHn) ≤ (e/c)cHn .

Let X be the time needed to maintain the conflict information. Then X =
O(X1 + . . .Xn) where Xi is the number of times the endpoints of the i–th
segment in S changes trapezoids. Thus Prob(X ≥ cγnHn) ≤ (e/c)cHn for a
suitable constant γ and hence Prob(X ≥ γm) ≤ (enHn/m)m/n ≤ e−m/n for
m ≥ e2nHn. Thus Theorem 3 holds for the second algorithm in [CS89].

The algorithm in [BDS+92] maintains D(R) and the so–called history of the
construction. It determines the set of trapezoids intersected by s by determining
all trapezoids in the history intersected by s. Our results do not seem to yield a
tail estimate for the running of this algorithms. The expected space complexity
of this algorithm is O(n + m). It is easy to see that the incremental space cost
after adding a segment s ∈ S \ R to D(R) is no larger than the time needed
to add s to T (R). Thus Theorem 3 holds for the space complexity of this
algorithm.

Finally, Mulmuley’s first algorithm [Mul88] maintains a subdiagram of T (R)
in which vertical rays only emanate from the endpoints of the segments but not
from the intersection points. Our results do not give a tail estimate for this
algorithm.
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