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Appendix

A.1 Mathematical Symbols

{e0, . . . ,en−1}: set containing elementse0, . . . ,en−1.

{e : P(e)}: set of all elements that fulfill the predicateP.

〈e0, . . . ,en−1〉: sequence consisting of elementse0, . . . ,en−1.

〈e∈ S: P(e)〉: subsequence of all elements of sequenceSthat fulfill the predicateP.

|x|: the absolute value ofx.

⌊x⌋: the largest integer≤ x.

⌈x⌉: the smallest integer≥ x.

[a,b] := {x∈ R : a≤ x≤ b}.

i.. j: abbreviation for{i, i +1, . . . , j}.

AB: whenA andB are sets, this is the set of all functions that mapB to A.

A×B: the set of pairs(a,b) with a∈ A andb∈ B.

⊥: an undefined value.

(−)∞: (minus) infinity.

∀x : P(x): for all values ofx, the propositionP(x) is true.

∃x : P(x): thereexistsa value ofx such that the propositionP(x) is true.N: nonnegative integers;N= {0,1,2, . . .}.N+: positive integers;N+ = {1,2, . . .}.
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|, &, «, », ⊕: bitwise OR, bitwise AND, leftshift, rightshift, and exclusive OR re-
spectively.

∑n
i=1ai = ∑1≤i≤nai = ∑i∈{1,...,n}ai := a1 +a2+ · · ·+an.

∏n
i=1ai = ∏1≤i≤nai = ∏i∈{1,...,n}ai := a1 ·a2 · · ·an.

n! := ∏n
i=1 i, thefactorial of n.

Hn := ∑n
i=11/i, then-th harmonic number(Equation (A.12)).

logx: The logarithm to base two ofx, log2x.

µ(s,t): the shortest-path distance froms to t; µ(t) := µ(s,t).

div: integer division;mdivn := ⌊m/n⌋.

mod : modular arithmetic;m modn = m−n(mdivn).

a≡ b(modm): a andb are congruent modulom, i.e.,a+ im= b for some integeri.

≺: some ordering relation. In Sect. 9.2, it denotes the order in which nodes are
marked during depth-first search.

1, 0: the boolean values “true” and “false”.

A.2 Mathematical Concepts

antisymmetric: a relation∼ is antisymmetricif for all a andb, a ∼ b andb ∼ a
impliesa = b.

asymptotic notation:

O( f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≤ c · f (n)} .

Ω( f (n)) := {g(n) : ∃c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≥ c · f (n)} .

Θ( f (n)) := O( f (n))∩Ω( f (n)) .

o( f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≤ c · f (n)} .

ω( f (n)) := {g(n) : ∀c > 0 : ∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≥ c · f (n)} .

See also Sect. 2.1.
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concave: a function f is concave on an interval[a,b] if

∀x,y∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y)≥ t f (x)+ (1− t) f (y).

convex: a function f is convex on an interval[a,b] if

∀x,y∈ [a,b] : ∀t ∈ [0,1] : f (tx+(1− t)y)≤ t f (x)+ (1− t) f (y).

equivalence relation: a transitive, reflexive, symmetric relation.

field: a set of elements that support addition, subtraction, multiplication, and divi-
sion by nonzero elements. Addition and multiplication are associative and com-
mutative, and have neutral elements analogous to zero and one for the real num-
bers. The prime examples areR, the real numbers;Q, the rational numbers; andZp, the integers modulo a primep.

iff : abbreviation for “if and only if”.

lexicographic order: the canonical way of extending a total order on a set of ele-
ments to tuples, strings, or sequences over that set. We have〈a1,a2, . . . ,ak〉 <
〈b1,b2, . . . ,bk〉 if and only if a1 < b1 or a1 = b1 and〈a2, . . . ,ak〉 < 〈b2, . . . ,bk〉.

linear order : a reflexive, transitive, weakly antisymmetric relation.

median: an element with rank⌈n/2⌉ amongn elements.

multiplicative inverse: if an objectx is multiplied by amultiplicative inverse x−1 of
x, we obtainx ·x−1 = 1 – the neutral element of multiplication. In particular, in
a field, every element except zero (the neutral element of addition) has a unique
multiplicative inverse.

prime number: an integern, n≥ 2, is a prime iff there are no integersa,b> 1 such
thatn = a ·b.

rank : a one-to-one mappingr : S→ 1..n is a ranking function for the elements of a
setS= {e1, . . . ,en} if r(x) < r(y) wheneverx < y.

reflexive: a relation∼⊆ A×A is reflexive if∀a∈ A : (a,a) ∈ R.

relation: a set of pairsR. Often, we write relations as operators; for example, if∼
is a relation,a∼ b means(a,b) ∈∼.

symmetric relation: a relation∼ is symmetricif for all a andb, a∼ b impliesb∼ a.

total order : a reflexive, transitive, antisymmetric relation.

transitive: a relation∼ is transitiveif for all a, b, c, a∼ b andb∼ c imply a∼ c.

weakly antisymmetric: a relation≤ is weakly antisymmetricif for all a, b, a≤ b or
b≤ a. If a≤ b andb≤ a, we writea≡ b. Otherwise, we writea < b or b < a.
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A.3 Basic Probability Theory

Probability theory rests on the concept of asample spaceS . For example, to de-
scribe the rolls of two dice, we would use the 36-element sample space{1, . . . ,6}×
{1, . . . ,6}, i.e., the elements of the sample space are the pairs(x,y) with 1≤ x,y≤ 6
andx,y∈N. Generally, a sample space is any set. In this book, all sample spaces are
finite. In arandom experiment, any element ofs∈ S is chosen with some elemen-
tary probability ps, where∑s∈S ps = 1. A sample space together with a probability
distribution is called aprobability space. In this book, we useuniform probabilities
almost exclusively; in this caseps = p = 1/|S |. SubsetsE of the sample space are
calledevents. The probability of aneventE ⊆ S is the sum of the probabilities of
its elements, i.e., prob(E ) = |E |/|S | in the uniform case. So the probability of the
event{(x,y) : x+y= 7} = {(1,6),(2,5), . . . ,(6,1)} is equal to 6/36= 1/6, and the
probability of the event{(x,y) : x+y≥ 8} is equal to 15/36= 5/12.

A random variableis a mapping from the sample space to the real numbers.
Random variables are usually denoted by capital letters to distinguish them from
plain values. For example, the random variableX could give the number shown by
the first die, the random variableY could give the number shown by the second
die, and the random variableS could give the sum of the two numbers. Formally,
if (x,y) ∈ S , thenX((x,y)) = x, Y((x,y)) = y, andS((x,y)) = x+ y = X((x,y))+
Y((x,y)).

We can define new random variables as expressions involving other random vari-
ables and ordinary values. For example, ifV and W are random variables, then
(V +W)(s) = V(s)+W(s), (V ·W)(s) = V(s) ·W(s), and(V +3)(s) = V(s)+3.

Events are often specified by predicates involving random variables. For exam-
ple, X ≤ 2 denotes the event{(1,y),(2,y) : 1≤ y≤ 6}, and hence prob(X ≤ 2) =
1/3. Similarly, prob(X +Y = 11) = prob({(5,6),(6,5)}) = 1/18.

Indicator random variablesare random variables that take only the values zero
and one. Indicator variables are an extremely useful tool for the probabilistic analysis
of algorithms because they allow us to encode the behavior ofcomplex algorithms
into simple mathematical objects. We frequently use the lettersI andJ for indicator
variables.

Theexpected valueof a random variableZ : S → R is

E[Z] = ∑
s∈S

ps ·Z(s) = ∑
z∈Rz·prob(Z = z) , (A.1)

i.e., every samplescontributes the value ofZ ats times its probability. Alternatively,
we can group allswith Z(s) = z into the eventZ = zand then sum over thez∈ R.

In our example, E[X] = (1+2+3+4+5+6)/6= 21/6= 3.5, i.e., the expected
value of the first die is 3.5. Of course, the expected value of the second die is also
3.5. For an indicator random variableI , we have

E[I ] = 0 ·prob(I = 0)+1 ·prob(I = 1) = prob(I = 1) .

Often, we are interested in the expectation of a random variable that is defined
in terms of other random variables. This is easy for sums owing to thelinearity of
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expectationsof random variables: for any two random variablesV andW,

E[V +W] = E[V]+E[W] . (A.2)

This equation is easy to prove and extremely useful. Let us prove it. It amounts
essentially to an application of the distributive law of arithmetic. We have

E[V +W] = ∑
s∈S

ps · (V(s)+W(s))

= ∑
s∈S

ps ·V(s)+ ∑
s∈S

ps ·W(s)

= E[V]+E[W] .

As our first application, let us compute the expected sum of two dice. We have

E[S] = E[X +Y] = E[X]+E[Y] = 3.5+3.5= 7 .

Observe that we obtain the result with almost no computation. Without knowing
about the linearity of expectations, we would have to go through a tedious calcula-
tion:

E[S] = 2 · 1
36 +3 · 2

36 +4 · 3
36 +5 · 4

36 +6 · 5
36 +7 · 6

36 +8 · 5
36 +9 · 4

36 + . . .+12· 1
36

=
2 ·1+3 ·2+4 ·3+5·4+6·5+7·6+8·5+ . . .+12·1

36
= 7 .

Exercise A.1.What is the expected sum of three dice?

We shall now give another example with a more complex sample space. We con-
sider the experiment of throwingn balls intom bins. The balls are thrown at random
and distinct balls do not influence each other. Formally, oursample space is the set of
all functionsf from 1..n to 1..m. This sample space has sizemn, and f (i), 1≤ i ≤ n,
indicates the bin into which the balli is thrown. All elements of the sample space
are equally likely. How many balls should we expect in bin 1? We useI to denote
the number of balls in bin 1. To determine E[I ], we introduce indicator variables
Ii , 1≤ i ≤ n. The variableIi is 1, if ball i is thrown into bin 1, and is 0 otherwise.
Formally,Ii( f ) = 0 iff f (i) 6= 1. ThenI = ∑i Ii . We have

E[I ] = E[∑
i

Ii ] = ∑
i

E[Ii] = ∑
i

prob(Ii = 1) ,

where the first equality is the linearity of expectations andthe second equality follows
from the Ii ’s being indicator variables. It remains to determine the probability that
Ii = 1. Since the balls are thrown at random, balli ends up in any bin1 with the same
probability. Thus prob(Ii = 1) = 1/m, and hence

E[I ] = ∑
i

prob(Ii = 1) = ∑
i

1
m

=
n
m

.

1 Formally, there are exactlymn−1 functions f with f (i) = 1.
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Products of random variables behave differently. In general, we have E[X ·Y] 6=
E[X] ·E[Y]. There is one important exception: ifX andY areindependent, equality
holds. Random variablesX1, . . . ,Xk are independent if and only if

∀x1, . . . ,xk : prob(X1 = x1∧·· ·∧Xk = xk) = ∏
1≤i≤k

prob(Xi = xi) . (A.3)

As an example, when we roll two dice, the value of the first die and the value of the
second die are independent random variables. However, the value of the first die and
the sum of the two dice are not independent random variables.

Exercise A.2.Let I andJ be independent indicator variables and letX = (I +J) mod
2, i.e.,X is one iff I andJ are different. Show thatI andX are independent, but that
I , J, andX are dependent.

Assume now thatX andY are independent. Then

E[X] ·E[Y] =

(

∑
x

x ·prob(X = x)

)

·
(

∑
y

y ·prob(X = y)

)

= ∑
x,y

x ·y ·prob(X = x) ·prob(X = y)

= ∑
x,y

x ·y ·prob(X = x∧Y = y)

= ∑
z

∑
x,y with z=x·y

z·prob(X = x∧Y = y)

= ∑
z

z· ∑
x,y with z=x·y

prob(X = x∧Y = y)

= ∑
z

z·prob(X ·Y = z)

= E[X ·Y] .

How likely is it that a random variable will deviate substantially from its expected
value?Markov’s inequalitygives a useful bound. LetX be a nonnegative random
variable and letc be any constant. Then

prob(X ≥ c ·E[X])≤ 1
c

. (A.4)

The proof is simple. We have

E[X] = ∑
z∈Rz·prob(X = z)

≥ ∑
z≥c·E[X]

z·prob(X = z)

≥ c ·E[X] ·prob(X ≥ c ·E[X]) ,
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where the first inequality follows from the fact that we sum over a subset of the
possible values andX is nonnegative, and the second inequality follows from the
fact that the sum in the second line ranges only overzsuch thatz≥ cE[X].

Much tighter bounds are possible for some special cases of random variables.
The following situation arises several times, in the book. We have a sumX = X1 +
· · ·+ Xn of n independent indicator random variablesX1,. . . , Xn and want to bound
the probability thatX deviates substantially from its expected value. In this situation,
the following variant of theChernoff boundis useful. For anyε > 0, we have

prob(X < (1− ε)E[X])≤ e−ε2E[X]/2 , (A.5)

prob(X > (1+ ε)E[X])≤
(

eε

(1+ ε)(1+ε)

)E[X]

. (A.6)

A bound of the form above is called atail boundbecause it estimates the “tail” of
the probability distribution, i.e., the part for whichX deviates considerably from its
expected value.

Let us see an example. If we thrown coins and letXi be the indicator variable
for the i-th coin coming up heads,X = X1 + · · ·+ Xn is the total number of heads.
Clearly, E[X] = n/2. The bound above tells us that prob(X ≤ (1− ε)n/2)≤ e−ε2n/4.
In particular, forε = 0.1, we have prob(X ≤0.9·n/2)≤e−0.01·n/4. So, forn= 10000,
the expected number of heads is 5 000 and the probability thatthe sum is less than
4 500 is smaller thane−25, a very small number.

Exercise A.3.Estimate the probability thatX in the above example is larger than
5 050.

If the indicator random variables are independent and identically distributed with
prob(Xi = 1) = p, X is binomially distributed, i.e.,

prob(X = k) =

(

n
k

)

pk(1− p)(n−k) . (A.7)

Exercise A.4 (balls and bins continued).Let, as above,I denote the number of balls
in bin 1. Show

prob(I = k) =

(

n
k

)(

1
m

)k(

1− 1
m

)(n−k)

,

and then attempt to compute E[I ] as∑k prob(I = k)k.

A.4 Useful Formulae

We shall first list some useful formulae and then prove some ofthem.
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• A simple approximation to the factorial:

(n
e

)n
≤ n! ≤ nn. (A.8)

• Stirling’s approximation to the factorial:

n! =

(

1+O

(

1
n

))√
2πn

(n
e

)n
. (A.9)

• An approximation to the binomial coefficients:
(

n
k

)

≤
(n ·e

k

)k
. (A.10)

• The sum of the firstn integers:

n

∑
i=1

i =
n(n+1)

2
. (A.11)

• The harmonic numbers:

lnn≤ Hn =
n

∑
i=1

1
i
≤ lnn+1. (A.12)

• The geometric series:

n−1

∑
i=0

qi =
1−qn

1−q
for q 6= 1 and ∑

i≥0

qi =
1

1−q
for 0≤ q < 1. (A.13)

∑
i≥0

2−i = 2 and ∑
i≥0

i ·2−i = ∑
i≥1

i ·2−i = 2. (A.14)

• Jensen’s inequality:
n

∑
i=1

f (xi) ≤ n · f

(

∑n
i=1xi

n

)

(A.15)

for any concave functionf . Similarly, for any convex functionf ,

n

∑
i=1

f (xi) ≥ n · f

(

∑n
i=1xi

n

)

. (A.16)
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A.4.1 Proofs

For (A.8), we first observe thatn! = n(n− 1) · · ·1 ≤ nn. Also, for all i ≥ 2, lni ≥
∫ i

i−1 lnxdx, and therefore

lnn! = ∑
2≤i≤n

ln i ≥
∫ n

1
lnxdx=

[

x(lnx−1)
]x=n

x=1
≥ n(lnn−1) .

Thus
n! ≥ en(lnn−1) = (elnn−1)n =

(n
e

)n
.

Equation (A.10) follows almost immediately from (A.8). We have

(

n
k

)

=
n(n−1) · · ·(n−k+1)

k!
≤ nk

(k/e)k =
(n ·e

k

)k
.

Equation (A.11) can be computed by a simple trick:

1+2+ . . .+n =
1
2

((1+2+ . . .+n−1+n)+ (n+n−1+ . . .+2+1))

=
1
2

((n+1)+ (2+n−1)+ . . .+(n−1+2)+ (n+1))

=
n(n+1)

2
.

The sums of higher powers are estimated easily; exact summation formulae are also
available. For example,

∫ i
i−1x2dx≤ i2 ≤ ∫ i+1

i x2 dx, and hence

∑
1≤i≤n

i2 ≤
∫ n+1

1
x2 dx=

[x3

3

]x=n+1

x=1
=

(n+1)3−1
3

and

∑
1≤i≤n

i2 ≥
∫ n

0
x2dx=

[x3

3

]x=n

x=0
=

n3

3
.

For (A.12), we also use estimation by integral. We have
∫ i+1

i (1/x)dx≤ 1/i ≤
∫ i

i−1(1/x)dx, and hence

lnn =

∫ n

1

1
x

dx≤ ∑
1≤i≤n

1
i
≤ 1+

∫ n

1

1
x

dx= 1+ lnn .

Equation (A.13) follows from

(1−q) · ∑
0≤i≤n−1

qi = ∑
0≤i≤n−1

qi − ∑
1≤i≤n

qi = 1−qn .
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Letting n pass to infinity yields∑i≥0qi = 1/(1−q) for 0≤ q < 1. Forq = 1/2, we
obtain∑i≥02−i = 2. Also,

∑
i≥1

i ·2−i = ∑
i≥1

2−i + ∑
i≥2

2−i + ∑
i≥3

2−i + . . .

= (1+1/2+1/4+1/8+ . . .) ·∑
i≥1

2−i

= 2 ·1 = 2 .

For the first equality, observe that the term 2−i occurs in exactly the firsti sums of
the right-hand side.

Equation (A.15) can be shown by induction onn. For n = 1, there is nothing
to show. So assumen≥ 2. Letx∗ = ∑1≤i≤nxi/n andx̄ = ∑1≤i≤n−1xi/(n−1). Then
x∗ = ((n−1)x̄+xn)/n, and hence

∑
1≤i≤n

f (xi) = f (xn)+ ∑
1≤i≤n−1

f (xi)

≤ f (xn)+ (n−1) · f (x̄) = n ·
(

1
n
· f (xn)+

n−1
n

· f (x̄)

)

≤ n · f (x∗) ,

where the first inequality uses the induction hypothesis andthe second inequality
uses the definition of concavity withx = xn, y = x̄, andt = 1/n. The extension to
convex functions is immediate, since convexity off implies concavity of− f .


