
Sweeping and Maintaining Two-Dimensional

Arrangements on Surfaces: A First Step?

Eric Berberich1, Efi Fogel2, Dan Halperin2, Kurt Mehlhorn1, and Ron Wein2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany.
{eric,mehlhorn}@mpi-inf.mpg.de

2 School of Computer Science, Tel-Aviv University, Israel.
{efif,danha,wein}@tau.ac.il

Abstract. We introduce a general framework for sweeping a set of
curves embedded on a two-dimensional parametric surface. We can han-
dle planes, cylinders, spheres, tori, and surfaces homeomorphic to them.
A major goal of our work is to maximize code reuse by generalizing the
prevalent sweep-line paradigm and its implementation so that it can be
employed on a large class of surfaces and curves embedded on them.
We have realized our approach as a prototypical Cgal package. We
present experimental results for two concrete adaptations of the frame-
work: (i) arrangements of arcs of great circles embedded on a sphere,
and (ii) arrangements of intersection curves between quadric surfaces
embedded on a quadric.

1 Introduction

We are given a surface S in IR3 and a set C of curves embedded on this surface.
The curves divide S into a finite number of cells of dimension 0 (vertices), 1
(edges) and 2 (faces). This subdivision is the arrangement A(C) induced by C
on the surface S. Arrangements are widely used in computational geometry and
have many theoretical and practical applications; see, e.g., [1, 9, 10].

Cgal (http://www.cgal.org), the Computational Geometry Algorithms
Library aims at a generic and robust, yet efficient, implementation of widely used
geometric data structures and algorithms. Until recently, the Cgal arrangement
package has dealt only with bounded curves in the xy-plane. This forced users
to clip unbounded curves before inserting them into the arrangement; it was the
user’s responsibility to clip without loss of information. However, this solution
is generally inconvenient and outright insufficient for some applications. For
example, representing the minimization diagram defined by the lower envelope of
unbounded surfaces in IR3 [13] generally requires more than one unbounded face,
whereas an arrangement of bounded clipped curves contains a single unbounded
face.
? This work has been supported in part by the IST Programme of the EU as Shared-

cost RTD (FET Open) Project under Contract No IST-006413 (ACS - Algorithms
for Complex Shapes), by the Israel Science Foundation (grant no. 236/06), and by
the Hermann Minkowski–Minerva Center for Geometry at Tel Aviv University.

Using the algorithmic principles described in this paper, we have enhanced
the arrangement package included in the latest release of Cgal (Version 3.3)
to handle unbounded planar curves as well. A more generic version of the pack-
age, which handles arrangements embedded on surfaces, is implemented as a
prototypical Cgal package.

Related work: Effective algorithms for manipulating arrangements of curves have
been a topic of considerable interest in recent years with an emphasis on exact-
ness and efficiency of implementation [9]. Mehlhorn and Seel [12] propose a
general framework for extending the sweep-line algorithm to handle unbounded
curves; however, their implementation can only handle lines in the plane. Ar-
rangements on spheres are covered by Andrade and Stolfi [2], Halperin and Shel-
ton [11], and recently Cazals and Loriot [7]. Cazals and Loriot have developed
a software package that can sweep over a sphere and compute exact arrange-
ments of circles on it. Fogel and Halperin [8] exchanged the single arrangement
of arcs of great circles on the sphere with six arrangements of linear segments in
the plane that correspond to the six faces of a cube circumscribing the sphere.
Their approach requires stitching arrangements of adjacent faces. Our approach
avoids this overhead. Berberich et al. [6] construct arrangements of quadrics by
considering the planar arrangements of their projected intersection curves. Their
approach requires a postprocessing step (which, however, is not implemented),
while our approach avoids the need for a postprocessing step.

Paper outline: In Section 2 we review the Bentley–Ottmann sweep and its im-
plementation in Cgal. We generalize the algorithm in Section 3 to a class of
parametric surfaces. After describing the theoretical framework we discuss im-
plementation details in Section 4: in particular, how to encapsulate the topology
of the surface into a so-called topology-traits class. In Section 5 we give experi-
mental results, and present future-work directions in Section 6.

2 The Bentley–Ottmann Sweep

Recall that the main idea behind the Bentley–Ottmann sweep-line algorithm [3]
(and its generalization in [14]) is to sweep over the plane containing a set of
bounded curves with a vertical line starting from x = −∞ toward x = +∞,
while maintaining the set of x-monotone curves that intersect this line. These
curves are ordered according to the y-coordinate of their intersection with the
vertical line and stored in a balanced search tree named the status structure. The
content of the status structure changes only at a finite number of events. The
event points are sorted in ascending xy-lexicographic order and stored in an event
queue. This event queue is initialized with all curve endpoints, and is updated
dynamically during the sweep process as new intersection points are discovered.
The main sweep process involves the handling of events, namely the insertion
of a new curve into the status structure, the removal of a curve that reaches its
endpoint, or maintaining the order of intersecting curves. In either case, curves

that become adjacent in the status structure are checked for intersections to the
right of the sweep line (having lexicographically greater coordinates) and any
such intersection is inserted into the event structure. For our generalization, we
call this the main sweep procedure. It is preceded by a preprocessing step that
subdivides, if necessary, the input curves into x-monotone subcurves.

The Cgal implementation of the sweep procedure is generic and indepen-
dent of the type of curves it handles. All steps of the algorithm are controlled
by a small number of geometric primitives, such as comparing two points in
xy-lexicographic order, computing intersection points, etc. These primitives are
encapsulated in a so-called geometry-traits class; see [15] for the full documen-
tation of this concept. Different geometry-traits classes are provided in the ar-
rangement package to handle various families of curves, such as line segments,
conic arcs, etc.

The canonical output of the sweep-line algorithm consists of the order in
which events are processed along with their adjacency information (which events
are connected by a curve segment). The implementation in Cgal’s arrange-
ment package elegantly decouples the “bare sweep” procedure from the con-
struction of the actual output using sweep-line visitors [16]. For example, we use
a visitor to convert the canonical output of the sweep procedure into a doubly-
connected edge-list (Dcel) representing the arrangement induced by the set of
input curves.

3 Sweeping Surfaces

We generalize the sweep to surfaces such as half-planes, cylinders, spheres, tori,
etc. and surfaces homeomorphic to these. We describe our generalization in two
steps, aiming for an implementation that can handle all these surfaces with max-
imal code reuse. We capture the geometry of our surfaces through parameteri-
zation. A parameterized surface S is defined by a function fS : IP → IR3, where
IP = U × V is a rectangular two-dimensional parameter space and fS is a con-
tinuous function. We allow U = [umin, umax], U = [umin, +∞), U = (−∞, umax],
or U = (−∞, +∞), and similarly for V . Intervals that are open at finite end-
points bring no additional power and we therefore do not discuss them here. For
example, the standard planar sweep corresponds to U = V = (−∞, +∞), and
fS(u, v) = (u, v, 0). The unit sphere is parameterized via IP = [−π, π] × [−π

2
, π

2
]

and fS(u, v) = (cosu cos v, sin u cos v, sin v).
A curve is defined as a function γ : D → IP with (i) D is an open, half-open, or

closed interval with endpoints 0 and 1; (ii) γ is continuous and injective, except
for closed curves where γ(0) = γ(1); (iii) if 0 6∈ D, the arc has no start point,
and emanates “from infinity”. It holds limt→0+ ‖γ(t)‖ = ∞ (we have a similar
condition if 1 6∈ D) and we assume that these limits exist. A sweepable curve
must, in addition, be weakly u-monotone — that is, if t1 < t2 then γ(t1) precedes
γ(t2) in lexicographic uv-ordering. Consider for example the equator curve on
the sphere as parameterized above. This curve is given by γ(t) = (π(2t − 1), 0),
for t ∈ [0, 1].

We do not assume that either surfaces or curves are given through their
parameterization. We use the language of parameterization in our definitions.
The algorithm can learn about curves and points only through a well-defined set
of geometric predicates provided by the geometry-traits class.

In terms of the standard sweep algorithm, it is convenient to view our sweep
as taking place in the parameter space, where we sweep a vertical line from
umin to umax. This is equivalent to sweeping a curve (the image of the vertical
line u = u0 under fS) over the input surface S. Typically, the desired output is
embedded on S (e.g., the arrangement induced on S) so one may find it more
convenient to view the sweep as taking place over S.

3.1 Bijective Parameterizations and Boundary Events

Recall that the standard Bentley–Ottmann sweep starts by a preprocessing step,
which subdivides all input curves into x-monotone subcurves, and initializes
the event queue with all their endpoints. When generalizing the algorithm for
unbounded curves, we face the problem that these curves do not have finite
endpoints. We overcome this difficulty by extending the definition of a curve-
end, so it may either be a finite endpoint, or represent an unbounded entity
in case of a curve that approaches a rim in the parameter space with one of
its ends. We say that the curve-end 〈γ, 0〉 approaches the west (east) rim if
limt→0+ γ(t) = (−∞, v0) ((+∞, v0), respectively), for some v0 ∈ IR∪{−∞, +∞},
and that it approaches the south (north) rim if limt→0+ γ(t) = (u0,±∞) for some
u0 ∈ IR. Thus, in the processing step we associate an event with the two ends of
each u-monotone curve γ : D → IP. The first (second) event is associated with
a finite endpoint if 0 ∈ D (1 ∈ D), and with an unbounded curve-end 〈γ, 0〉
(〈γ, 1〉) if 0 6∈ D (1 6∈ D).

In the standard sweep-line procedure, the order of events in the event queue
is defined by the xy-lexicographic order of the event points. Here we augment
the comparison procedure for two events to handle those events associated with
unbounded curve-ends as well. This is done by subdividing the procedure into
separate cases, most of which can be handled in a straightforward manner. For
example, it is clear that an event approaching the “west rim” is smaller than
any event associated with a finite point. When we compare two curve-ends ap-
proaching the west rim, we consider the intersection of relevant curves with a
vertical line u = u0 for small enough u0 and return the v-order of these points
(“small enough” means that the result does not depend on the choice of u0).
Analogous rules apply to the other situations; see Figure 1(a) for an illustration
and [15] for the documentation of the full concept. Note that the rest of the
sweep process remains unchanged. In Section 4 we describe how to construct a
Dcel that represents an arrangement of unbounded curves.

3.2 Removing Non-Injectivity on the Boundaries

So far we have discussed a simple plane-sweep, with fS being the identity
mapping. When considering more general surfaces, we must handle situations

h1

`2

`1
h2

p

cr
2

cr
1

c`
2

c`
1

p
c2

c1

(a) (b) (c)

Fig. 1. Comparing sweep events: (a) The order of the events is: left end of `1, left
end of `2, left end of h1, right end of h1, intersection of `1 and `2, left end of h2,
right end of h2, right end of `2, and right end of `1. (b) Comparing near the curve of
identification: c`

2 < c`
1 right of the point p and cr

2 > cr
1 to the left of p. (c) Comparing

near a contraction point: c1 < c2.

where the parameterization fS is not necessarily bijective, so some points in
S may have multiple pre-images. If we consider the example of the sphere
given in the beginning of this section, then fS(−π, v) = fS(+π, v) for all v,
while fS(u,−π

2
) = (0, 0,−1) and fS(u, π

2
) = (0, 0, 1) for all u. The function

v 7→ fS(−π, v) is a meridian on the sphere, analogous to the “international date
line”, and the points (0, 0,±1) are the south and the north poles, respectively.
The “date line” is induced by the non-injectivity of fS : as a result, a closed curve
on the surface, such as the equator on the sphere, is the image of a non-closed
curve in parameter space. The poles also pose a problem: observe that they lie
on the sweep line during the entire sweep.

In order to model cylinders, tori, spheres, paraboloids, and surfaces homeo-
morphic to them, we relax the requirements for the surface parameterizations.
First, we require bijectivity only in the interior of IP and allow non-injectivity
on the boundary (denoted ∂IP). More precisely, we require that fS(u1, v1) =
fS(u2, v2) and (u1, v1) 6= (u2, v2) imply (u1, v1) ∈ ∂IP and (u2, v2) ∈ ∂IP. On the
boundary, we allow injectivity in a controlled way:

• Contraction of a side of the parameter space is possible if this side is
closed. For example, if umin ∈ U and the west rim is contracted, we have ∀v ∈
V, fS(umin, v) = p0 for some fixed point p0 ∈ IR3, so the entire west rim is
mapped to the same point p0 on S. We call such a point a contraction point. For
the sphere, we have contraction at the south and north rims of the parameter
space, inducing the south and north poles, respectively.

• Identification couples opposite sides of the domain IP and requires each of
them to be closed. For instance, the west and east rims of IP are identified if they
define the same curve on S, i.e., ∀v ∈ V, fS(umin, v) = fS(umax, v). Such a curve
is called a curve of identification. In our running example of a parameterized
sphere, we identify the west and the east rim of the parameter space, and the
“international date line” is our curve of identification. A torus is modelled by

v6

v7

v8

f1

f2

f3

f4

f5

f6

f7

f8

v4vsw vse

f̃

vne
v5vnw

v1

v2

v3

f1

f3

f6

f8

vinf

f2

f4

f5

f7

(a) (b)

Fig. 2. Possible Dcel representations of an arrangement of four lines in the plane.

identifying the two pairs of opposite rims. A paraboloid or cone can be modelled
by identifying the vertical sides of IP and contracting one of the horizontal sides
to a point.

We simulate a sweep over S̃ = fS(IP \ ∂IP) in the interior of the parameter
space. For this, we extend the definition of a sweepable curve to be a u-monotone
curve whose interior is disjoint from the boundaries of IP. Isolated points and
curves on ∂IP can be viewed as any of its pre-images. In the preprocessing stage
we split the input curves accordingly. In the example shown in Figure 1(b), both
input curves c1 and c2 cross the line of identification, so each of them is split
into two non-closed curved having its endpoints on the two copies of the line
of identification. Note that any point lying in S̃ has a unique pre-image in IP,
and a regular event is generated for it. For curves incident to the boundaries of
IP we generate events associated with 〈γ, 0〉 or with 〈γ, 1〉 to indicate γ’s ends.
As in the unbounded case, we are able to derive the correct order of events
using the distinction between normal events that are associated with points on
S̃ and events that occur on the boundaries of the parameter space. The same
set of additional geometric predicates — namely, comparison of curve-ends on
the boundary — is required; see [5] for more details. Similar to the unbounded
case, we compare such curve ends in an ε-environment of the boundary; see the
examples depicted in Figure 1(b) and (c).

The sweep proceeds exactly as the standard Bentley–Ottmann sweep does.
Note however that if we have k sweepable curves incident to a point in S \ S̃

(namely a contraction point or a point on the curve of identification), we handle
k separate events that relate to this point. In the next section we explain how
we “tie all the loose ends” left out by the sweep procedure and construct a
well-defined Dcel that represents an arrangement of curves on S.

4 Topology-Traits Classes

As mentioned above, we use a sweep-line visitor to process the topological in-
formation gathered in the course of the sweep (the “canonical ouput”), and

construct a Dcel that represents the arrangement of the input curves. While
in the case of an arrangement of bounded planar curves the Dcel structure is
unique and well-defined (see, e.g., [16]), already for unbounded curves in the
plane we have a choice of representations, in particular for the representation
of the unbounded faces. Figure 2(a) demonstrates one possibility, where we use
an implicit bounding rectangle embedded in the Dcel structure using fictitious
edges that are not associated with any concrete planar curve (this is the repre-
sentation used in Cgal Version 3.3 [15]). An alternative representation is shown
in Figure 2(b). It uses a single vertex at infinity, such that all edges that represent
unbounded curves are incident to this vertex. Both alternatives are legitimate
and each could be more suitable than the other in different situations.

Our implementation aims for flexibility and modularity. For example, we
want to give the user the choice between different Dcel-representations as just
discussed, and we want to encapsulate the geometric and topological information
into a compact interface.

In addition to the geometry-traits class, which encapsulates the geometry
of the curves that induce the arrangement (see Section 2), we introduce the
concept of a topology-traits class, which encapsulates the topology of the surface
on which the arrangement is embedded. The topology-traits class determines
the underlying Dcel representation of the arrangement. In this traits class it
is specified whether identifications or contractions take place and whether the
parameter space is bounded or unbounded; see [5] for the exact details. Recall
that there may be multiple events incident to the same point on the surface
boundary. The sweep-line visitor uses the topology-traits class to determine the
Dcel feature that corresponds to a curve-end incident to the boundary, so that
all these curves will eventually coincide with a single vertex.

For example, if we sweep over the cylinder depicted in Figure 1(b), a vertex w

is created on the curve of identification when we insert c`
1 into the arrangement.

The topology-traits class keeps track of this vertex, so it will associate w as the
minimal end of c`

2 and as the maximal end of cr
1 and cr

2. Similarly, in the example
shown in Figure 1(c), the north pole will eventually be represented as a single
Dcel vertex, with c1 and c2 incident to it.

We have implemented four topology classes and the corresponding geometry
classes: bounded curves in the plane, unbounded curves in the plane, arcs of great
circles on a sphere, and intersection curves of quadrics on a quadric. The design of
the specialized spherical-topology traits-class pretty much follows the examples
we gave throughout the last two sections. We next discuss the topology-traits
class for quadric surfaces in more depth.

Example: Arrangements of Intersection Curves on a Quadric

A quadratic surface, quadric for short, is an algebraic surface defined by the zero
set of a trivariate polynomial of degree 2: Q(x, y, z) ∈ Q[x, y, z].We present an
implementation of the two-dimensional arrangement embedded on a base quadric
Q0, induced by intersections of quadrics Q1, . . .Qn with Q0. Our implementation
handles all degeneracies, and is exact as long as the underlying operations are

carried out using exact algebraic number types. We mention that some quadrics
(e.g., hyperboloids of two sheets, hyperbolic cones) comprise two connected com-
ponent. For simplicity, we consider each such component as a separate surface.

Non xy-functional quadratic surfaces can be subdivided into two xy-functional
surfaces (z = f(x, y)) by a single continuous curve (e.g., the equator subdivides
a sphere into two xy-monotone hemispheres), given by sil(Q) = gcd

(

Q, ∂Q
∂z

)

.
The projection of such a curve onto the xy-plane is called a silhouette curve.
The projection of an intersection curve between two quadrics onto the xy-plane
is a planar algebraic curve of degree at most 4, which can be be subdivided
into sweepable curves by intersecting it with sil(Q0). The interior of each such
sweepable curve can then be uniquely assigned to the lower part or to the upper
part of the base quadric Q0. Further details can be found in [6].

In our current implementation we only allow ellipsoids, elliptic cylinders,
and elliptic paraboloids for the embedding surface Q0, as these types are nicely
parameterizable by IP = [l, r] × [0, 2π), with l, r ∈ IR ∪ {±∞}, using fS(u, v) =
(u, y(v), r(u, y(v),− sin v)). We define y(v) = ymin + (sin v

2
)(ymax − ymin), where

[ymin, ymax] denotes the y-range of the ellipse that Q0 induces on the plane
x = u. The function r(x, y, s) returns the minimal (s ≤ 0) or maximal (s > 0)
value of RQ,x,y := {z | Q(x, y, z) = 0}, |RQ,x,y| ≤ 2. For Q0, we detect open
boundaries or contraction points in u and a curve of identification in v. Note
that the quadrics Q1, . . . ,Qn intersecting the base quadric Q0 can be arbitrary.

We partition the parameter space of v into two ranges
V1 := [0, π] and V2 := (π, 2π). Given a point p(u, v) on the
base surface Q0, the level of p is ` ∈ {1, 2} if v ∈ V` (see
the lightly shaded area in the figure to the right, which illus-
trates this partitioning for an arrangement on a paraboloid).
Our geometry-traits class represents a sweepable intersection
curve by its projected curve, the level of its projected curve
(that needs to be unique in the interior), and its two end-
points. A point pi = (ui, vi) is represented by its projection
(xi, yi) onto the xy-plane and its level `i. Given two points p1 and p2, their lex-
icographic order in parameter space is first given by the order of x1 = u1 and
x2 = u2, and if x1 = x2 we infer the v-order from (y1, `1), (y2, `2): if `1 < `2

then p1 < p2, else if `1 = `2, then their v-order is identical to their y-order if
`1 = 1, and opposite to the their y-order if `1 = 2.

The topology of an arrangement embedded on a base quadric Q0 requires
special handling. The initialization of the Dcel consists of the creation of a single
face, which can be bounded or unbounded depending on Q0. For the west and
east rim of IP, two boundary vertices, named vleft and vright, are used to record
incidences to either points of contraction or to open boundaries. For an ellipsoid
both represent points of contraction; for a paraboloid we have one vertex that
corresponds to a contraction point and another that represents the unbounded
side; for a cylinder, both vertices represent open (unbounded) boundaries. The
south and north rims of the parameter space are identified. The topology-traits
class maintains a sequence of vertices that lie on the curve of identification, sorted

Tetrahedron Octahedron Icosahedron DP — Dioct. Pyramid

PH — Pentagonal TI — Truncated GS4 — Geodesic El16 — Ellipsoid
Hexecontahedron Icosidodecahedron Sphere (level 4) like polyhedron

Fig. 3. Gaussian maps of various polyhedra.

by their u-order. This sequence enables the easy identification of different events
that correspond to the same point along this curve. We note that comparisons
that require geometric knowledge are forwarded to the geometry-traits class,
which in turn is implemented using the QuadriX library of Exacus [4].

5 Experimental Results

5.1 Arrangements of Great Arcs on Spheres

We demonstrate the usage of arrangements of arcs of great circles on the unit
sphere through the construction of the Gaussian map [8] of convex polyhedra,
polytopes for short. The geometry-traits class defines the point type to be a
direction in IR3, representing the place where the a vector emanating from the
origin in the relevant direction pierces the sphere. An arc of a great circle is
represented by its two endpoints, and by the plane that contains the endpoint
directions and goes through the origin. The orientation of the plane determines
which one of the two great arcs defined by the endpoints is considered. This
representation enables an exact yet efficient implementation of all geometric
operations required by the geometry-traits class using exact rational arithmetic,
as normalizing directions and planes is completely avoided.

The overlay of the Gaussian maps of two polytopes P and Q identifies all the
pairs of features of P and Q respectively that have common supporting planes, as
they occupy the same space on the unit sphere, thus, identifying all the pairwise
features that contribute to the boundary of the Minkowski sum of P and Q,
namely P ⊕ Q = {p + q | p ∈ P, q ∈ Q}.

Tetra. ⊕ Cube DP ⊕ ODP PH ⊕ TI El16 ⊕ OEl16

Fig. 4. Gaussian maps of the Minkowski sums.

We have created a large database of models of polytopes. The table below
lists, for a small subset of our polytope collection, the number of features in the
arrangement of arcs of great circles embedded on a sphere that represents the
Gaussian map of each polytope. Recall that the number of vertices (V), edges

Object V E F t

Tetrahedron 4 6 4 0.01

Octahedron 6 12 6 0.01
Icosahedron 20 30 12 0.02

DP 17 32 17 0.06
PH 60 150 92 0.13

TI 62 180 120 0.33
GS4 500 750 252 0.56
El16 512 992 482 0.93

(E), and faces (F) of the Gaussian map is equal
to the number of facets, the number of edges,
and the number of vertices in the primal repre-
sentation, respectively. The table also lists the
time in seconds (t) it takes to construct the ar-
rangement once the intermediate polyhedron is
in place, on a Pentium PC clocked at 1.7 GHz.

We have also conducted a few experiments that construct the Minkowski

Object 1 Object 2 V E F t

Tetra. Cube 14 28 16 0.09
DP ODP 131 130 132 0.63

PH TI 248 293 340 2.09
El16 OEl16 2260 2290 2322 17.07

sums of pairs of various polyhedra in
our collection. This demonstrates the
successful overlay of pairs of arrange-
ments on a sphere. The table on the
right lists the number of features (V,
E, F) in the arrangement that represents the Gaussian map of the Minkowski
sum and the time in seconds (t) it takes to construct the arrangement once
the Gaussian maps of the summands are in place. The prefix O before an object
name indicates an orthogonal polyhedron. These performance results are prelim-
inary. We expect the time consumption to reduce significantly once all filtering
steps are applied.

5.2 Arrangements on Quadrics

As we mentioned before, our implementation of the
quadrics-traits classes is complete, and can handle all
kind of degeneracies in a robust manner. The figure
on the right shows the arrangement induced by 23
ellipsoids in degenerate position on a base ellipsoid.
This highly degenerate arrangement is successfully con-
structed by our software.

We also measured the performance when computing
the arrangement on given base quadrics induced by in-

tersections with other quadrics. As base quadrics we created a random ellipsoid,
a random cylinder, and a random paraboloid. These quadrics are intersected
by two different families of random quadrics. The first family consists of sets
with up to 200 intersecting generic quadrics, sets of the other family include up
to 200 ellipsoids intersecting each of the base quadrics. The coefficients of all
quadrics are 10-bit integers. All performance checks are executed on a 3.0 GHz
Pentium IV machine with 2 MB of cache, with the exact arithmetic number
types provided by Leda (Version 4.4.1).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 200 100 50 25
S

e
c
o
n
d
s

Number of Quadrics

Ellipsoid (q)
Cylinder (q)

Paraboloid (q)
Ellipsoid (e)
Cylinder (e)

Paraboloid (e)

Table 1 shows the number of ar-
rangement features, as well as time con-
sumption in seconds for selected in-
stances. The figure on the right illus-
trates the average running time on up
to 5 instances containing sets of ellip-
soids (e) and general quadrics (q) of
different sizes intersecting different base
quadrics. Growth is super linear in the
number of quadrics, as one expects.

Clearly, the more complex the arrangement, the more time is required to
compute it. To give a better feeling for the relative time consumption, we in-
dicate the time spent for each pair of half-edges in the Dcel of the computed
arrangement. This time varies in the narrow range between 2.5 ms and 6.0 ms.
Other parameters have significant effect on the running time as well, for example
the bit-size of the coefficients of the intersection curves.

6 Conclusions and Future Work

We describe a general framework, together with a generic software package, for
computing and maintaining 2D arrangements of arbitrary curves embedded on
a class of parametric surfaces. We pay special attention to code reuse, which
allows the development of traits classes for handling new families of curves and
new surface topologies in a straightforward manner. Such developments benefit
from a highly efficient code base for the main arrangement-related algorithms.

Single- vs. multi-domain surfaces: In this work we focus on the single domain
case, namely our parameter space is represented by a single rectangle: IP = U×V ,
as described in Section 3. Our major future goal is to extend the framework

Table 1. Performance measures for arrangements induced on three base quadrics by
intersections with 50 or 200 quadrics (q), or ellipsoids (e).

Base Ellipsoid Cylinder Paraboloid

Data V E F t V E F t V E F t

q50 5722 10442 4722 28.3 1714 3082 1370 12.5 5992 10934 4944 29.3
q200 79532 155176 75646 399.8 27849 54062 26214 189.9 82914 161788 78874 418.3

e50 870 1526 658 7.2 1812 3252 1442 14.4 666 1092 428 6.6
e200 10330 19742 9414 74.6 24528 47396 22870 175.8 9172 17358 8189 68.8

to handle general smooth surfaces, which can be conveniently represented by a
collection of domains, each of which supported by a rectangular parameter space.
The individual parameter spaces are glued together according to the topology
of the surface and therefore will naturally be described in, and handled by, an
extension of the topology-traits concept introduced in this paper.

References

1. P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 49–119.
Elsevier, 2000.

2. M. V. A. Andrade and J. Stolfi. Exact algorithms for circles on the sphere. Internat.

J. Comput. Geom. Appl., 11(3):267–290, 2001.
3. J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric

intersections. IEEE Trans. Computers, 28(9):643–647, 1979.
4. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn, J. Re-

ichel, S. Schmitt, E. Schömer, and N. Wolpert. Exacus: Efficient and exact algo-
rithms for curves and surfaces. In Proc. 13th ESA, pages 155–166, 2005.

5. E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn, and R. Wein. A general frame-
work for processing a set of curves defined on a continuous 2D parametric surface,
2007. http://www.cs.tau.ac.il/cgal/Projects/arr on surf.php.

6. E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact,
complete and efficient implementation for computing planar maps of quadric in-
tersection curves. In Proc. 21st SCG, pages 99–106, 2005.

7. F. Cazals and S. Loriot. Computing the exact arrangement of circles on a sphere,
with applications in structural biology. Technical Report 6049, Inria Sophia-
Antipolis, 2006.

8. E. Fogel and D. Halperin. Exact and efficient construction of Minkowski sums of
convex polyhedra with applications. In Proc. 8th ALENEX, 2006.

9. E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, and N. Wolpert. Ar-
rangements. In J.-D. Boissonnat and M. Teillaud, editors, Effective Computational

Geometry for Curves and Surfaces, chapter 1, pages 1–66. Spinger, 2006.
10. D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook

of Discrete and Computational Geometry, chapter 24, pages 529–562. Chapman &
Hall/CRC, 2nd edition, 2004.

11. D. Halperin and C. R. Shelton. A perturbation scheme for spherical arrangements
with application to molecular modeling. Comput. Geom. Theory Appl., 10:273–287,
1998.

12. K. Mehlhorn and M. Seel. Infimaximal frames: A technique for making lines look
like segments. J. Comput. Geom. Appl., 13(3):241–255, 2003.

13. M. Meyerovitch. Robust, generic and efficient construction of envelopes of surfaces
in three-dimensional space. In Proc. 14th ESA, pages 792–803, 2006.

14. J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. In Proc. 5th

SCG, pages 354–363, 1989.
15. R. Wein, E. Fogel, B. Zukerman, and D. Halperin. 2D arrangements. In Cgal-3.3

User and Reference Manual. 2007. http://www.cgal.org/Manual/3.3/doc html/

cgal manual/Arrangement 2/Chapter main.html.
16. R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Advanced programming tech-

niques applied to Cgal’s arrangement package. Comput. Geom. Theory Appl.,
38(1–2):37–63, 2007.

