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Abstract

The algorithms of computational geometry are designed foaahine model with exact real
arithmetic. Substituting floating-point arithmetic foretlaissumed real arithmetic may cause im-
plementations to fail. Although this is well known, therearo concrete examples with a com-
prehensive documentation of what can go wrong and why. mghper, we provide a case study
of what can go wrong and why. For our study, we have chosen itwples algorithms which are
often taught, an algorithm for computing convex hulls inptene and an algorithm for computing
Delaunay triangulations in space. We give examples thaerttak algorithms fail in many differ-
ent ways. We also show how to construct such examples systathaand discuss the geometry
of the floating-point implementation of the orientation gicate. We hope that our work will be
useful for teaching computational geometry.

1 Introduction

The algorithms of computational geometry are designed for a machine modelkaitreal arithmetic.
It is well-known that substituting floating-point arithmetic for the assumedastiimetic may cause
implementations to fail. However, there are no concrete comprehensiigbsa There is neither a
paper nor a textbook that systematically discusses what can go wrorng@rndes simple examples
for the different ways in which floating-point implementations can fail. Due Itttk of examples,

instructors of computational geometry have little material for demonstrating tdegoacy of
floating-point arithmetic for geometric computations,

students of computational geometry and implementers of geometric algorithms\atitbHaarn
about the seriousness of robustness problems by experiencing tlaltf§ while program-
ming.
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Figure 1: Results of a convex hull algorithm using double-precision flgaioint arithmetic with the
coordinate axes drawn to give the reader a frame of reference. |gbwetlam makes gross mistakes
(from left to right): The clearly extreme poipt is left out. The convex hull has a large concave corner
with a (non-visible) self intersection ne@s and ps, which are close together. The convex hull has
a clearly visible concave chain (and no self-intersection). Details on thesaples are explained in
Section 4.

In this paper, we provide a case study of what can go wrong and whygeimetric algorithms
when executed with floating-point arithmeticimely. For our study, we have chosen two simple algo-
rithms which are often taught, an algorithm for computing convex hulls in thee@ad an algorithm
to compute Delaunay triangulations in space.

The convex hullCH(S) of a finite setS of points in the plane is the smallest convex polygon
containingS. A point p € Sis calledextremen Sif CH(S) # CH(S\ p). The extreme points &form
the vertices of the convex hull polygon. Convex hulls can be constrirateginentally. One starts with
three non-collinear points iSand then considers the remaining points in arbitrary order. When a point
is considered and lies inside the current hull, the point is simply discardbdne point lies outside,
the tangents to the current hull are constructed and the hull is updatempapfely. We give a more
detailed description of the algorithm in Section 4.1 and the comf@eteprogram in the appendix.

Figure 1 shows point sets (we give the numerical coordinates of the poiisction 4) and the
respective convex hulls computed by the floating-point implementation oflgoritam. In each case
the input points are indicated by small circles, the computed convex hull polgghown in green, and
the alleged extreme points are shown as filled red circles. The exampleststtdive implementation
may make gross mistakes. It may leave out points that are clearly extreme, domgyte polygons
that are clearly non-convex, and it may even run forever.

The first contribution of this paper is to provide a set of instances that riek8oating-point
implementations fail, often in disastrous ways. The computed results do rewhlvés the correct
results in any reasonable sense.

Our second contribution is to explain why these disasters happen. Tiezto@ss of geometric
algorithms depends on geometric properties, e.g., a point lies outside x gahygon if and only if it
can see one of the edges from the outside. We give examples, for witoettiag-point implementation
violates these properties: a point outside a convex polygon that seefgja@ed a point not outside
that sees some edges (both in a floating-point implementation of “sees”).iv&/examples for all
possible violations of the correctness properties of our convex hullitigts.

Our third contribution is to show how such examples can be constructedratiteally or at least
semi-systematically. This should allow others to do similar studies.



We believe that the paper and its companion web page will be useful in tgaotinputational
geometry, and that even experts will find it surprising and instructiveswnrany ways and how badly
even simple algorithms can be made to fail. The companion web gagé¢ains the source code of all
programs, the input files for all examples, and installation procedurafioWts the reader to perform
our and further experiments.

Numerical analysts are well aware of the pitfalls of floating point computakon/[0]. Forsythe’s
paper and many numerical analysis textbooks, see for example [DH8&,3)acontain instructive
examples of how popular algorithms, e.g., Gaussian elimination, can fail wéexh with floating
point arithmetic. These examples have played a guiding role in the developfeiiust numeri-
cal methods. Our examples are in the same spirit, but concentrate on thetgecomesequences of
approximate arithmetic. While sophisticated machinery was developed for malimerical compu-
tations reliable over the past 50 years, a corresponding machinergdaragric computation does not
yet exist to the same extent. However, significant progress was madéheveast 15 years and we
point the reader to approaches to reliable geometric computing in the comslugtie exact computa-
tion paradigm, algorithms with reduced arithmetic demand, approximate algorithma eothectness
proof in floating-point arithmetic, and perturbation methods. In our recemtses on geometric com-
puting, we have used the warning negative examples of this paper to tademsawareness for the
problem and then discussed the approaches mentioned in the conclusions.

This paper is structured as follows. In Section 2 we discuss the groleslfar our experiments.
In Section 3 we study the effect of floating-point arithmetic on one of the tnasic predicates of
planar geometry, the orientation predicate. In Section 4 we discuss thenirata algorithm for
planar convex hulls and in Section 5 we briefly discuss an incrementalitalgofor 3d Delaunay
triangulations. We provide a discussion of failures of the gift-wrappingnim@companying report
available on the companion web page of our paper. In Section 6 we disauequently suggested
simple approaches for making the planar convex hull algorithm more ralbgsargue that they fail.
Finally, Section 7 offers a short conclusion and points to approacheBable geometric computation.

Related Work: The literature contains a small number of documented failures due to nunierical
precision, e.g., Forrest's seminal paper on implementing the point-in-polggoifiFor85], Fortune’s
example for a variant of Graham’s scan [Fod@hewchuk’s example for divide-and-conquer De-
launay triangulation [She97], Ramshaw'’s braided lines [MN99, Sectia2]9.8chirra’s example for
convex hulls [MN99, Section 9.6.1], and the sweep line algorithm for linengeg intersection and
boolean operations on polygons [MN99, Sections 10.7.4 and 10.8.4].

2 Ground Rulesfor our Experiments

Our codes are written in-€+ and the results are reproducible on any platform compliant with IEEE
Std 754-1985 floating-point standard for double precision (see [GtHS87]), and also with other
programming languages. All programs and input data can be found orothpanion web page.
Numerical computations are based on IEEE arithmetic. In particular, we stadiine floating-point
numbers, calledoublesthat are ubiquitous in scientific and geometric computing. Such numbers have
the form+m2® wherem= 1L.mym,...msz (m; € {0,1}) is the mantissa in binary areds the exponent
satisfying—1023< e < 10243 The results of arithmetic operations are rounded to the nearest double

Lhttp://www.mpi-inf.mpg.de/departments/d1/ClassroomE xamples/
2The example is not contained in [For89]
3We ignore here so calledenormalizechumbers that play no role in our experiments and arguments.



(with ties broken using some fixed rule).

Our numerical example data will be written in decimals (for human consumptiach Gecimal
values, when read into the machine, are internally represented by tresndauble. We have made
sure that our data can be safely converted in this manner, i.e., conver&imary and back to decimal
is the identity operation. However, the-€ standard library does not provide sufficient guarantees and
we offer additionally the binary data in little-endian format on the accomparweigpage.

The programs were developed with the help @AT, the Computational Geometry Algorithms
Library,* and LEDA, the Library of Efficient Data Types and AlgorithmEKN04, FGKT00, MN99].

To simplify the use in the classroom, the convex hull algorithms presented inapés pan be used
independently of these (and other) libraries.

3 Planar Orientation Predicate

Three point = (px, Py), 4= (O, by), andr = (rx,ry) in the plane either lie on a common line or form
a left or right turn. The triplegp,q,r) forms a left (right) turn, ifr lies to the left (right) of the line
throughp andq and oriented in the direction from to g. Analytically, the orientation of the triple
(p,q,r) is tantamount to the sign of a determinant:

1 by
1 o q
1o 1y

orientation(p,q,r) = sign(det ). Q)

We haveorientationp,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp.,
right turn, collinearity). Interchanging two points in the triple changes the sighe orientation. We
implement the orientation predicate in the straightforward way:

orientation(p, d,r) = sign((ax — Px) (ry — Py) — (dy — Py) (rx— Px))- )

When the orientation predicate is implemented in this obvious way and evaluatetioatthg-point
arithmetic, we call ifloat orient(p, g, r) to distinguish it from the ideal predicate. Since floating-point
arithmetic incurs round-off errors, there are potentially three ways intwiie result offloat orient
could differ from the correct orientation:

— rounding to zero we mis-classify a+- or — as a 0;

— perturbed zero  we mis-classify 0 as- or —;

— sign inversion we mis-classify a- as— or vice-versa.

3.1 Geometry of Float-Orientation

What is the geometry dfoat orient, i.e., which triples of points are classified as left-turns, right-turns,
or collinear? The following type of experiment partially answers the quesiinchoose three points
p, g, andr and then computéoat orient for points in the floating-point neighborhood pfand the
remaining pointgg andr. More precisely, leuy be the increment between adjacent floating-point
numbers in the range right g; for exampleu, = 2-%3if p,= J andux=4-2"3if p,=2=41.
Analogously, we definey. We consider

float.orient((px + Xuy, py+YW),q,r)

“http://www.cgal.org/
Shttp://www.algorithmic-solutions.com/enleda.htm
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Figure 2: The weird geometry of the float-orientation predicate: The figho#vs the results of
float orient(py -+ Xuy, py +Yu,,q,r) for 0 < X,Y < 255, whereuy = uy = 2-°3 is the increment be-
tween adjacent floating-point numbers in the considered range. Tiieisaslor coded Yellow (red,
blue, resp.) pixels represent collinear (negative, positive, resntation. The line through andr is
shown in black.

for 0 < X,Y < 255. We visualize the resulting 256256 array of signs as a 256256 grid of colored
pixels: A yellow (red, blue) pixel represents collinear (negative, pasitiespectively) orientation. In
the figures in this section we also indicate an approximation of the exact linggthgaandr in black.

Figure 2(a) shows the result of our first experiment: We use the lineatkfiy the pointg =
(12,12) andr = (24,24) and query it neap = (0.5,0.5). We urge the reader to pause for a moment
and to sketch what he/she expects to see. The authors expected to elemvabgand around the
diagonal with nearly straight boundaries. Even for points with such singgedinates the geometry
of float.orientis quite weird: the set of yellow points (= the points classified as on the line wioie
resemble a straight line and the sets of red or blue points do not resemb#paeds. We even have
points that change the side of the line, i.e., are lying left of the line and beisgifotal as right of the
line and vice versa.

In Figures 2(b) and (c) we have given our base points coordinateswuath bits of precision by
adding some digits behind the binary point. This enhances the cancellatotseff the evaluation of
float orientand leads to even more striking pictures. In (b), the red region looks litepdinction at
first sight. Note however, it is not monotone, has yellow rays extendingtirdad red lines extruding
from it. The yellow region (= collinear-region) forms blocks along the lindaisgely enough, these
blocks are separated by blue and red lines. Finally, many points charege gid~igure (c), we have
yellow blocks of varying sizes along the diagonal, thin yellow and partly rezblextending into the
blue region (similarly for the red region), red points (the left upper asrio the yellow structures
extending into the blue region) deep inside the blue region, and isolated ymiots almost 100 units
away from the diagonal.

All diagrams in Figure 2 exhibit block structure. We now explain why: Weifoon one dimension,



Figure 3: We repeat the example from Figure 2(b) and show the resualll three distinct choices for
the pivot; namelyp on the left,q in the middle, and on the right. All figures exhibit sign reversal.

i.e., assume we keepfixed and vary onlyX. We evaluatdloat orient((pyx+ Xuy, py+Yu),q,r) for

0 < X < 255, whereuy = uy is the increment between adjacent floating-point numbers in the consid-
ered range. Recall tharientationp,q,r) = sign((ax — px)(ry — Py) — (Gy — Py)(rx — px)). We incur
round-off errors in the additions/subtractions and also in the multiplicatioassi@er first one of the
differences, sagx — px. In (a), we havey = 12 andpy ~ 0.5. Since 12 has four binary digits, we lose
the last four bits oKX in the subtraction, in other words, the result of the subtraajon px is constant

for 2* consecutive values of. Because of rounding to nearest, the intervals of constant value are
(8,23, [24,39], [40,55] .... Similarly, the floating-point result f — px is constant for 2 consecutive
values ofX. Because of rounding to nearest, the intervals of constant valuyé@&#|, (48,69, ....
Overlaying the two progressions gives intenjal 23], [24,39], [40,47], [48,55], ... and this explains

the structure we see in the rows of (a). We see short blocks of lengh 41...in (a). In (b) and

(c), the situation is somewhat more complicated. It is again true that we hakistior X, where the
results of the subtractions are constant. However, Sirgedr have more complex coordinates, the
relative shifts of these intervals are different and hence we seemnand broad features.

Next we show that if all point coordinates differ by a factor of at most,tthen the only sign
error is rounding to zero. According to Sterbenz’s theorem [Ste®gtifig-point subtraction of two
floating-point numbera andb is exact if% < g < 2, so there will be no cancellation in the subtraction
of point coordinates. Cancellation can only occur in the evaluation of theefkpaession of the form
cd—ef. If cd = ef then the floating-point sign evaluation will return zero, since the doubleesea
to cd andef is the same. Itd > ef, the result of computingd in floating-point arithmetic is at least
as large as the result of computiag in floating-point arithmetic. Thus, the floating-point evaluation
of cd— ef results in a non-negative number. We conclude that the only sign ermurisling to zero.
Because of this analysis, we choose our point coordinates from & targge in our examples.

Choiceof aPivot Point:  The orientation predicate is the sign of a three-by-three determinant and this
determinant may be evaluated in different waysfldat orient as defined above we use the pqirds
thepivot, i.e., we subtract the row representing the p@ifitom the other rows and reduce the problem

to the evaluation of a two-by-two determinant. Similarly, we may choose one dfthteg points as

the pivot. Figure 3 displays the effect of the different choices of thetgoint on the example of
Figure 2(b). The choice of the pivot makes a difference, but nolethehe geometry remains non-
trivial and sign reversals happen for all three choices.
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Figure 4: Examples of the impact of extended double arithmetic. We repeakdneple from Fig-

ure 2(b) with different implementations of the orientation t¢aj:We evaluate gy — px)(ry — py) and
(ay — py) (rx— px) in extended double arithmetic, convert their values to double precisiomcangare
them. (b) We evaluatesign((ax — px) (ry — Py) — (dy — py) (rx— Px)) in extended double arithmetic. For
both experiments, we useg = uy = 2-°3, the same as for the regular double precision examples in
Figure 2. Note that there are no collinearities (yellow points) reportébl)in

Based on floating-point error-bound estimates one can conclude thegnter point w.r.t. thex-
coordinate (or equivalently thecoordinate) is the best choice for the pivot. This is implemented in the
orientation test used by Fortune [For89]. However, the necessadjtmmal branching could impair
performance significantly. If one is willing to invest that time, one could alsd&tbfrusing an exact
implementation scheme based on floating-point filter techniques, e.g. [F\811@6,], see [STO6] for
results of an experimental comparison. Further details are beyond the stthis paper.

Extended Double Precision: Some architectures, for example, Intel Pentium processors, offé& IEE
extended double precision with a 64 bit mantissa in an 80 bit representatioes tbis additional
precision help? Not really, as the examples in Figure 4 suggest. One ngiet #wat the number of
misclassified points decreases, but the geometfioaf orient remains fractured and exploitable for
failures similar to those that we develop below for double precision arithmetic.

4 Planar Convex Hull Problem

We discuss a simple planar convex hull algorithm that computes the conlleérdrementally. We
describe the algorithm, state the underlying geometric assumptions, givecesttrat violate the
assumptions when used with floating-point arithmetic, and finally show whidstus effects these
violations may have on the result of the computation.

4.1 Incremental Convex Hull Algorithm

The incremental algorithm maintains tbarrent convex hull CHdf the points seen so far. Initially,
CH is formed by choosing three non-collinear pointsSinit then considers the remaining points one
by one. When considering a pointit first determines whetharis outside the current convex hull
polygon. If not,r is discarded. Otherwise, the hull is updated by forming the tangentsrfitoncH



and updatingCH appropriately. The incremental paradigm is used in Andrew’s [And7é] ather
variants of Graham’s scan [Gra72] and also in the randomized increnaégaaithm [CS89].

The algorithm maintains the current hull as a circularllist (vo,v1, ..., Vk_1) of its extreme points
in counter-clockwise order. The line segmefitsvi;1), 0 <i < k—1 (indices are modul&) are the
edgesof the current hull. Iforientation(vi,vi11,r) < 0, we say that seesthe edggvi,vi+1) and that
the edge(Vi,Vi;1) is visible from r. If orientationvi,vi,1,r) <0, we say that the edg@i,Vi;1) is
weakly visiblegfrom r. After initialization, k > 3. The following properties are key to the operation of
the algorithm.

Property A. A pointr is outsideCH iff r can see an edge GH.

Property B. If r is outsideCH, the edges weakly visible fromform a non-empty consecutive sub-
chain; so do the edges that are not weakly visible from

If (vi,Vit1),...,(Vj—1,Vj) is the subsequence of weakly visible edges, the updated hull is obtained
by replacing the subsequen@g; 1, ...,vj—1) by r. The subsequends;,...,v;) is taken in the circular
sense, i.e., if > j then the subsequence(is, ..., Vk_1,Vo,...,Vj). From these properties, we derive
the following algorithm:

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)
Initialize L to a counter-clockwise triangl@, b, c) with a,b,c € S Removea, b,c from S.
for all r € Sdo
if there is an edgevisible fromr then
Compute the sequen¢evi,Vit1), (Vi41,Vit2) - .., (Vj—1,Vj)) of edges that are weakly vis
ble fromr.
Replace the subsequen@g; 1,...,vj_1) inLbyr.
end if
end for

To turn the sketch into an algorithm, we provide more information about theepgs

1. How does one determine whether there is an edge visible ffolive iterate over the edges in
L, checking each edge using the orientation predicate. If no visible edgerid fwe discard.
Otherwise, we take any one of the visible edges as the starting edge faxtrsubstep.

2. How does one identify the sequen@®, vi+1), (Vi+1,Vi+2) ..., (vj-1,Vvj))? Starting from a vis-
ible edgee, we move counter-clockwise along the boundary until a non-weaklylgisitige is
encountered. Similarly, we move clockwise framntil a non-weakly-visible edge is encoun-
tered.

3. How to update the lidt? We can delete the vertices(. 1, ...,vj—1) after all visible edges are
found, as suggested in the above sketch (“the off-line strategy”) aramedelete them concur-
rently with the search for weakly visible edges (“the on-line strategy”). \&fithct arithmetic,
both strategies work equally well.

We give a detailed implementation in the appendix; it was used for all experimblute that the
algorithm (correctly) reports extreme points only. Points in the interior oihtdaty edges of the
convex hull are not reported. Duplicate points are reported only once.

There are four logical ways to negate Properties A and B:
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(b)
Figure 5:(a) The convex hull illustrating Failure A The pointp, in the lower left corner is left out of

the hull. (b) Schematic view indicating the impossible situation of a point outside the currbatril
seeing no edge of the hultlies to the left of all sides of the triang(e,q,r).

Failure A1: A point outside the current hull sees no edge of the current hull.
Failure A,: A point inside the current hull sees an edge of the current hull.
Failure B;: A point outside the current hull sees all edges of the convex hull.
Failure B,: A point outside the current hull sees a non-contiguous set of edges.

Failures A and A are equivalent to the negation of Property A. Similarly, FailuresaBd B are
complete for Property B if we takeAnto account. Are all these failures realizable? We now affirm
this.

4.2 Single-Step Failures

We give instances violating the correctness properties of the algorithme pecisely, we give se-
quencess, p2, P3, ... of points such that the first three points form a counter-clockwisedie (and
float orient correctly discovers this) and such that the insertion of some later poirg teaal viola-
tion of a correctness property (in the computations witght orient). We also discuss how we arrived
at the examples. All our examples involve nearly or truly collinear points; irvidnw of a standard
rounding-error analysis sufficiently non-collinear points would notseaany problems. Does this
make our examples unrealistic? We believe not. Many point sets contain cediihgar points or
truly collinear points, which become nearly collinear by conversion to flogimigt representation.

Failure A1: A point outsidethe current hull seesno edge of the current hull:  Consider the set of
points below. Figure 5(a) shows the computed convex hull, where a painistblearly extreme was
left out of the hull.

p1 = ( 7.3000000000000194 7.3000000000000167% float orient(ps, p2, p3) > 0

p2 = (24.000000000000068 24.000000000000071 ) float orient(ps, p2, pa) > 0

ps = (24.00000000000005 24.000000000000053) float orient(py, ps, pa) > 0

ps = ( 0.500000000000016210.50000000000001243 float orient(ps, p1, pa) > 0 (??)
Ps = (8 4) po=(4 9 pr=(1527)

Pe = (2625 po=(19.11)



p1: (17.3000000000000017.300000000000001 (7.300000000000019%.30000000000001§7

p2: (24.0000000000000624.000000000000071 (24.0000000000000624.000000000000071
p3: (24.000000000000024.000000000000053 (24.000000000000024.000000000000053
pa: (0.50000000000000710.5) (0.50000000000000358.5)

(@ (b)

Figure 6: The point$p1, p2, p3) form a counter-clockwise triangle and we are interested in the classi-
fication of points(x(ps) + XU, Y(p4) +YU,) with respect to the edgé®:, p2) and(pz, p1) incident to

p1. The extensions of these edges are indistinguishable in the picturescathhamn as a single black
line. The red points do not “float-see” either one of the edges (Failwye Phese are the points we
were looking for. The points collinear with one of the edges are ochesetballinear with both edges
are yellow, those classified as seeing one but not the other edge arariuthose seeing both edges
are green(a) Example starting from points in Figure @) Example that achieves “invariance” with
respect to permutation of the first three points.

What went wrong?Let us look at the first four points. They lie almost on the line x, and
float orient gives the results shown above. Only the last evaluation is wrong, indibgté?)”.
Geometrically, these four evaluations say thasees no edge of the triandlp1, p2, p3). Figure 5(b)
gives a schematic view of this impossible situation. The pgmis. ., pg are then correctly identified
as extreme points and are added to the hull. However, the algorithm neweers from the error made
when consideringy, and the result of the computation differs drastically from the correct hull.

We next explain how we arrived at the instance above. Intuition told usithexample (if it exists
at all) would be a triangle with two almost parallel sides and with a query poimtheavedge defined
by the two nearly parallel edges. In view of Figure 2 such a point might belassified with respect
to one of the edges and hence would be unable to see any edge of thietri@ogve started with
the points used in Figure 2(b), i.g ~ (17,17), p ~ (24,24) ~ p3, where we moveg; slightly
to the right so as to guarantee that we obtain a counter-clockwise triangl¢haf probed the edges
incident top; with points p4 in and near the wedge formed by these edges. Figure 6(a) visualizes
the outcomes of the two relevant orientation tests. Each red pixel is a centbddailure A. The
example obtained in this way was not completely satisfactory, since some tioeiésts on the initial
triangle(p1, p2, p3s) were evaluating to zero.

We perturbed the example further, aided by visualiZlogt orient(ps, p2, ps), until we found the
example shown in (b). The final example has the nice property that alibf®fisat orient tests on
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P2 P4

Figure 7: Schematic view of Failure;BThe pointp, sees all edges of the triandlp1, pz, p3).

the first three points are correct. So this example is independent frorocautgivable initialization
an algorithm could use to create the first valid triangle. Figure 6(b) shasveutcomes of the two
orientations tests for our final example.

FailureA,: A pointinsidethecurrent hull seesan edge of thecurrent hull:  We take any counter-
clockwise triangle and choose a fourth point inside the triangle but closeg¢mbthe edges. By
Figure 2 there is the chance of sign reversal. A concrete example follows:

p1 = (27.643564356435643-21.88118811881188]) float orient(py, po, p3) > 0O
p2 = (83366336633663366 15544554455445542 float.orient(pz, p2, pa) < 0 (??)
ps = ( 4.0, 4.0 ) float orient(py, ps, pa) > 0
ps = (73415841584158414 8.8613861386138595 float orient(ps, p1, pa) > 0

The convex hull is correctly initialized tOp1, p2, ps). The pointpy is inside the current convex
hull, but the algorithm incorrectly believes that can see the eddg;, p2) and hence changes the hull
to (p1, pa, P2, P3), @ slightly non-convex polygon.

Failure B1: A point outside the current hull sees all edges of the convex hull: Intuition told us
that an example (if it exists) would consist of a triangle with one angle closeaind hence three
almost parallel sides. Where should one place the query point? We ficgdpilain the extension of
the three parallel sides and quite a distance away from the triangle. Thistdicbrk. The choice that
worked is to place the point near one of the sides so that it could see twe sidés and “float-see”
the third. Figure 7 illustrates this choice. A concrete example follows:

pr = ( 2000, 49.200000000000003 float.orient(ps, p2, p3) > 0
p2 = ( 1000, 49.600000000000001 float.orient(ps, p2, p4) < 0
ps = (—2333333333333333450.93333333333333 floatorient(py, ps, pa) < 0
ps = ( 1666666666666666949.333333333333336 float.orient(ps, p1, pa) < 0(??

The first three points form a counter-clockwise oriented triangle anordicg tofloat orient, the
algorithm believes thab, can see all edges of the triangle. What will our algorithm do? It depemds o
the implementation details. If the algorithm first searches for an invisible édg#l, search forever
and never terminate. If it deletes points on-line frort will crash or compute nonsense depending on
the details of the implementation bf

Failure By: A point outside the current hull sees a non-contiguous set of edges. Consider the
following points:
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Figure 8: Visualization of the region of interest for the poiptsand p, for the Failure B data set(a)
Candidates can be chosen from the red regions and must be below théri#atb) Not all candidates
will give rise to a proper convex hull for the first four points. All invalidradidates are masked out in

light grey.

p1 = ( 0.500000000000012430.50000000000000189 float.orient(py, pa, ps) < 0(??
p2 = ( 0.500000000000012430.50000000000000333 float.orient(pa, p3, ps) > 0

ps = (24.00000000000005 24.000000000000053) float.orient(ps, p2, ps) < 0

ps = (24.000000000000068 24.000000000000071) float.orient(py, p1, ps) > 0

ps = (17.300000000000001 17.300000000000001 )

Inserting the first four points results in the convex quadrilatgualpa, ps, p2); this is correct. The
last pointps sees only the edg@s, p2) and none of the other three. Howeviboat orient makesps
see also the edges, ps). The subsequences of visible and invisible edges are not contiguinee. S
the falsely classified edge:, ps) comes first, our algorithm inserts; at this edge, removes no other
vertex, and returns a polygon that has self-intersections and is not simple

We next discuss how we found the instance illustrating FailgrdrBuition told us that an example
(if it exists) would consist of a quadrilateral with two nearly parallel sided the two other sides
being very short. A query point sitting above the middle of one of the longsgitight be able to
“float-see” the opposite side of the quadrilateral. It would not see the hod sides. We took the
points in Figure 6(a) as a starting point, denote thgngp, .... We setps = gz, pa = G2, Ps = 1,
and decided to look fop; and p in the vicinity of g4. So we searched for poin{s nearqgs with
float orient(p, p4, ps) < 0 andfloat orient(ps, p1, p) < O that are also below the exact lines defined
by (ps, ps) and(pa, ps) (the last condition ensures thpg lies above the quadrilateral). Figure 8(a)
visualizes the region of interest for

In addition, the first four points should realize a convex hull with our algor. In particular,
unwanted classifications frofitoat orient as collinear need to be avoided. We mask all forbidden
regions in the visualization and we obtain Figure 8(b), from which we wieleeta select our example
points. We selected two points on one of the vertical red lines and below ttiellvia.

Finally, we visualize the region arourm in Figure 9. The error is small fdtoat orient in this
region, but nevertheless there are several points realizing Faifyref Bvhich two are shown in the
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Figure 9: Closeup of the neighborhood of the fifth point that causesredly it is the lower left one
of the two red pixels, but the other at grid-distaridg 32) from the first also leads to failure and there
are several more candidates not shown in this limited view.

magnified view.

Further Examples. Besides the four logical possibilities above, we can look at quantitatigsores:

1. The point sees only a subset of the edges visible to it. Then too few padiitie weleted fromtL.

2. The point sees a superset of the edges visible to it. Then too many poirte wéleted front..

4.3 Global Effectsof Failures

By now, we have seen examples that invalidate the correctness propéttiesncremental algorithm
and we have seen the effect of an incorrect orientation test for a sipglate step. We next study
global effects.The goal is to refute the myth that the algorithm will always compute an appabixim
of the true convex hull.

The algorithm computes a convex polygon, but misses some of the extreme points. We have
already seen such an example in Failure YWe can modify this example so that the ratio of the areas
of the true hull and the computed hull becomes arbitrarily large. We do aslurd-A;, but move the
fourth point towards infinity. The true convex hull has four extreme poifite algorithm missep;.

p. = (0.1000000000000000@.10000000000000001 float orient(py, pz, ps) < 0
p. = (0.20000000000000000.20000000000000004 float orient(py, pz, p4) = 0 (27
ps = (0.79999999999999998.80000000000000004 float orient( pz, ps, pa) = 0 (??)
ps = (1.2676506002282240%,1.2676506002282291.0%) float orient(ps, py, pa) > 0

Thealgorithm crashesor doesnot terminate:  See Failure B.

13
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Figure 10:(a) The hull constructed after processing poipigo ps. Pointsp; and ps lie close to each
other and are indistinguishable in the upper figure. The magnified scheratidglow shows that
we have a concave corner The pointps sees the edgé®s, p2) and(ps, ps), but doesot see the
edge(ps, p1). One of the former edges will be chosen by the algorithm as the chain efedfgjble
from ps. Depending on the choice, we obtain the hulls showb)ror (c). In (b), (pa, ps) is found as
the visible edge, and ifc), (p1, p2) is found. We refer the reader to the text for further explanations.
The figures show the coordinate axes to give the reader a frame dreée

Thealgorithm computesa non-convex polygon: We have already given such an example in Failure
A,. However, this failure is not visible to the naked eye. We next give exanphere non-convexity
is visible to the naked eye. We consider the points:

p1 = (24.00000000000005 24.000000000000053
P — (240, 6.0 )
ps — (5485, 6.0 )
Pa (54.85000000000035761.000000000000121
ps = (24 00000000000006824 000000000000071
Ps = (6 6.0 ).

After the insertion ofp; to ps, we have the convex hullps, p2, ps, pa). This is correct. Poinps
lies inside the convex hull of the first four points; Blaat orient(p4, p1, ps) < 0. Thusps is inserted
betweenp, and p; and we obtair(p1, pz2, p3, P4, Ps). However, this error is not visible yet to the eye,
see Figure 10(a).

The pointpe sees the edgdps, ps) and(p1, p2), but does not see the ed@es, p1). All of this is
correctly determined bfloat orient. Consider now the insertion process for pgmt Depending on
where we start the search for a visible edge, we will either find the goiges) or the edgd p1, p2).
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In the former case, we insept betweenp, and ps and obtain the polygon shown in (b). It is visibly
non-convex and has a self-intersection. In the latter case, we msbetweenp; and p, and obtain
the polygon shown in (c). It is visibly non-convex.

Of course, in a deterministic implementation, we will see only one of the erransely (b). This is
because in our sample implementation as given in the appendix, w& kavey, ps, p4, p1), and hence
the search for a visible edge starts at efige ps). In order to produce (c) with our implementation we
replace the poinp, by the pointp, = (24.0,10.0). Thenpg seeq p,, p3) and identifieg p1, p,, ps) as
the chain of visible edges and hence constructs (c).

5 Incremental 3D Delaunay Triangulation Algorithm

The planar convex hull algorithms are simple educational examples. A monglex, and in practice
quite relevant algorithm is the incremental construction of the 3d Delaunagtd@ation, such as the
one found in GAL. The complex algorithm consists of several phases, which all can faiffe@reht
ways when executed with floating-point arithmetic. We describe the algorittnoie detail and give
a numerical example that causes an infinite loop. It is not easy to harstiecirsuch an example, but
we provide an algorithm that easily finds many such examples.

We say that a point is in conflictwith a tetrahedromif u lies in the interior of the circumscribing
sphere ot. A Delaunay triangulation of a set of points is a triangulation in which all tettedheerify
the Delaunay propertythey do not conflict with any other point of the triangulation. In the deggee
case of co-spherical points, the Delaunay triangulation may not be unique

The incremental Delaunay algorithm inserts a new poiit the current Delaunay triangulation
in two steps: point location and update. The point location step returns hedtom in conflict with
u. The update step removes all tetrahedra in conflict witmd populates the resulting hole with new
tetrahedra connecting with the facets of the hole, thus establishing the Delaunay property for the
resulting triangulation.

One way to implement the point location step is to find a tetrahedron that contéinsre can
be several in the case thatis on a facet or an edge), which will a fortiori be in conflict with
Several algorithms can be used here, but we focus on a specific walgimgthm calledemembering
stochastic walkn [DPT02], which traverses the adjacency relations between tetrahEdeavalking
part is usually sped up by another algorithm that quickly finds a tetrahedrar the target, using, for
example, either a hierarchy of triangulations or a small random sample obthts.p However, we
concentrate in this paper on studying the robustness of the fundametitizigyzart.

Note that inserting a point that is outside the convex hull of the existing triatign can be per-
formed similarly but uses different predicates. We are not studying theeda that can be found in
such cases. So in the sequel, we assumeuthes inside the convex hull of the previous points. Fur-
thermore, we do not consider the first phase of the incremental cotstratgorithm where an initial
full-dimensional triangulation is constructed, because this phase reqdidégnal predicates.

5.1 Failuresof the Point L ocation Step

By convention and ensured by the algorithm, all tetrahedra in the triangukatgpositively oriented,
i.e.,orientation(p,q,r,s) is positive, where the three-dimensional orientation test is defined anelygo
to the planar orientation test in Equation 1 as:
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Figure 11: Inserting a point near the central edggy, p1) of a Delaunay triangulation made of three
tetrahedra around that central edge.
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The facet(q,r, s) of a tetrahedron opposite fis said toseparatethe tetrahedron from a pointif
orientation(u, g, r,s) is negative. The definition extends analogously to the facets opposite adnd
s, respectively, replacing the point opposing the facet wiih the orientation predicate.

The point location algorithm starts at an initial tetrahedfprg,r,s), iterates over its four facets,
and tests if a facet separates the tetrahedron frafrsuch a facet is found, the algorithm moves to the
neighbor tetrahedron and repeats the point location. Otherwise, ndasigths found andi is inside
or on the boundary of the tetrahedron, which meanstufiseither in conflict or is equal to one of the
vertices of the tetrahedron. The latter case can be seen immediately froetuhevalues of all the
orientation predicates performed with the facets of the tetrahedron.and

PR

orientation(p,q,r,s) = sign(det

Property E. The point location algorithm terminates with a tetrahedron that contains thg poieit
u if the triangulation fulfills the Delaunay property amnds inside the convex hull of the triangula-
tion [Ede90].

If we use a corresponding floating-point implementation for our orientatistrte observe that Prop-
erty E can fail in two ways: (1) the algorithm does not terminate, or (2) theridthgn returns a tetra-
hedron that does not contain(but which may still be in conflict withu and thus not endangers the
update step). We confine ourselves to the first kind of failure:

Failure E;: Thepoint location algorithm does not terminate. The termination proof relies on the
acyclicity property of the Delaunay triangulation and the correct evaluaftitre orientation predicate.
We search for a cycle among a small number of tetrahedra. Two tetradmedaatually not enough be-
cause of the obvious optimization that the algorithm does not test the tetoaleghin where it came
from. Three tetrahedra may suffice, wherdies close to the three supporting planes of the three
common facets to trigger numerical inaccuracies in the orientation test. Tlgestsdo build a trian-
gulation with a central edge surrounded by three tetrahedra and to Iquaitet athat is approximately
on this edge as illustrated in Figure 11.

We provide a program that creates random examples of that naturesasithiem for Failure £
At first, the program generates five random points and verifies thatDeéunay triangulation has

16



the desired shape of three tetrahedra grouped around a centrabedgé not it tries another set of
points. Then, the program generates a painear the central edge by computing a point on the edge
using approximate floating-point computations. At the end, the progrartelca the triangulation.

In fact, the point location does not terminate quite often due to inconsisteweas of the orientation
predicate in the volume around the edge. We give here an example datatssritis the algorithm
into an infinite loop:

po = (0.0924082710790905540.13265657946200804000.20816329990430305
p1 (0.1837299342587215300.00853603951425796480.39535821959993456
p2 (0.3827750307886255100.20509048043194156000.01038994374388480
ps = (0.2562518243116542700.63157171780930454000.16190908040221075
ps = (0.1918453251278116100.02815301654642610200.57432720440646179

u = (0.2320386264756953400.42355609485176732000.23985175657768110

6 Non-Solutions

A number of approaches have been suggested to make floating point impéorework, either of
specific algorithms or in general. We point to promising approaches in theeeton and discuss two
frequently suggested approaches that do not work in this section.

The first approach is specific to the planar convex hull problem. A &stiyheard reaction to our
paper is that all our examples exploit the fact that the first few pointseadyncollinear. If one starts
with a "roundish” hull, or at least starts with a hull formed from the points ofimal and maximak-
andy- coordinates, the problem will go away. We have two answers to this stiggeFirstly, neither
way can cope with the situation that all input points are nearly collinear, ecwhsglly, the example in
Figure 10 falsifies this suggestion. Observe that we have a "roundighéafter the insertion of the
pointsp; to p4 and then the next two insertions lead the algorithm astray. The example nzodifesd
to start with points of minimal and maxima! coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and used remedy,dteadrof comparing ex-
actly with zero, one compares with a small (absolute or relative) tolerariae easilon. Epsilon-
tweaking simply activates rounding to zero. In the planar hull example, thisnaike it more likely
for points outside the current hull not to see any edges becauseartedfcollinearity and hence at
least failure A will still occur. In our examples of Section 3, the yellow band in our visualizetiof
collinear pixels becomes wider, but its boundary remains as fracturedsais ithe comparison with
zero, see Figure 12.

Another objection argues that our examples are unrealistic since theyrcoata collinear point
triples or points very close together (actually the usual motivation for Epsieaking). Of course,
the examples have to look like this, otherwise there would not be room fodnog errors. But they
are realistic; firstly, practical experience shows it. Secondly, degeigs; such as collinear point
triples, are on purpose in many data sets, since they reflect the designoh&e@AD construction
or in architecture. Representing such collinear point triples in doubléspraarithmetic and further
transformations lead to rounding errors that turn these triples into closdliteeeo point triples. And
thirdly, increasingly larger data sets increase the chance to have a baatiwints just by bad luck,
and a single failure suffices to ruin the computation.
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Figure 12: The effect of epsilon-tweaking: The figures show theltreSvepeating the experiment of
Figure 2(a), but using an absolute epsilon tolerance valee-010-1°, i.e., three points are declared
collinear iffloat_orientreturns a value less than or equal to 30in absolute value. The yellow region

of collinearity widens, but its boundary is as fractured as before. Eiay shows the boundary in
the direction of the positivg-axis, and Figure (b) shows the boundary in the direction of the positive
x-axis. The figures are color coded: Yellow (red, blue, resp.) pixgisesent collinear (negative,
positive, resp.) orientation. The black lines correspond to the ériestation p,q,r) = +¢.

7 Conclusion

We provided instances that cause floating-point implementations of thraegesmsnetric algorithms
to fail. Our instances make the algorithms fail in many different ways. We stddwow to construct
such instances semi-systematically. We think that our paper and its comparigagewill be useful
for classroom use and that it will alert students and researchers tottitadgies of implementing
geometric algorithms.

We want to reiterate that our goal was not to show that the specific algordismgssed in this
paper can fail, but to give illustrative examples for what can go wrompvetmy. We could have used
other algorithms and implementations as the starting point of our work. After @llwigll-known that
most geometric algorithms fail for some inputs, if implemented with floating-pointragtic navely.
We have chosen the specific algorithms because they are frequently gauthhecause they are so
simple that one can actually discuss in full detail what goes wrong. In phatjan the incremental
convex hull algorithm, we kept the search for a first visible edge as sinspghe@ssible. After all, it is
less important how an initial visible edge is found. It is only important which efitispected edges
are declared visible bfloat orient. Thus, with randomized incremental algorithms, that use more
sophisticated strategies to search for an initial visible edge, we would geathe kind of failures.
Moreover, this is not a study on the numerical stability of planar convexahgdrithms. We see our
contribution in presenting educational examples for the bigger problemhgfamd how geometric
algorithms can fail, studied on a level where all aspects of the problemtitlabesdiscussed and
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understood in class. We hope that the examples will raise awareness faotliem and willingness
to study the various approaches to reliable geometric computation.

We do not want to leave our readers in despair and therefore closeonith gointers to successful
approaches to reliable geometric computation. There are several elppsogl) make sure that the
implementations of geometric predicates always returns the correct regjtahange the algorithm
so that it can cope with the floating-point implementation of its geometric predi@atkstill computes
something meaningful or (3) perturb the input so that the floating-point impietien is guaranteed
to produce the correct result on the perturbed input [HS98, FKMS05]

The first approach, known as the exact geometric computation (EG&djigar, has been adopted
for the software libraries EDA, CGAL and GRE LIBRARY [KN04, FGKT00, MN99, KLPY99]. In
the second approach the interpretation of “meaningful” is a crucial afidutifproblem. For convex
hull and Delaunay triangulations there are more robust algorithms [BDHS&9R, For89, For95,
GSS90, JW94, JS06, KW98, LM90]. For further references to thppeoaches we refer the reader
to [Yap04, SchO00].
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Appendix: Implementation of the Incremental Algorithm

We describe our €+ reference implementation of our simple incremental algorithm. We give the
details necessary to reproduce our results, for example, the exantgiar order in the predicate calls,
but we omit details of the startup phase when we search for the initial threeallinear points and
the circular list data structure. We offer the full working source codsetioon GAL [FGK100],
all the point data sets, and the images from the analysis on our companigoageltp://www.
mpi-inf.mpg.de/ ~ kettner/proj/NonRobust/ for reference.

We use our own plain conventionak€ point type. Worth mentioning are equality comparison
and lexicographic order used to find extreme points among collinear points gtetiup phase.

struct Point { double x, y; };

The orientation test returnsl if the pointsp, g, andr make a left turn, it returns zero if they are
collinear, and it returns-1 if they form a right turn. We implement the orientation test as explained
above withp as pivot point. Not shown here, but we make sure that all intermediattisese repre-
sented as 64 bit doubles and not as 80 bit extended doubles as it migkhthapy., on Intel platforms.

int orientation( Point p, Point g, Point r) {
return sign((q.x-p.x) * (ry-p.y) - (9.y-p.y) * (r.x-p.x));
}

For the initial three non-collinear points we scan the input sequence and maistzonvex hull of up
to two extreme points until we run out of input points or we find a third extreniet ffor the convex
hull. From there on we scan the remaining points in our reamvex _hull  function as shown below.

The circular list used in our implementation is self explaining in its use. We assiutendard
Template Library (STL) compliant interface and extend it with circulatorsprecept similar to STL
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iterators that allow the circular traversal in the list without any past-thggenition using the increment
and decrement operators. In addition, we assume a function that caveramange in the list specified
by two non-identical circulator positions.
Our mainconvex _hull  function shown below has a conventional iterator-based interface like
other STL algorithms. It computes the extreme points in counterclockwise afrtiee 2d convex hull
of the points in the iterator randérst,last) . It uses internally the circular ligtull to store
the current extreme points and copies this list tordgsalt  output iterator at the end of the function.
It also returns the modifiegesult  iterator.

tenpl at e <typenane Forwardlter, t ypenane Outputlter>
Outputlter i ncr_convex_hul | ( Forwardlter first, Forwardlter last,
Outputlter result)
{
typedef std:iterator_traits<Forwardlter> Iterator_traits;
typedef typenane lterator_traits::value_type Point;
typedef Circular_list<Point> Hull;
typedef typenane Hull:circulator Circulator;
Hull hull; /'] extreme points in counterclockwise (ccw) orientation
/1 first the degenerate cases until we have a proper triangle
first = find_first_triangle( first, last, hull);
whil e ( first = last) {
Point p =  =*first;
/1 find visible edge in circular list of vertices of current hull
Circulator c_source = hull.circulator_begin();
Circulator c_dest = c_source;
do {
c_source = c_dest++;
i f ( orientation( *C_source, *c_dest, p) < 0) {
/I found visible edge, find ccw tangent
Circulator ¢_succ = c_dest++;
whi | e ( orientation( *C_succ, =c_dest, p) <= 0)
Cc_succ = c_dest++;
/1 find cw tangent
Circulator c_pred = c_source--;
whi | e ( orientation( *C_source, *c_pred, p) <= 0)
c_pred = c_source--;
/'l c'source is the first point visible, ¢’ succ the last
if ( ++c_pred != c_succ)
hull.circular_remove( c_pred, c_succ);
hull.insert( c_succ, p);
break; // we processed all visible edges
}
} while ( c_source != hull.circulator_begin());
++first;
}
return std::copy( hull.begin(), hull.end(), result);
}
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