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Summary. Neciporuk, Lamagna/Savage and Tarjan determined the mo-
notone network complexity of a set of Boolean sums if any two sums have at
most one variable in common. Wegener then solved the case that any two
sums have at most k variables in common. We extend his methods and
results and consider the case that any set of h+1 distinct sums have at most
k variables in common. We use our general results to explicitly construct a
set of n Boolean sums over n variables whose monotone complexity 1s of
order n/3. The best previously khown bound was of order n*%. Related
results were obtained independently by Pippenger.

1. Introduction, Notations and Results

We consider the monotone network complexity of sets of Boolean sums
f=(f,.--, f): {0,1}" > {0, 1) with

fi=V x; and Fc{l,...,n}.

JeF;

Sets of Boolean sums were also considered by Neciporuk, Lamagna/Savage,
Tarjan, Wegener and Pippenger.

Cp(f) denotes the network complexity of f over the basis B; we will consider
B={v} and B={v, A}. A set of Boolean sums is called (h, k)-disjoint if for all
pairwise distinct iy, i, i,, ..., §,: |F, nF; n...nF, |<k. It 1s possible to represent a
set of Boolean sums f: {0,1}"—{0,1}™ by a bipartite graph with inputs
{xi,...,x,} and outputs {f,,..., f,}. The edge (x;, f;) is present if and only if
jeF,. Then (h, k)-disjointness is equivalent to saying that the associated bipartite
graph does not contain K, . , ,.; (=complete bipartite graph with k+1 inputs
and h+1 outputs).

*  This paper was presented at the MFCS 79 Sympostum, Olomouc, Sept. 79
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Theorem 1. Let f: {0, 1}"— {0, 1}™ be a (h, k)-disjoint set of Boolean sums. Then

C. (N2 Y. (Flk—1)/h-max(l,h—1)

Neciporuk, Lamagna/Savage, Tarjan proved the theorem in the case h=1=k.
Wegener extended their results to the case h=1 and arbitrary k. The first three
authors used their result to explicitly construct sets of n Boolean sums over n
variables whose monotone network complexity is Q(n>/?).

We explicitly construct sets of Boolean sums

f:{0,1}" > {0, 1}

such that C,_ (f)=Q(n""%). This result was independently obtained by Pip-
penger.

2. Proofs

Our proof of Theorem 1 is based on two Lemmas. In these Lemmas we will
make use of complexity measure C}%. C¥(f) is the network complexity of f over

the basis B under the assumption that all sums V x; with |[F|<k are given for
free, 1.e. the sums V x; can be used as additionaljci;puts.

Measure C3 ng introduced by Wegener.
Leml;lla 1. Let f: {0,1}"—>{0, 1}™ be a (h, k)-disjoint set of Boolean sums.

Then |

a) C*(f)<max{1,h—1} C* (/)
b) C,(f)Smax{l,h—1,k—1} C, ,(f).

Proof. a) Let N be an optimal *-network for f over the basis {v, A}. Then N
contains s v-gates and t A-gates, s+t=C¥ ,(f).

For i=0,1,...,t we show the existance of a *-network N, for f with <t—i
A-gates and <s+(h—1)-i v-gates.

We have N,=N. Suppose now N, exists. If N; does not contain an A-gate
then we are done. Otherwise let G be a last A-gate in topological order, 1.e.
between G and the outputs there are no other A-gates. Let g be the function
computed by G, g, and g, the functions at the input lines of G. Then

g=S1 N oies VSPV tl\/ i th,

where s; is a variable and ¢; is of length at least 2, is the monotone disjunctive
normal form of g.

Case 1: p<k. The sum s,V ... vs, comes for free. By Theorem I of Mehlhorn/
Galil g may be replaced by s;v...vs, and an equivalent circuit is obtained.
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This shows the existance of network N, , with <t—i—1 A-gates and <s+(h
—1)(@i+1) v-gates.

Case 2: p>k. There are some outputs, say fi,f,...,f;, depending on G.
Between G and the output f; there are only v-gates and hence f;=g v u;. Since
f; is a boolean sum, u; is not the constant 1. Hence (s connBd S O Ft 1y,
Since f is (h, k)-disjoint we conclude [<h.

Claim. For every j, 1 <j<I: either f;=g, vu; or f,=g, vu;.

Proof. Since g=g,Ag, and f,=gvu; we certainly have f;=g,vu; and
f;=8, Vv u;. Suppose both mequahtles are proper. Then there are 3331gnments
1, 0,€{0, 11" with f(,)=0<1=(g, v ) (x,) and f(o)=0<1=(g, v u;)(x;).
Let o« =max (o, a,). Since f; is a boolean sum f (x)=0 and since g, v u; and
g, Vv u; are monotone (g; v u )(cx) (g, vuy)(x)=1. Hence either u,(a)=1 or gl(a)
= gz(cx) 1 and hence g(a)= 1 In either case we conclude f;(x)=(g Vv u;)(x;)=1.
Contradiction.

We obtain circuit N, ; equivalent to N; as follows. .

1) Replace g by the constant 0. This eliminates A-gate G and at least one v-
gate. After this replacement the output line corresponding to f;, 1 <j </, realizes
function u;.

2) For every output f;, 1<j<l, we use one v-gate to sum u; and g, (resp.
g,). This adds [<h v-gates.

Circuit N;, , has Ss+(h—1)(i+1) v-gates and =t—i—1 A-gates. _

In either case we showed the existence of *-network N,, ;. Hence there exists
a s-network realizing f and containing at most s+(h—1)-t<max{1,h—1} (s+1)

=max {l,h—1}- C* (f) v-gates and no A-gates. This ends the proof of part a.

b) In order to prove b) we only have to observe that in case 1) above (1.
p < k) we can explicitely compute s, v ... vs, using at most k—1 v-gates. Hence
N, , contains at most (k — 1) additional v-gates.

Lemma 1 has several interesting consequences. Firstly it shows that A-gates
can reduce the monotone network complexity of sets of (h, k)-disjoint Boolean
sums by at most a constant factor. Secondly, the proof of Lemma 1 shows that
optimal circuits for (1, 1)-disjoint sums use no A-gates and that there is always
an optimal monotone circuit for (2,2)-disjoint sums without any A-gates.

Lemma 2. Let f: {0, 1}"— {0, 1}™ be a (h, k)-disjoint set of Boolean sums. Then

CANZCINZ Y, CIFY 1)

Proof. Let S be an optimal *-network over the basis B={v}. Since f;= V x; and
JeF;
input lines represent sums of at most k variables output f; 1s connected to at
least "|F;|/k" inputs.
Let G be any gate in S. Since S is optimal G realizes a sum of >k variables
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and hence at most h outputs f; depend on G (cf. the discussion of case 2 in the
proof of Lemma 1).

For every gate G let n(G) be the number of outputs f; depending on G. Then
n(G)=<h and hence

Y n(G)<h- CX(f).

Ged

Next consider the set of all gates H connected to output f;, 1<i<m. This
subcircuit must contain a binary tree with 7|F;|/k” leaves, (corresponding to the
input lines connected to f;) and hence contains at least |F|/k7—1 gates. This
shows

m
Y n(G)= Y number of gates connected to output f,
GeS i=1

> Y (FIk—1). O
i=1

Wegener proved Lemmas!1 and 2 for the case h=1. This special case 1is
considerably simpler to prove. Pippenger proved Lemma2 by a more com-

plicated graph-theoretic approach.
Theorem 1 is now an immediate consequence of Lemmas 1 and 2. Namely,

C, (N=C* . () by definition of C*
> C*(f)/max(1, h—1) by Lemma la

> Y (IF//k—1)/h-max(1,h—1) by Lemma 2.
i=1

3. Explicite Construction of a “Hard” Set of Boolean Sums

Brown exhibited bipartite graphs with n inputs and outputs, Q(n>'3) edges, and
containing no K, ;.

His construction is as follows. Let p be an odd prime and let d be a non-zero
element of GF(p) (the field of integers modulo p), such thatd 1s a quadratic non-
residue modulo p if p=1 modulo 4, and a quadratic residue modulo p if p=3
modulo 4. Let H be a bipartite graph with n=p> inputs and outputs. The inputs
(and outputs) are the triples (a,, a,, a;) with a,, a,, a,€GF(p). Input (a,, a,, a,) 1s
connected to output (b,,b,, b;) if

(a, —b,)*+(a, —b,)* +(a;—b3)’ =d modulo p.

Brown has shown that bipartite graph H has p*(p—1) edges and that it contains

no copy of K, ;.
By the remark in the introduction a bipartite graph corresponds in a natural
way to a set of boolean sums. Here we obtain a set of boolean sums over

{x,,...,%,} with ¥ |F|=Q(n>").
i=1
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Furthermore, this set of boolean sums is (2,2)-disjoint. Theorem 1 implies
that the monotone complexity of this set of boolean sums is Q(n>'3).
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