Acta Informatica 12, 371 – 375 (1979)

Some Remarks on Boolean Sums*

Kurt Mehlhorn

Fachbereich 10 – Angewandte Mathematik und Informatik, Universität des Saarlandes, D-6600 Saarbrücken, Germany (Fed. Rep.)

Summary. Neciporuk, Lamagna/Savage and Tarjan determined the monotone network complexity of a set of Boolean sums if any two sums have at most one variable in common. We gener then solved the case that any two sums have at most k variables in common. We extend his methods and results and consider the case that any set of h+1 distinct sums have at most k variables in common. We use our general results to explicitly construct a set of n Boolean sums over n variables whose monotone complexity is of order $n^{5/3}$. The best previously known bound was of order $n^{3/2}$. Related results were obtained independently by Pippenger.

1. Introduction, Notations and Results

We consider the monotone network complexity of sets of Boolean sums $f = (f_1, ..., f_m): \{0, 1\}^n \to \{0, 1\}^m$ with

$$f_i = \bigvee_{j \in F_i} x_j$$
 and $F_i \subseteq \{1, ..., n\}$.

Sets of Boolean sums were also considered by Neciporuk, Lamagna/Savage, Tarjan, Wegener and Pippenger.

 $C_B(f)$ denotes the network complexity of f over the basis B; we will consider $B = \{ \vee \}$ and $B = \{ \vee, \wedge \}$. A set of Boolean sums is called (h, k)-disjoint if for all pairwise distinct $i_0, i_1, i_2, \ldots, i_h \colon |F_{i_0} \cap F_{i_1} \cap \ldots \cap F_{i_h}| \leq k$. It is possible to represent a set of Boolean sums $f \colon \{0, 1\}^n \to \{0, 1\}^m$ by a bipartite graph with inputs $\{x_1, \ldots, x_n\}$ and outputs $\{f_1, \ldots, f_m\}$. The edge (x_j, f_i) is present if and only if $j \in F_i$. Then (h, k)-disjointness is equivalent to saying that the associated bipartite graph does not contain $K_{k+1,k+1}$ (=complete bipartite graph with k+1 inputs and k+1 outputs).

^{*} This paper was presented at the MFCS 79 Symposium, Olomouc, Sept. 79

Theorem 1. Let $f: \{0, 1\}^n \to \{0, 1\}^m$ be a (h, k)-disjoint set of Boolean sums. Then

$$C_{\wedge,\vee}(f) \ge \sum_{i=1}^{m} (|F_i|/k-1)/h \cdot \max(1,h-1)$$

Neciporuk, Lamagna/Savage, Tarjan proved the theorem in the case h=1=k. We gener extended their results to the case h=1 and arbitrary k. The first three authors used their result to explicitly construct sets of n Boolean sums over n variables whose monotone network complexity is $\Omega(n^{3/2})$.

We explicitly construct sets of Boolean sums

$$f: \{0, 1\}^n \to \{0, 1\}^m$$

such that $C_{\wedge,\vee}(f) = \Omega(n^{5/3})$. This result was independently obtained by Pippenger.

2. Proofs

Our proof of Theorem 1 is based on two Lemmas. In these Lemmas we will make use of complexity measure C_B^* . $C_B^*(f)$ is the network complexity of f over the basis B under the assumption that all sums $\bigvee_{j \in F} x_j$ with $|F| \leq k$ are given for free, i.e. the sums $\bigvee x_j$ can be used as additional inputs.

Measure C_B^* was introduced by Wegener.

Lemma 1. Let $f: \{0, 1\}^n \to \{0, 1\}^m$ be a (h, k)-disjoint set of Boolean sums. Then

- a) $C^*(f) \leq \max\{1, h-1\} C^*_{\wedge}(f)$,
- b) $C_{\vee}(f) \leq \max\{1, h-1, k-1\} C_{\wedge, \vee}(f)$.

Proof. a) Let N be an optimal *-network for f over the basis $\{\vee, \wedge\}$. Then N contains $s \vee$ -gates and $t \wedge$ -gates, $s+t=C^*_{\vee, \wedge}(f)$.

For i=0, 1, ..., t we show the existance of a *-network N_i for f with $\leq t-i$ \rightarrow-gates and $\leq s+(h-1)\cdot i$ \rightarrow-gates.

We have $N_0 = N$. Suppose now N_i exists. If N_i does not contain an \land -gate then we are done. Otherwise let G be a last \land -gate in topological order, i.e. between G and the outputs there are no other \land -gates. Let g be the function computed by G, g_1 and g_2 the functions at the input lines of G. Then

$$g = s_1 \vee \ldots \vee s_p \vee t_1 \vee \ldots \vee t_q$$

where s_i is a variable and t_j is of length at least 2, is the monotone disjunctive normal form of g.

Case 1: $p \le k$. The sum $s_1 \lor ... \lor s_p$ comes for free. By Theorem I of Mehlhorn/Galil g may be replaced by $s_1 \lor ... \lor s_p$ and an equivalent circuit is obtained.

This shows the existance of network N_{i+1} with $\leq t-i-1$ \wedge -gates and $\leq s+(h-1)(i+1)$ \vee -gates.

Case 2: p > k. There are some outputs, say $f_1, f_2, ..., f_l$, depending on G. Between G and the output f_j there are only \vee -gates and hence $f_j = g \vee u_j$. Since f_j is a boolean sum, u_j is not the constant 1. Hence $\{s_1, ..., s_p\} \subseteq F_j$ for j = 1, ..., l. Since f is (h, k)-disjoint we conclude $l \le h$.

Claim. For every j, $1 \le j \le l$: either $f_j = g_1 \lor u_j$ or $f_j = g_2 \lor u_j$.

Proof. Since $g = g_1 \wedge g_2$ and $f_j = g \vee u_j$ we certainly have $f_j \leq g_1 \vee u_j$ and $f_j \leq g_2 \vee u_j$. Suppose both inequalities are proper. Then there are assignments $\alpha_1, \alpha_2 \in \{0, 1\}^n$ with $f_j(\alpha_1) = 0 < 1 = (g_1 \vee u_j)(\alpha_1)$ and $f_j(\alpha_2) = 0 < 1 = (g_2 \vee u_j)(\alpha_2)$.

Let $\alpha = \max(\alpha_1, \alpha_2)$. Since f_j is a boolean sum $f_j(\alpha) = 0$ and since $g_1 \vee u_j$ and $g_2 \vee u_j$ are monotone $(g_1 \vee u_j)(\alpha) = (g_2 \vee u_j)(\alpha) = 1$. Hence either $u_j(\alpha) = 1$ or $g_1(\alpha) = g_2(\alpha) = 1$ and hence $g(\alpha) = 1$. In either case we conclude $f_j(\alpha) = (g \vee u_j)(\alpha_j) = 1$. Contradiction. \square

We obtain circuit N_{i+1} equivalent to N_i as follows.

- 1) Replace g by the constant 0. This eliminates \land -gate G and at least one \lor -gate. After this replacement the output line corresponding to f_j , $1 \le j \le l$, realizes function u_i .
- 2) For every output f_j , $1 \le j \le l$, we use one \lor -gate to sum u_j and g_1 (resp. g_2). This adds $l \le h \lor$ -gates.

Circuit N_{i+1} has $\leq s + (h-1)(i+1)$ v-gates and $\leq t - i - 1 \land$ -gates.

In either case we showed the existence of *-network N_{i+1} . Hence there exists a *-network realizing f and containing at most $s+(h-1) \cdot t \le \max\{1, h-1\} \cdot (s+t) = \max\{1, h-1\} \cdot C_{\wedge \vee}(f)$ \vee -gates and no \wedge -gates. This ends the proof of part a.

b) In order to prove b) we only have to observe that in case 1) above (i.e. $p \le k$) we can explicitly compute $s_1 \lor ... \lor s_p$ using at most $k-1 \lor$ -gates. Hence N_{i+1} contains at most (k-1) additional \lor -gates. \square

Lemma 1 has several interesting consequences. Firstly it shows that \land -gates can reduce the monotone network complexity of sets of (h, k)-disjoint Boolean sums by at most a constant factor. Secondly, the proof of Lemma 1 shows that optimal circuits for (1, 1)-disjoint sums use no \land -gates and that there is always an optimal monotone circuit for (2,2)-disjoint sums without any \land -gates.

Lemma 2. Let $f: \{0, 1\}^n \to \{0, 1\}^m$ be a (h, k)-disjoint set of Boolean sums. Then

$$C_{\downarrow}(f) \ge C_{\downarrow}^*(f) \ge \sum_{i=1}^m (\lceil |F_i|/k\rceil - 1)/h.$$

Proof. Let S be an optimal *-network over the basis $B = \{ \lor \}$. Since $f_i = \bigvee_{j \in F_i} x_j$ and input lines represent sums of at most k variables output f_i is connected to at least $\lceil |F_i|/k \rceil$ inputs.

Let G be any gate in S. Since S is optimal G realizes a sum of >k variables

374 K. Mehlhorn

and hence at most h outputs f_i depend on G (cf. the discussion of case 2 in the proof of Lemma 1).

For every gate G let n(G) be the number of outputs f_i depending on G. Then $n(G) \leq h$ and hence

$$\sum_{G \in S} n(G) \leq h \cdot C_{\vee}^{*}(f).$$

Next consider the set of all gates H connected to output f_i , $1 \le i \le m$. This subcircuit must contain a binary tree with $\lceil |F_i|/k \rceil$ leaves, (corresponding to the input lines connected to f_i) and hence contains at least $\lceil |F_i|/k \rceil - 1$ gates. This shows

$$\sum_{G \in S} n(G) = \sum_{i=1}^{m} \text{ number of gates connected to output } f_i$$

$$\geq \sum_{i=1}^{m} (\lceil |F_i|/k\rceil - 1). \quad \square$$

We gener proved Lemmas 1 and 2 for the case h=1. This special case is considerably simpler to prove. Pippenger proved Lemma 2 by a more complicated graph-theoretic approach.

Theorem 1 is now an immediate consequence of Lemmas 1 and 2. Namely,

$$C_{\vee, \wedge}(f) \ge C_{\vee, \wedge}^*(f)$$
 by definition of $C_{\vee, \wedge}^*(f) \ge C_{\vee}^*(f)/\max(1, h-1)$ by Lemma 1a
$$\ge \sum_{i=1}^m (|F_i|/k-1)/h \cdot \max(1, h-1)$$
 by Lemma 2.

3. Explicite Construction of a "Hard" Set of Boolean Sums

Brown exhibited bipartite graphs with n inputs and outputs, $\Omega(n^{5/3})$ edges, and containing no $K_{3,3}$.

His construction is as follows. Let p be an odd prime and let d be a non-zero element of GF(p) (the field of integers modulo p), such that d is a quadratic non-residue modulo p if $p \equiv 1$ modulo 4, and a quadratic residue modulo p if $p \equiv 3$ modulo 4. Let H be a bipartite graph with $n = p^3$ inputs and outputs. The inputs (and outputs) are the triples (a_1, a_2, a_3) with $a_1, a_2, a_3 \in GF(p)$. Input (a_1, a_2, a_3) is connected to output (b_1, b_2, b_3) if

$$(a_1-b_1)^2+(a_2-b_2)^2+(a_3-b_3)^3=d \text{ modulo } p.$$

Brown has shown that bipartite graph H has $p^4(p-1)$ edges and that it contains no copy of $K_{3,3}$.

By the remark in the introduction a bipartite graph corresponds in a natural way to a set of boolean sums. Here we obtain a set of boolean sums over

$$\{x_1, \ldots, x_n\}$$
 with $\sum_{i=1}^n |F_i| = \Omega(n^{5/3})$.

Furthermore, this set of boolean sums is (2,2)-disjoint. Theorem 1 implies that the monotone complexity of this set of boolean sums is $\Omega(n^{5/3})$.

References

Brown, W.G.: On graphs that do not contain a Thompson graph. Can. Math. Bull, 9, 281–285 (1966) Lamagna, E.A., Savage, J.E.: Combinatorial complexity of some monotone functions, 15th SWAT Conference, New Orleans, 140–144, 1974

Mehlhorn, K., Galil, Z.: Monotone switching circuits and Boolean matrix product, Computing 16, 99-111 (1976)

Neciporuk, E.I.: On a Boolean matrix, Systems Research Theory, 21, 236-239 (1971)

Pippenger, N.: On another boolean matrix, IBM Research Report 69/4, Dec. 1977

Wegener, I.: A new lower bound on the monotone network complexity of boolean sums, Preprint, Dept. of Mathematics, University of Bielefeld, 1978

Received November 1978 / Revised April 24, 1979