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An Efficient Algorithm for Constructing

Nearly Optimal Prefix Codes

KURT MEHLHORN

Abstract—A new algorithm is presented for constructing nearly optimal
prefix codes in the case of unequal letter costs and unequal probabilities. A
bound on the maximal deviation from the optimum is derived and numeri-
cal examples are given. The algorithm has running time O(¢-n), where ¢ is
the number of letters and n is the number of probabilities.

‘I. INTRODUCTION

E STUDY the construction of prefix codes. A set
W PPy " sp, of probabilities are given, with p, >0
>7_p;i=1 and a set a,,---,a, of letters; the letter q; has
cost ¢; ER, where ¢; >0. A prefix code T over the alphabet
>={a,,a,"",a} is aset Up,---,U, of words in 2* such
that no U, 1s a prefix of any U, for i#/. Let

(]' ajlajz QI:

be the ith codeword. Its cost C(U)) 1s defined as the sum

of the letter costs, 1.e.
C(L]i)=cj|+cjz+ S +sz,-'

Finally, the average cost of the code T 1s defined to be

o(T)="3 p.C(U).

i=1

ing an optimal (equal to mimimum average cost) code
given p,,-*-,p, and c;,---,c,. Karp [1] formulated the
problem as an integer programming problem, and hence
his algorithm may have exponential time complexity.
Various approximate algorithms are described in the liter-
ature (Krause [2], Csiszar [3], Altenkamp and Mehlhorn
[4], Cot [5]). They construct codes T such that

H(Pl,' T 9pn)<c'copt\c C(T)
‘<~H(P1a' " aP'n) +f(C13C2" o ,c,)+7,

where H(p,,---,p,)= —2p; log p, 1s the entropy of the
probability dlstrlbutlon c is defined so that X2’ _,27“ =1
(a root of the characteristic equation of the letter costs),
Copt 18 the cost of an optimal code, f(¢,---,c,) 1s some
function of the letter costs, and ¥y 1s a small constant. In
most cases (Krause [2], Csiszar [3], Altenkamp and
Mehlhorn [4]) f(c,,- - - ,c,)=max{c;|1 <i<t}, while for Cot

[5] f(c,- -+ ,c,) 1S @ more complex function.
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At present there i1s no efficient algorithm for construct-

Here we describe another approximate algorithm and
derive a similar bound for the cost of the code constructed
by it (Section II). In Section III we indicate that our
algorithm has linear running time O(¢-n) and report some
experimental results. They suggest that the new algorithm
constructs better codes than the previous algorithms.

[I. THE ALGORITHM AND ITS ANALYSIS

Consider the binary case first. There are two letters of
cost ¢; and c,, respectively. At the first node of the code
tree we split the set of given probabilities into two parts of
probabilities p and 1—p, respectively (Fig. 1). The local
information gain per unit cost 1s then

H(pa 1 _p)

G(p)= c,p+c,(l—p)°

where H(p,q)= —p log p — q log q. This 1s equivalent to

G(p)= ——2 log p —(1—p)log(1—p) -,

(=p-log 27— (1—p)log 27°2)- —
for all ¢ #0.

[t is easy (by elementary calculus) to see that G(p) 1s
maximal for p=2"1, 1 —p=27 where ¢ 1s chosen so

that 271 +272=1, Hence G(p) <c for all p and G(2™ )
= (.

The previous argument suggests the following ap-
proximate algorithm. Try to split the given set of probabil-
ities into two parts of probabilities p and 1 — p respectively
so as to make p —27 ' as small as possible. Such a split
maximizes the local information gain per unit cost and
should (hopefully) produce a good prefix code. For the
sake of efficiency our algorithm only considers splits of
the form {Pla 9pz} {P¢+l’ 5Pn}

Next we illustrate the approach by an example
We are given probabilities (p,, p,,- , Dg) =
(0.3,0.1,0.05,0.25,0.2,0.1) and a code alphabet a,,a, with
costs (¢, ¢,)=(1,2). We choose ¢ so that 271427 ““2=1].
Then 27 °“1=0.618.

We draw the probabilities p,,- - - ,ps as a partition of the
unit interval and split the unit interval into pieces of
length 271 and 272, respectively (Fig. 2). The split goes
through the right half of p,, so we assign the letter a, to p,,
p-, P1, and p, and the letter a, to ps and p¢ (Fig. 3). Next
we apply the same strategy to the set p,,---,p, 1.€6. wWe
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Fig. 1. Splitting set into two parts.

pl’p21p3tp4 p5’p6

Fig. 3. Code tree after first split.

consider the interval p,,p,,p;,p4 and split 1t 1in the ratio
27 t0 272 (F1g. 4).

Caution: At this point our approach differs from the
one taken by Krause, Csizar, and Altenkamp and Mehl-
horn. After having split the unit interval into two parts in
the first step, they split the interval of length 27! in the
ratio 2! to 27 ““2 1n the second step. Thus their approach
can be viewed as a digital expansion process. We continue
this remark after the precise definition of our new algo-
rithm.

- We proceed with our example. In Fig. 4 the split goes
through the rnight half of p,, so we assign the letter a, to
DP1,P»P3 and the letter a, to p, (Fig. 5). Proceeding in this
fashion the code 1s constructed in Fig. 6. This code has
cost

03-34+0.1-:54+0.05-6+0.25-34+0.2-3+0.1-4=3.45.

So much for the intuitive description of the algorithm.
For the precise definition by a pseudo-algorithmic lan-
guage (ALGOL) program we need some notation. Let
¢ €ER be such that ¥’ _,27°=1. Then 27 ¢ is traditionally

J
called the root of the characteristic equation of the letter

costs. Let P,=p,+p,+--- +p,, 0<k <n, and s, =p,+p,
+---+p,_+p. /2, 1<k<n.

The command CODE (1,n,€¢) constructs a prefix code
for the probability distribution p,,---,p,.. Here € denotes
the empty word over the alphabet {a,,---,q,}.

procedure CODE (/,r,U);
comment: [ and r are integers, 1 </<r<n, and U 1s a

word over {a," - -,a,}. We will construct codewords for
PpPiv1s - sP,- The word U 1s a common prefix of

COdeWOI’dS U], U1+ 1y~ Ur.

pl’pZ’p3 p4

Fig. 5. Code tree after second split.

Fig. 6. Code constructed by new algorithm.

begin
if l=r
then we take U as the codeword U,
else begin L—P,_|; R«P_;
for m, 1 <m<t do
begin L, «—L+(R—L)- 2;’;112_"‘3‘;
R «—L +(R—L) -2 “;
I «{i; L, <s;, <R, }
end ,

Comment: I_, 1 <m<t, 1s a (not necessarily nontrivial)
partition of the set {/,---,r}. Since we certainly do not

want to assign the same letter to all probabilities p,,- - - ,p.,
we need to make sure that the partition 1s nontrivial. The
easiest way to ensure nontrivialty 1s to force the use of
letters a; and a,, 1.e. to make I, and I/, nonempty;

ifl1, =9
then begin let m be minimal with I #*;
Il<—{l} , 11 — {l} X
end;
if I =
then begin let m be maximal with I *J;
I —{r}; I,—I,—{r};

end:

Comment: whenever we refer to a partition I, 1 <m
<t, outside the definition of CODE, we mean the
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Fig. 7. First two steps of fractional expansion method.

partition as it exists at this point of the program;
for m, 1 <m<tdo

if I+ then CODE (min /,,, max I, Ua,,);
end;

end.

Remark: Procedure CODE is a generalization of
Shannon’s binary splitting algorithm [6] for constructing
nearly optimal codes over a binary alphabet. It has been
generalized in a different direction in the past by Krause,

Csizar, and Altenkamp and Mehlhorn, who view the
binary splitting algorithm as a fractional expansion pro-

cess.
Consider the binary fraction 0.x,,x,,*-,x,, With x;E
{0,1}. We can define the real number represented by that

binary fraction recursively by

Num(x, )=if x, =0 then O else 1/2
Num(x; X, * X,,) =
if x.=0 then0+1/2 Num(x,,," - x,,)

else 1/2+1/2 Num(x;,,--*Xx,,).

So binary fraction expansion corresponds to repeated
splitting of the interval in the relation 1/2:1/2. Suppose
now that we split instead in the relation 27 “': (1 —27).
Then we should define Num as follows.

Strangenum(x, ) =if x,, =0 then 0 else 2~
Strangenum(x;x;, ;- * X,,) =

if x,=0 then 0+2~° Strangenum(x;, " - X,,)

else 2714 (1 —27)-Strangenum(x, . ;* * * X,,,)-

We are now ready to take up the above remark (labeled
caution) and to outline the fractional expansion approach
of our example. Consider the fractional expansions of the
reals s,,5,,° " *,5 In our “strange number system.” The
first digit is O for s, 55, 55, 54 and 1 for s5 and s¢. Fig. 7 1n
addition shows the second digits in the expansion of
51,5, 55,54 Note that 0 is the second digit in the expan-
sions of s, and s, and 1 is the second digit in the
expansions of s, and s,. Proceeding in this fashion until a
prefix code is obtained, we construct the code shown 1n
Fig. 8, of cost 3.75.

So much for the fractional expansion approach. The
approach taken in this paper follows Shannon’s ideas
more closely. After having split the original set of proba-

bilities into sets { p,,p,,P3.P4} and { ps,ps} 1n Fig. 1, we
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Fig. 8. Code constructed by fractional expansion method.

treat each subproblem in the same way as the original
problem. This approach was studied before by Bayer [6]
in the binary equal letter cost case, when =2, ¢, =¢,= 1.
It generally yields much better codes (cf. the experimental
results at the end of the paper).

Theorem: Given probabilities p,,---,p, and letters
a,---,a of cost c;,---,¢ and a real number ¢ such that
¢ _ .27 “n=1, procedure CODE constructs a code tree I’

of average cost C(7) with
c:C(T)<H(py,- - p) + 1= P1—Ppt Cimaxs

=max{c,; | <m<t}.

where ¢ .,

Proof: The proof is in two steps. We first derive a
manageable expression for the difference c-C(T)—
H(p,, - ,p,) and then derive a bound on that difference.
Procedure CODE constructs a code tree T for probabil-
ities p,,- - - ,p,. Let v be any node of the complete infinite
tree over the letters a,,---,a,, and let U be the word
corresponding to node v, i.e. U is spelled along the path
from the root to node v. Define

w(v):=Z{p,; U is a prefix of codeword U, for p,,, }
and
w,(v):=w(v,,),
where v, corresponds to Ua,,. Then
w(v)=w(v)+w,(v)+ -+ +w,(v).

If v is an element of code tree T let / and r be the other
two parameters in the call CODE (/,r, U). Clearly

W(U) =p;+p1t TP,

Let N, be the set of interior nodes of the code tree 7.

Lemma 1.
1) The cost C(T) of the code tree T 1s

H(py, - .p,)= 2 w(v)-H

UGNT

)

Proof: The proofs are simple induction arguments on
the depth of the tree T. Note that 2) is just a repeated
application of the grouping axiom and 1) is essentially a
reordering of summation. In

C(T)= i p;-cost(U,)

i=1



>16

we sum over the leaves of the code tree. If for every
interior node v and letter g; we consider those codewords
U. that go through v and use the letter g; in node v then
we obtain the summation formula given in the lemma. []

Lemma 1 allows us to write

c:C(T)—H(py, - »P,)

= t cc,'w_(v)—w(v) wilo) Wi (0)
- 3, 2 w0555

> w(v)l é Win(0) (log 2°m+log v:;"((:)) )]

L I|

vE N m =] w(v)
(1)
We have now arrived at our expression for c¢-C(T)—
H(p,,- - ,p,)- In order to derive an upper bound on that
difference we will try to bound
Wm(0) Wp(0)
E(o,m): = log 2~ + ] . 2
(v,m) (o) ( 0g 08 (o) ) (2)
Lemma 2 gives us the necessary information about

Wn(0)/ w(v).
Lemma 2: Consider any call CODE (/,r,U), let node v

correspond to the word U and suppose /<r. Let sets
I1,,---,I_ be defined as in procedure CODE. Then, for

1<m<t,

a) if I, =4, then w, (v)=0,
b) if I ={e}, then w,(v)=p,,

c) if |1 |>2, and e=min [, f=max [, then, for

2 <m<L,
" p.+
ml(0) ¢ p-ceny P TE (5. p-cen
w(v) 2-w(v)
also

i) ey BL (e
w(v) - 2w(v)
V) ey _Pe 9.9

- w(v) 2-w(v)

Proof: a) and b) are obvious. Consider c¢). Suppose
first 2 <m<t. Fig. 9 shows the meaning of e and f. Then

Wm(D) = Pe +pe+l + - +pf—1 +pf and pe'/2 +pe+1
+ - +p,_ +p;/2<27“w(v) by definition of w(v),

w_(v) and /,,. Hence
w,_(v)—2"“w(v) <(p.+p;)/2< 27 “mw(v).
If m=1 we even have
PetPes1t " TPy +Pf/2 <27tw(v)
and hence
w(v) =27 “rw(v) < p/2<27“w(v).
An analogous statement holds for m=1. ]

We are now ready to derive the upper bound on E(v, m)

defined 1n (2) above.
Case a: 1, =%. Then w,(v)=0 and hence E(v,m)=0.

Case b: I,={e}. Then w,(v)=p, and w,,(v)/w(v)<1.
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2" CCm.w(v)

Fig. 9. Typical element of partition.

Hence

W,n(0)
w(v)

Case ¢: {I,}>2. Let e=min I, f=max I,. Let y:=
27 and x:=w,(v)/w(v)—2"“~. Then x <(p, +
pyp)/2w(v)<2”“~ by Lemma 2. We may rewrite E(v,m) as

E(v,m)=(x+y)[log1/y+ log(x +) |
= (x+y)log(1+x/y).
Lemma 3: Let 0<x <y and 0<y. Then
(y+x)log(l1+x/y) <2x.
Proof: Consider

fix)=2x—(y+x)log(1+x/y).

E(v,m) < log 2°m=(cc,p,)/ w(v).

Then

F(x)=2-log(1+ /)~ o

=(2—-1/In2)—log(1+ x/y).
Thus f’ is monotonically decreasing and hence min{ f(x);
0< x<y}=min{ f(0), f(y)}=0. ]

From Lemma 3 we conclude that
E(v,m)< 2x=(Pe+Pf)/W(U)§

for m=1 we can even conclude E(v, m) <p;/w(v) and for
m=t, E(v,m)<p,/w(v). In every case we now have an
upper bound on E(v, m).

It remains to consider how often a certain probability p,
can be used in the bounds of the different types. First
note that each probability is used exactly once in a bound

corresponding to case b). Next suppose that p; is used in a
bound of type c); say i=min I . Then this will lead to a

recursive call CODE (i, max [,,). If I,={i} this 1s a
terminal call of CODE and i will at most be used 1n a
bound of type b). If | 7| > 2 then in the body of CODE (i,
max I ,) a partition of I, will be defined. Call this
partition J,, 1 <k <t. We will certainly have iEJ,. Note
that Lemma 2 states that for J, we do not have to use min

J, in order to bound E(v, m). Since i will always be in the
first set of the partition for all further recursive calls to

CODE, we conclude that i must only be used once 1n a

bound of type c). 1_
In summary, we use each probability p, at most once in

a bound of type b) and at most once in a bound of type
¢). Furthermore the argument above shows that p, and p,
are never used in a bound of type c).
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Cl(procedure CODt above) Cz(Altenkamp & Mehlhorn)
average value of 104 & oy
C/Copt-IOO
maximal value of
c/C__.-100 109.0 154.7

opt

Fig. 10. Experimental comparison of two algorithms.

We will now substitute the bounds on E(v,m) 1nto (1),
our expression for the difference ¢-C(T)— H(p,,- - - ,p,)-
The bounds of type b) contribute at most c-c_ . 2" _p; =
C:Coayo Where ¢, . =max{c,; 1 <m<t} and the bounds of
type c) contribute at most X}_,p,=1—p, —p,. Hence

CC(T)_ H(Pl,' o 9pn) SCCrax T 1 — P17 Pn- L]

Note that (among others) Krause has shown that c:
C(T)Y>H(py,--,p,) for every prefix code T and hence
the procedure CODE constructs very good codes indeed.

II]. IMPLEMENTATION AND EXPERIMENTAL DATA

Altenkamp and Mehlhorn [4] describe an implementa-

tion of their algorithm which has running time O(¢-n). The
same methods can be used to implement procedure
CODE such that 1ts running time 1s O(¢-n). We refer the
reader to [4] for details.
In Guttler er al. [8] the algorithms described in [4]
(which are very similar to the one described by Krause [2]
and Csiszar [3]) and the algorithm described here were
compared 1n the binary case with equal letter costs, 1 =2
and ¢, =c,=1. Two hundred examples were run; for each
of them the optimal code was constructed. Fig. 10 shows
the average and maximal values of C,/C,, 100 and
C,/ Copy 100 where C, 1s the cost of the optimal code, C,
and C, are the costs of the code constructed by the
algorithm described here and the algorithm described by
Altenkamp and Mehlhorn, respectively.

Cot describes yet another procedure for constructing
nearly optimal prefix codes. He proves that the average
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cost C of his code satisfies
H(py, - Py)/c+O<C<H(py, - ,p,)/c+8+cy,

where

! l

5= ¢ logy(\/A_,) and 3 27CEMo=],

j =2 j=
and c_;, =min{ ;)

for 1 <i<t. He does not describe a detailed implementa-
tion of his algorithm nor does he estimate the running
time of his algorithm. In our example ¢,=c,=1, and
hence A, =1, A,=2, c=1, and §=1. The average value of
the entropy H i1s about 5.5 for the examples in Giittler es
al. and hence the average deviation from C_, 1s in this
example at least 18 percent for the code constructed by

Cot.

IV. CONCLUSION

A new algorithm for constructing nearly optimal prefix
codes 1n the case of unequal probabilities and unequal
letter costs has been described. A theoretical estimate of
the cost of the constructed code has been given. Numeri-
cal examples suggest that that algorithm is superior to
previously suggested approximation algorithms. The algo-
rithm is very efficient in its time and space requirements.
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