27

Optimal Dynamization of Decomposable

Searching Problems

by

Kurt Mehlhorn
and
Mark H. Overmars *

Oktober 1980

Kurt Mehlhorn, Fachbereich 10 - Informatik
Universitdt des Saarlandes
6600 Saarbriicken
West Germany

Mark H. Overmars, Vakgroep informatica,
Rijksuniversiteit Utrecht
3508 TA Utrecht
The Netherlands

Abstract: We describe a general method for dynamizing
data structures for decomposable searching problems.
Our method generates optimal transformations and in
fact yields all optimal transformations.

The research of the second author is partly supported
by the Netherlands Organization for the Advancement of
pure Research (ZWO)

I. Introduction

Recently several efforts were made to develop general methods
for turning static solutions (only searches are supported) to
problems into dynamic ones (insertions (and maybe deletions)
are also supported).Bentley [1] and later Saxe and Bentley [5]
made the important observation that a general approach to
"dynamization' is especially relevant to the class of so-
called decomposable searching problems. A searching problem
can be viewed as a problem in which one asks a question about
an arbitrary object x of type T, and a (static or dynamic)
set of objects (from now on called points) of type T,, with
an answer of type T, We can denote such a query as

. L BN
Q.T.I"c- T3

For instance, in a Member query, T1 and T, are identical and
T3 is boolean.

T“)
Definition : A searching problem Q : T, x 2 7~ Tg is

called decomposable if there exists a "trivially" computable

operator o on the elements of Ts, satisfying

T
VA,B € 2 °

vx € T, Q(x,AUB) = 0(Q(x,A),Q(x,B))
For instance, a Member query is decomposable (o = or).
Saxe/Bentley [5] and later Overmars/v. Leeuwen ([4] presented
several general methods for dynamizing static data structures
for decomposable searching problems.

Suppose we have a static data structure for some searching
problem which supports queries on point sets of n elements in
time Qs(n) and which can be constructed for a point set of n
elements in time PS(n). We will assume (as is customary in the
field) that functions Qs(n) and Ps(n)/n are nondecreasing.

Transformations from static to dynamic data structures adhere
to the following principles

a) a set A is represented by static data structures for some
partition Ai, 1<i<r, of A, i.e. A = U A and A, N A. =90

s o J
for i ¢ j. i=1

b) a query about set A is answered in two steps : first the
data structures are used to obtain the answers for the blocks
A and then the final answer is gbtained by decomposability.
The cost for the first step is i§1 QS(IAiI) < r‘Qs(n),

cost of the second step is assumed to be dominated by the first
step and is therefore ignored.

c) the insertion of a new point x is processed by selecting

data structures for some blocks A. A,

i i Y. of the partition
1

2 S

of A, throwing away these data structures and constructing a

new static data structure for point set {x} U A, U A ‘U...U A .
: 1 2 S

The performance of a transformation is measured by two

quantities : the query penalty factor k(n) and the update

penalty factor h(n).

Let T, be the number of blocks in the partition of set A after
the i- th insertion, and let m; be the size of the set for which
a static data structure is constructed after the i-th insertion.
Then

k(n)

max{r;; 1 < i < n}

"
nMB

h(n) mi/n .

i

The names for quantities k(n) and h(n) are justified by the
observation that k(n)- Qs(n) bounds the time for a query when
at most n points are in the structure and h(n)" P (n) bounds
the cost for inserting the first n points. (Note that this

n
cost is 151 Ps(mi) = ? m; Ps(mi)/mi < ? m, Ps(n)/n = h(n)'PS(n).)

The pair (k(n), h(n)) is called the characteristic of the

transformation.

_Transformations with various characteristices were presented
in Saxe/Bentley [5] and Overmars/v. Leeuwen [4] , e.g. the
binary transform with characteristic (log n, log n) the k-
binomial transform with characteristic (k, (k!n)1 k),... .

Lower bounds on the efficiency of transformation were shown:
in Saxe/Bentley [5] and later generalized in Mehlhorn [2].
Mehlhorn proved the following result.

Theorem (Mehlhorn [2]) : There is a constant c > O such that for

any transformation with characteristic (k(n),h(n))

h(n) > c-h(n) for all n

where
~ ‘tlog n / loglk(n)/log nl if k(n) > 2log n
h(n) =

k(n) n1/k(n) if k(n) < 2log n

In this note we will show that the lower bound given in the
theorem above is sharp (up to constant factors) and exhibit
a general method for obtaining all optimal transforms. More
specifically, we will show :

Theorem: Let k(n) be a function such that k(n)/log n is either
increasing or decreasing. Then there is a transform with charac-
teristic (0(k(n)), O(ﬂ(n))), where ﬁ is defined as above.
Moreover, this transform can be obtained in a systematic way.

Note, that we excluded the case that h(n) "wiggles'" about
log n. With some additional effort we could also handle this
case. For reasons of simplicity we have refrained from doing so.

I1. A general method of dynamization

In this section, £ : N » N is any nondecreésing function
with £(i) > 2 for all i.

We describe two general methods of dynamizations, methods A and B.
Method A will be used for transformations with low query penalty
factor (at most log n) and method B for transformations with
small update penalty factor (at most log n). We will describe
methods A and B together since they have many similarities.

We describe first how a set S of n points is represented and

then describe the query and insertion algorithms.

Let S be a set with n points, n = [S|. Let i be such that

21 1+1.'Then set S is represented as follows.

<n < 2

1) there is a structure Sf containing exactly 2t points of S.
2) Let n' = n—21, b = £(,log n,) = £(i) > 2 and let n' =.Zajb3,
J20

where 0 < a; < b, a; € N for all j. Then the remaining

n' points of S are stored as follows.

Method A: for each j, j > O, there is one structure, called Bj’

containing exactly aj°bj points of S.

Method B: for each j, j > O, there are as structures called
B B. containing bJ points each.

- ’ - & ® ,
a.
J1 jay

This finishes the description of the representations of a set S.
Next we describe query and insertion algorithms. The query
algorithm is the same for both methods : Answer the query for
each of the non-empty structures and derive the final answer

by decomposability.

Next consider the insertion of a new point p into a set S,
ISl = n and 2t < n <21+1.

If n+1 = 2l+1 then we throw away all existing structures and

construct a new Sf containing all n+1 points inserted so far.

If n+tl1 < 21+1 then let j be minimal such that aj +1 < b.
o

Method A: Throw away structures Bo""’Bj and construct

o

a new B. containing the new point p and the points contained
o

in the old Bo’B1""’Bj . Note that the new Bj contains

o (o]

J Jo Jo .
1+ X (b-1)b”Y + a. -b = (a. + 1)°Db points.
j<j0 Jo Jo

Method B: Throw away structures Bj 2 for 0 < j < jo and
s

1 <2 < b-1 and construct -a new Bj a. +1 out of the new
0’%j
o

point p and the points in the Bj,z's 0<j< jo’ 1T <2 < b-1.

: ' : J
Note that B. contains 1 + X (b-1)bJ =b ° points.
j.,a. +1 L.
0’73, J<Jo

Theorem 1: Let £ : N - N be any nondecreasing function with
f£(i) > 2 for all i. Then method X, X = A,B, based on f, yields
a transformation with characteristic

]
>

(1 +gyMm), 2+ g,(n)) for X
(1 + g2(n), 2 + g1(n)) for X

]
o~}

where

g1(n) = max{1 + L1og(m/2)/1og f(log m), ;m<n}
and

g,(n) = g;(m)-(£(logn;) - 1)

proof: Consider any n. Let i be such that 2' < n < 21+1.

We will determine kx(n) first, where kx(n) is the query
penalty factor of method X, X = A,B.

In order to do so, we need a bound on the maximal number of
structures existing at any one time during the first n insertions.

Let m < n. If method A is used and Bj (method B is used and Bj1)

is non-empty after the m-th insertion then f(L1log m,)J < m/2

since a non-empty Bj (Bj 1) contains at least f(_log m,)]
b

elements, when total set size is m, and at least half of
the points are always contained in Sf.

This shows that the maximal number of structures existing
at any one time during the first n insertions is

<1 +max [1 + (log m/2) 1
log f(, log my),

m<n

if method A is used (the additional one comes from the

structure Sf) and

<1 +max [(1 + (log m/2))
m<n . log f(, log m,;) ,

(f(log my) - 1)]

if method B is used. Since f is assumed to be nondecreasing
the bound follows.

Next we analyse hB(n), the update penalty factor of method B.
We consider the cost of inserting points 21, 21+1,...,n first.
(Here and in the sequel we will frequently abuse the language.
Instead of using Xy for the t-th point inserted we will simply
use t). When point 2t is inserted a new Sf of size 2! is con-
structed. Each point x, 2t + 1 < X < n, is inserted into at

most one B. , for some £ and each j > O. Hence at most
’

L((n-Zi)/f(Llog nJ)j)Jdifferent sz's? each of size f(log nJ)J,
are built during the insertion of points 21+1,...,n.

Thus the total size of all blocks built during the first n

insertions is bounded by

i i-1 2+1 L .
s 22+ x g A m1=20 0 pgyd
2=0 2=0 j>o | f()J |
i .
+ox B2 g(4)d

j>o b£(1)7]

Using the fact that (2 '-1-2%/£(0)7, (and (n-2Yy/£()9))

vanishes for j > g,(n) we can bound this sum by

S L S :
2.28 &+ & [z (2*'-1-2% + (n-2M)1

< 2°'mn + n'g1(n).

Hence hB(n) < 2 + g1(n),

Finally we derive a bound on hA(n). As above, we consider
the cost of inserting points 21,21+1,...,n first. Point 2%

forces us to construct a structure of size 2'. Each point
x, 2 < x < n, is member of at most one Bj of size a“f(log nJ)J

for each a, 1 < a < f(, log n,) - 1 and each j > o. Hence at most

L(n—Zl)/(a'f(Llog n),):’)_I distinct sets of size a-f(log n_,)J
are formed during the insertion of these points, j > o, 1 < a

< f(, log n;) - 1.

Thus the total size of all blocks formed during the first n
insertion is bounded by '

i i-1 £(2)-1 2+1 4 % .
s 2+ s T 27 -1-2° a-g(0)?
2=0 =0 j>0 a=1 I a'f(z)J [
£f(i)-1 i .
+ = ¥ n-20 a4 . f£(i)]

j>o a=1 La-f(i)jJ

As above, one concludes that this sum is bounded by

2n + n-g1(n)'(f(Llog n,)-1). Hence hA(n) < 2 + gz(n).

Remark 1: Observe the duality of parts a) and b) of theorem 1.

Remark 2: if (i-1)/log £(i) is non-decreasing in i, then
log n, _
g (n) =1+ max{ log (n/2) log((2+1°8 M-1)/2)
| 1og £f(log nJ)J log f£(,log n, -1)
and
g,(n) = g,(n)-(£(rlog ny) -1)

Examples: The following table lists the characteristic‘of
some transformations obtainable by our method.

£(i) it () v () 13 () 1P (n)

la) 2 0(log n) 0(log n) 0(log n) 0(log n)
SER A 0(k) 0 (k- V) 0k -V 0(k)

for some

constant k

) . (log n) o((105 n)2) 0((105 n)2) o(log n)

N t log log n log log n log log n log log n
a 2t o(1) 0(n) 0(n) o(1)
e) ZV? 0(Viog n) 0(2"1°g Viog m)|l 0(2" °g nViog n) | 0(Viog n)

Note the similartiy between a) and Bentley [1] , b) and Saxe/Bentley [5],

and a), c¢), d), e) and the examples in Overmars/v. Leeuwen [4].
Next we turn to the question of optimality. The following
theorem was shown in Mehlhorn [21].

There 1is a constant ¢ > O such that
: h(n) > c-h(n)

Theorem 2 (Mehlhorn [2]):
for every transform with characteristic (k(n), h(n))

for all n where
~ {-1og n / log [k(n)/log nl] if k(n) > 2 logn
h(n) =

k(n)n /K@) if k(n) < 2 log n

Theorem 2 gives lower bounds on the efficiency of any
transform. In theorem 3 below we show that methods A and
B work at these limits and indeed yield all optimal trans-

forms.

Theorem 3: Let T be any transform with characteristic (k(n),h(n))
for some nondecreasing function k(n).

a) if (i-1)/k(21) is nondecreasing in i then there is a function
f such that transform A based on f has characteristic (0(k(n)),

0(h(n))).

b) if k(n)/log n is non-decreasing then there is a function f
such that transform B based on f has characteristic (0(k(n)),

0(h(m))).

proof: a) since k(n) = O(log n) we infer from theorem 2
h(n) > c<k(n) n1/k(n) for some ¢ > O and all n. Let

f(i) = max(2, ZL(i-1)/k(21)J)

for all i. Then f(i) > 2 and f is non-decreasing. Hence trans-
form A based on f has characteristic (1 + g1(n), 2 + gz(n))
where gy and g, are defined as in theorem 1. Also

2 + max{ log (m/2) ; m < n}
log f(,1log m,)

1+ g1(n)

2 + max{; log(m/2) ; m < n}
ax(1,,(, log m,~1)/k(2L1°g]mL)

0(max {log(m/Z)'kLZ 1og ™) ;M < n})
(4°g m, - 1)

]

0(k(n))

and

- 10 -

2 + g,(n) = O(k(n) - £(,log n,))

Z(Llog nJ'1)/k(2Llog o))

= 0(k(n)

- o(k(n) - 2L1og nJ/k(leog nJ+1))
log n,+ 1

= 0(k(n) - n!/K(ZV7E)

= o(k(n) - n'/k(0)y

= 0(h(n))

b) since k(n) = Q(log n) we infer from theorem 2
h(n) = 2 (log n/max(1, log(k(n)/log n))) for some constant c
and all n. Let £ : N » N be such that

kb | _f@-1 | xeh
i-1 log £(i) ~ i-1

+ 1

for all i. Then £(i) > 2 and f is nondecreasing. Then transform

B based on f has characteristic (1 + gz(n), 2 + g1(n)) where

81,8, are defined as in theorem 1. Apparently, 1 + gz(n) = 0(k(n)
Also

2 + g1(n) < 3+ max{ log m/2 ; m < n}
log £(,log m,)

log n
3+ = 0(h(n))
loglk(n)/log nl

{A

since log f(i) = Q(logl(£f(i) - 1)/log £(i)1) =

(log(k(21)/(i-1))) = a(log(k(21)/1)) = Q(log(k(n)/log n))
for i < log n.

- 11

Theorem 3 shows that methods A and B suffice to generate all
optimal transforms with query penalty factor k(n) = O(log n)
U Q(log n) and k(n)/log n sufficiently smooth. It thus
demonstrates the generality of the methods.

If k(n) is not in O(log n) U ©(log n), then a combination of
methods A and B can still lead to optimal transforms. Omne
chooses a switchpoint function, say 2 log n. As long as

k(n) > 2 log n one operates with method B. As soon as k(n)
becomes less that 2 log n, one leaves the data structures
constructed by method B as they are and switches over to
method A. Once k(n) becomes larger than 2 log n again, we
switch back to method B, i.e. we process the sequence of in-
sertions which were done in mode A first and are then ready
for new queries and insertions. If k(n)/log n is sufficiently
'smooth then this method will have characteristic '
0(k(n)), OCh(n))) where h is defined as in theorem 2. The
details are left to the reader.

We want to close with a remark about deletions.

Known deletion methods (Saxe/Bentley, v. Leeuwen/Maurer,
Overmars/v. Leeuwen) can be carried over, though the
details still need to be done.

- 12 -

Bibliography

[1] Bentley, J.L. : Decomposable Searching Problemn,
Information Processing Letters, 8(5), pp. 244-251, 1979

[2] Mehlhorn, K. : Lower Bounds on the Efficiency of Static
to Dynamic Transformations of Data Structures
Techn. Report, A 80/05, FB 10, Universitdt des Saarlandes
1980

[3] Overmars, M.H, v. Leeuwen, J. : Two general methods for
dynamizing decomposable searching problems, to appear in
COMPUTING

[4] Overmars, M.H., v. Leeuwen, J. : Some principles for
dynamizing decomposable searching problems, Techn. Report
RUU-CS-80-1, Dept. of Computer Science, University of

Utrecht, 1980 , to appear in Information Processing Letters

[5] Saxe, J.B., Bentley, J.L. : Transforming Static Data
Structures to Dynamic Data Structures, 20th IEEE Symposium
on Foundations of Computer Science, 1979, pp. 148-168

[6] van Leeuwen, J., Maurer, H.A. : Dynamic Systems of Data
Structures, Techn. Report, Institut fiir Informationsver-

arbeitung, TU Graz, Austria, 1980

