Acta Informatica 5, 287 —295 (1975)
© by Springer-Verlag 1975

Nearly Optimal Binary Search Trees
Kurt Mehlhorn

Received January 8, 1975

Summary. We discuss two simple strategies for constructing binary search trees:
“Place the most frequently occurring name at the root of the tree, then proceed
similary on the subtrees ““and’ choose the root so as to equalize the total weight of
the left and right subtrees as much as possible, then proceed similarly on the subtres.”
While the former rule may yield extremely inefficient search trees, the latter rule

always produces nearly optimal trees.

“One of the popular methods for retrieving information by its ‘name’ is to
store the names 1n a binary tree. We are given # names B,, B,, ..., B, and 2xn -1
frequencies f,, ..., B,, o, ..., o, With 2 f8,+ > a;=1. Here B, is the frequency of
encountering name B, and «, 1s the frequency of encountering a name wich lies
between B; and B,.,, o, and «, have obvious interpretations” [4]. We may
always assume w.l.o.g. that 8,4, +8,,, =0 for all 7. Otherwise, the i-th (or the
(4 1)-th) key might as well be removed.

A binary search tree 1 is a tree with # interior nodes (nodes having two sons),
which we denote by circles, and # 41 leaves, which we denote by squares. The
interior nodes are labelled by the B, in increasing order from left to right and
the leaves are labelled by the intervals (B, B;,,) in increasing order from left to
right. Let b; be the distance of interior node B; from the root and let a; be the
distance of leaf (B, B;,,) from the root. To retrieve a name X, b;+1 comparisons
are needed 1f X =B, and a; comparisons are required if B, < X < B,,,. Therefore
we define the weighted path length of tree T as:

P= _Zl pi(b;+1)+ _Zoaf A
1= §=

D. E. Knuth [4] gives an algorithm for constructing an optimum binary search
tree, 1.e. a tree with minimal weighted path length. His algorithm has O (#2) time
complexity and O (n?) space complexity. This is prohibitive for most applications.
He also describes two rules of thumb for constructing binary search trees, both
of which can be implemented in O (» log #») time and O (#) space (in the appendix
we sketch such an implementation). Recently M. Fredman [1] improved on this
and exhibited an algorithm which works in O (z) units of time and space.

Rule 1: Place the most frequently occurring name at the root of the tree, then
proceed similary on the subtrees.

Rule I1: Choose the root so as to equalize the total weight of the left and right
subtrees as much as possible, then proceed similarly on the subtrees.

2883 K. Mehlhorn

P2

Fig. 1 o

Knuth poses the problem to give some quantitative estimate of how far from
the optimum these methods can be. We answer this question. While Rule I may

produce ‘‘bad”’ search trees, Rule Il always yields nearly optimal trees. This fact
was empirically known for some time.

We discuss first Rule 1:

Place the most frequently occurring name at the root, then proceed similarly

on the subtrees. A simple example shows that this rule yields “bad” search
trees.

Let

£ {1
n=2%_1, B,=2"F4e with 2 ¢=27"
and)

g >e,> 0 >¢6,>0for 1=1=n and ;=0 for 0 =7 =7

Rule I yields the tree of Fig. 1. Its weighted path length is:

B= 2 B:(b;i+1)+ 2 ;4

i=1 i=0

n

:Zﬁi"’:

=1

Fig. 2 shows a balancedftree for the same frequency distribution. Its weighted
path length is bounded by:

R
<2~ k=D3 20-D.; < 5. 1og .
1=1

Nearly Optimal Binary Search Trees 289

ﬁzk-—l

k-2 Bac-1yox-2

Fig. 2

Thus A/, > 471 n/log ». This example is a strong argument against the usefulness
of Rule I.

We turn now to Rule I1:

Choose the root so as to equalize the total weight of the left and right subtree
as much as possible. Ties are broken arbitrarily.

W. A. Walker and C. C. Gotlieb [7] did empirical studies of a modification
of this rule and report that it produces nearly optimal search trees. In the following
we will prove that Rule II yields fairly good trees in all cases. The key idea of
our proof 1s to show that the weights of the subtrees along any path essentially
form a geometrically decreasing sequence. The weight of a tree is the sum of the
probabilities of all nodes and leaves of this tree.

We need to define a few constants. Let

e=3Y5—1 and 0=3+e=3%(/5—1). Then =43 —=¢.
1/0 1s the golden ratio.

Lemma 1. Let 1 be a binary tree which is constructed according to Rule II.
Let B be an interior node with distance 2 from the root. Let w, be the total
weilght of 7', w, be the total weight of the direct subtree of T, which contains B,
and let w, be the total weight of the tree with root B. Then either

w, < 0w, or w,= 0%w,.

Proof. We may assume w.l.o.g. that B lies in the left subtree of 7 and that
the total weight wj of T 1s 1. If the weight w, of the left subtree of T is not greater
than 0 then we are done. Otherwise, consider Fig. 3. Let ¢ be the weight of the
right subtree ot 7, 4 be the weight of the root, ¢ be the weight of the rightmost
leaf 1n the left subtree of 7', b be the weight of the rightmost interior node in the
left subtree of 7, and a be the weight of the remainder of the left subtree of T.
By assumption

wy=a+b+c=1/2+v

for some y > ¢. Then d4-e=1/2—.

2900 K. Mehlhorn

Fig. 3. The tree T

Rule 1I did not choose the node with weight & as the root of T. If the node
with weight b were chosen as the root of T then the difference between the weights

of the left and right subtree would be | a— (c+d+¢)|. Since the node with weight b
was not taken as the root

|a__(c}d{e)l2d—+—bi|6 c. (*)

If a— (c+d-+e) is positive then
a—{c+d+te)=a+btc—e

and hence
O0=b+2c+4d.

Lhus O0=b+4c+d.

This contradicts our assumption B;+a;+ ;4,0 for all z. Therefore
a— (c+d - e) 1s negative.
In this case we infer from (*)

c+dt+e—a=a+btc—e
which yields

d--2e=b-+2a.
Thus
{ —2y=d+2e=b+2a=3+y+a—c.
Hence
a—c<1/2—3y, a+c=1[2+y,
SO

a<1/2—y<i[2—e.

Tf B is the root of the left subtree of the left subtree then the entire tree with
root B is part of the structure with weight 4 and hence w, < a<1/2—e. Other-
wise, we have the following picture of weights (see Fig. 4) with a= x4y 4z and

Nearly Optimal Binary Search Trees 291

Fig. 4. The left subtree of tree T

Assume w, > 1/2— ¢. Since b was not at level 1, we must have

gbebloge— = a—¢

hence
1R2—e<<wy,=2+4+b+c=a+t+x—-c.
Furthermore
1—2e<z4+btc4+atx—c

=2z+x+a-+0b

<2a-+b

e =29 L 2,
a contradiction. g.e.d.

Lemma 2. Let 7 be a binary tree which 1s constructed according to Rule 11
and let B be an interior node with distance & from the root. Let w be the total
weight of the subtree with root B. Then

w<< §—1

Proof. The claim 1s obvious for 6 =1. Otherwise, let b5, , B, , ..., B,,= B be
the nodes on the path from the root to B and let w; be the weight of the subtree

with root B,,. We show: for all 7 either

i1
W, <0

or
w, <0

For =2 this follows from Lemma1. If > 2 then either w,_, <& *orw;_; <!
by induction hypothesis. In the second case, we are done, 1n the first case, we
apply Lemma 1 and obtain: either

W, 3 0w, =8
or
w, <2 w,_, <
Hence
w=1w, < min (w,, @, _,)

< 61, q.e.d.

202 K. Mehlhorn

Given any frequency distribution oy, 8, ..., £,, «,, let T be the tree which is
constructed according to rule 1I. Let &, be the distance of interior node 5; from
the root, let «; be the distance of leat (B;, B,,,) from the root, let B, be the
father of leaf (B, B}, and let w; be the total weight of the subtree with root B,.

Lemma 2 implies

g, =w, = g%V
and
o, Sw;, < W2,
Thus
b+ 1 = (log 1/6) - log 1/8,+2
and

o; = (log 1/0)~1 - log 1/a; - 2.

This gives the following upper bound for the weighted path length B, .45 of a2
tree constructed according to Rule II.

B)alanced (Cxﬂr ﬁlr I ﬁn! Of'n)

= 2 Bi(b;+1)+ Zﬂﬂtf“f
f =

1
1
i

IA

+c- (2B log 1/8:+ 2 & log 1/05;')

with ¢=(log 1/0)= (1 —log (|/5—1)) ™.

Theorem 1. Given any frequency distribution oy, f4, ..., 8,, @, with > 8.+
2.%;=1, Rule IT yields a tree whose weighted path length B, .4 is bounded
above by

1=0

B.(2+c-log 1/B) + 3 &;(2-+c¢ log 1/a)

;
¢
2

A

2+ (1—log()5—1)) - H

where H =)., log 1/B; + 2, «; log 1/«;is the entropy of the frequency distribution.

We do not know if Theorem 1 is best possible. However, whenever ¢, +¢,* H
i1s an upper bound on the weighted path length of balanced trees, then ¢; =2;
e.g. let ag=¢, a;=1—2¢, ay=¢, f;=pF,=0 for some small ¢ > 0. It 1s also easy
to show that ¢, =1 1s necessary. Rissanen [6] shows that ¢,=1 1s also sufficient
in the special case that the weight is concentrated in the leaves (f,=0 for all 2);
H+3 is an upper bound for B, .., In this case. Our Theorem 1 yields ¢,=
(1—1log(]/5—1)) *as1.44 for the general case.

In the case of optimum binary search trees H4-3 is an upper bound on the
weighted path length [5]. A least upper bound on E,,, in terms of »#, the number
of names, was given by Hu and Tan {2].

We proceed now to prove a lower bound on the weighted path length P,
any optimal binary search tree.

ot Of

Theorem 2. Let oy, B4, ..., B,, @, be any frequency distribution with > f.+
Ya;=1, and let H be the entropy of this distribution. Then

(1/log 3) - H

Nearly Optimal Binary Search Trees 293

is a lower bound on the weighted path length P, , of an optimal binary search
tree. This bound is sharp for infinitely many distributions.

Proof. Let T be any binary search tree. Detine

L=33-b40 4 3 3-0

i=1 j=0
A simple induction argument shows that L is equal to 1, thus log L=0. Define

Bi=3~Cit1) for 115 n

and
a;=3"% for 0= =n.

Then
> i+ Zoy=L=1.

So o4, B, ---» P & is @ frequency distribution. The following inequality is well
known from coding theory (cf. Kameda and Weihrauch [3])

2. Bilog1/B;+ Z“f log1/o; = 2.B;log 1/5;—5— > log1/tx}.

It yields 1n our case

H=7} plog1/B;+ 2 a;log1/a;
< > B, log1/Bi+ 2io;log 1]o;
= 3B, 1og 3V + 2 a;log 3
= (log3) (2 B8:(b;+ 1)+ Dloa)
= (log 3) - P

with equality if and only if 8;=f; and a;=o; for all 7 and j. Hence (1/log 3) - H = P.

Assume now that 8,=f; and a;=0o; for all 7 and j. Then the weights of the left
and right subtree of any node in T are exactly equal. Hence Rule II will construct
the tree T when applied to distribution ag, By, .-+, fu» %

So
1/10g3 - H gB}pt gpbalanced:1/10g3 ‘ I

Hence the lower bound is sharp in this case. g.e.d.

One of the referees pointed out to the author that Theorem 2 i1s in fact a
special case of an information theoretic result due to Shannon. Specifically,
every binary search tree corresponds to a ternary code tree derived by moving
the weight of each node to a leaf extending from the node. Then the variable
lenght coding theorem for ternary codes gives the same bound, H/log 3.

As a corollary to Theorems 1 and 2 we obtain our main theorem.

Main Theorem. Let oy, By, ..., B, o, be any irequency distribution with
> B+ X a;=1, let P, be the weighted path length of an optimal binary search
tree, let Phiancea D€ the weighted path length of the tree constructed according
to Rule II, and let H be the entropy of the distribution.

Then)
1/log 3 H < Py = Pratanesa <2+ (1 —log {5 —1)) * - H

0.63 * H < Pppy = Boajanced = 2+ 1.44 - H.

204 K. Mehlhorn

Our main theorem clearly shows the importance of Rule II (or one of its modifica-
tions) as an approximation algorithm for constructing binary search trees.
Furthermore, i1t exhibits a rather narrow interval for the weighted path length
of optimal (or nearly optimal) binary search trees and thus gives a simple a priori
test for the performance of binary search trees.

Acknowledgement. 1 am indebted to Prof. D. E. Knuth for reading a preliminary
version of this paper, correcting an error in my Theorem 1 and suggesting some im-

provements.

Appendix

We only describe an implementation of Rule II. Rule II requires us to choose
the root so as to equalize the total weight of the left and right subtrees as much

as possible, 1.e. one has to find 7 such that

| (o + f1+ -+ +|5£—1+°‘£-1) — (“£+ﬁ£+1+ et B an)l
= min |(a0+ﬁl+'"_l_ﬁf—l_’_ocf—l)_(Oty'+ﬁf+1+'” ﬁﬂ r‘:xﬂ)'

15750

1 can be found in time proportional to min (¢, #—7-+1) by searching for ¢ simul-
taneously from both ends, i.e. by trying 1=1, i=#, ¢=2, ... in that order.
Having found ¢, one applies the algorithm recursively to (e, By, - .-, Bi—q, %;—y)
and (o«;, B4, -+ -, Pur ®,). This requires solving similar problems of size 7—1 and
n—t. Thus one obtains the following recurrence equation for 7T (1), the time
required to build a nearly optimal tree with # names by means of Rule II,

I'(n)<max |T(t—1)-+ T(n—12)+cmin (7, n-— 1 1)

1<1<<n
and
1(0)=c

for some constant ¢. This inequality has a solution T'(n) with
I'(n)=<dnlogn+1).
T'(n) < max |T(¢—1)+ T(n—1)+cmin (¢, n— i - 1)]

1=15n

< max_|T()+ T(n—i—1)+c(i+1),

< max |d(i(log?) +1)+d((n—1 1) log(n—i—1)+1)+d({E+1)|

') 1 n—1 11 n—1—1))
n—A1 08 n—1

<d- (nlogn41)+d(2—log(n—1))
' i g He——1—1 n—1—1 ¢
n—1 ' n—1)

+d - max (n-—-1)(: log

0=1=n/2 n — 1

=d(n logn+1) |

1f ¢=d and »=5. Thus we only have to choose d large enough such that
I'(n)=d(nlogn+1) for n <4

o »A

Nearly Optimal Binary Search Trees 205

References

. Fredman, M. L.: Two applications of a probabilistic search technique: Sorting X 4+ Y

and building balanced search trees. 7th ACM Symposium on Theory of Computing,
Albuquerque, 1975
Hu, T. C., Tan, K. C.: Least upper bound on the cost of optimum binary search

trees. Acta Informatica 1, 307-310 (1972)
Kameda, T., Weihrauch, K.: Einfiihrung in die Kodierungstheorie 1. Bl Skripten

zur Informatik, Vol. 7. Mannheim: Bibliographisches Institut 1971
Knuth, D. E.: Optimum binary search trees. Acta Informatica 1, 14-25 (1971)
Knuth, D. E.: The art of computer programming, Vol. 3. Reading (Mass.) : Addison-

Wesley 1973
Rissanen, J.: Bounds for weighted balanced trees. IBM]J. Res. Develop. March

1973, 101—-105
Walker, W. A., Gotlieb, C. C.: A top-down algorithm for constructing nearly

optimal lexicographical trees, in Graph theory and Computing. New York: Academic
Press 1972

Kurt Mehlhorn

Fachbereich 10

Universitat des Saarlandes
D-6600 Saarbriicken

Federal Republic of Germany

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

