IEEE Symposium on Foundations

of Computer Science 82
6

On the Program Size of Perfect and Universal Hashfunctions

(Extended Abstract)

by

Kurt Mehlhorn

Fachbereich 1o
Universitdt des Saarlandes

6600 Saarbrlicken

West - Germany

Abstract: We address the question of program size of perfect and uni-
versal hash functions. We prove matching upper and lower bounds (up to
constant factors) on program size. Furthermore, we show that minimum
or nearly minimum size programs can be found efficiently. In .addition,
these (near) minimum size programs have time complexity at most
O(log* N) where N is the size of the universe.

33

Hashing is a very popular solution for the dictionary problem, i.e.
for the problem of maintaining a set under operations Access, Insert
and Delete. We use the following notation throughout this paper

U = [0...N-1] is the universe
ScU is the set stored
n= S is the size of S

T[O...m-1] is the hash table,
is the table size
B = n/m is the load factor

Hashing is an 0O(1) average case solution for the dictionary problem.
Unfortunately, its worst case is O(n). There have been two attacks on
the worst case behaviour of hashing recently: Perfect Hashing
(Sprugnoli , Jaeschke, Tarjan/Yao) and Universal Hashing (Carter/
Wegman) .

Perfect Hashing only deals with static sets, i.e. only operation Access
is supported.

Definition: a) A function h : [0...N-1] -» [0...m-1] is a perfect hash
function for S < [0...N-1] if h(x) # h(y) for all x,y € S, x # y.

b) A set H of functions h : [0...N-1] -» [0...m-1] is called

(N,m,n) - perfect (or perfect for short) if for every S < [0...N-11,
ISI = n, there is h € H such that h is perfect for S. o

Sprugnoli and Jaeschke discuss henristic methods for finding perfect
hash functions. The only theoretical paper in the area is by Tarjan/
Yao. They show that for m = n, N = nk for some fixed k, and any S ¢ U,
IS| = n, there is always a program of length at most O(n log n) and
time complexity O(1) in the unit cost measure which computes a perfect
hash function for S. The most interesting questions concerning perfect
hash functions are:

a) How large are the programs for perfect hash functions, i.e. is there
always a short program computing a perfect hash function?

b) How hard is it to find a perfect hash function given S, m and N.
c) How hard is it to evaluate perfect hash functions?

Program size is defined as follows. We assume that programs are written
in some fixed programming language, say PASCAL. Then program size is
the length of the program as a string over some finite alphabet. We
prove upper bounds on program size by explicitly exhibiting programs

of a certain length. We prove lower bounds on program length by deriv-
ing a lower bound on the number of different programs required and then
using the fact that the number of words (and hence programs) of

length < L over an alphabet of size c is < cL+1/(c-1).

Theorem A: For every S c¢ U, IS| = n, there is a program of length

O(Bn + log log N) which computes a perfect hashfunction for S and for
most S < U, ISl = n, the shortest.program which computes a perfect hash
function for S has size Q(Bn + log log N)

Remark: Theorem A settles question a) completely. It has an interesting
interpretation. The program size of perfect hash functions consists of

an initial cost of O0(log log N) due to the size of the univer;e and an

incremental cost of O(B) per element stored.

Proof of theorem A: The proof of the lower bound is based on the follow-

ing lemma.

Lemma 1: Let N,m,n € IN and let H be a (N,m,n) - perfect class of hash
functions. Then

a) |HI

v

N X n ,m
()7 ((N/m) =)

b) IHI 2 log N/log m -

Proof: a) There are (:) different subsets of [0...N-1] of size n. It
therefore suffices to show that any fixed function h : [0...N-1] -
[0...m-1] is perfect for at most (N/m)n-(g) different subsets

S < [0...N-1], ISI = n. If h is perfect for S then Ih™ (i) n SI < 1
for all i € [0...m-1]. Hence the number of sets S such that h is per-

fect for S is bounded by

r ™ ap e a1
(O i, < i, < coo X i, <m
This expression is maximal if lh_1(i)l = N/m for all i € [0...m-1] and

its value is equal to (N/m)™. (m/n) in this case.

b) Let II = (h1,..., ht}. We construct Ui c U, 0 <i<t, such that for
every S < U, Is N Uil > 2, functions h;,..., h; are not perfect for S.

| £ 1. Let U, = U and

Then we must have |U o

t

U, =U. N KD

g = g W D 00 e b s

SO -1 o =1
where j is such that IUi n hi+1(3)| > IUi n hi+1(2)| for every

= i+1
2 € [0...m=1]. Then IUi+1I > IUiI/m and hence lUi+1l > N/m . Also
functio:s h1,..., hi+1 are constant on Ui+1 and hence IUtI <*'1. Thus
1 2 N/m~ or t 2 log N/log m. o

The proof of the lower bound is now completed by taking logarithms on
both sides of the inequalities derived in lemma 1. The upper bound on
program size is derived in a two step process. In the first step we
show by counting that there is always a perfect class of small size, in
the second step we show that step 1 can be done by small programs.

Lemma 2: Let N,m,n € IN. If

2
t > n-gn N.eD /M

then there is a (N,m,N) - perfect class H with IHI = ¢t.

Proof: We may represent any class H = {h1,..., ht} by a N by t matrix
M(H) = (hi(X))OSXSN—1,1SiSt with entries in [0...m-1], i.e. the i-th
column of matrix M(H) is the table of function values for hi. Converse-
ly, every N by t matrix M is the representation of a class H of hash
functions. There are mN't matrices of dimension N by t with entries in
[0...m-1].

We want to derive an upper bound on the number of non-perfect matrices,
i.e. matrices which correspond to non-perfect classes of hash functions.
If H does not contain a perfect hash function for S = {x1 < Xy <...<x#,
then the submatrix of M(H) given by rows Xyr Xopeeer X cannot have a
column with n different values. Hence the columns of that submatrix can
be chosen out of m" = m(m-1)...(m-n+1) possibilities (namely, the num-
ber of functions from n points into a set of m elements minus the num-
ber of injective functions), and hence the number of such submatrices
is bounded by m" - m(m—1)...(m-n+1)]t. Recall that the submatrix has

t columns. Since S can be chosen in (:) different ways, the number of
non-perfect matrices is bounded by '

(g)[mn - m(m=1)...(m-n+1)1°¢ niN-n) -t

Note that the rows corresponding to elements not in S may be filled ar-
bitrarily. Thus there is a perfect class H, |H| = t, if

(N-n) -t N-t
m m

(E)[mn - m(m—1)...(m—n+1)]t <

A short calculation shows that this inequality certainly holds for
2

t2n(nnN /M

Lemma 2 gives us an upper bound on the cardinality of perfect classes

of hash functions; it does not yet give us an upper bound on program
size. The upper.bound on program size is given by the next lemma.

Lemma 3: Let N,m,n € IN. For every S < [0...N-1], ISl = n, there is a
program of length

O(nz/n + log log N + 1)
which computes a perfect hash function h : [0...N-1] » [0...m-1] for S.

Proof: We will explicitely describe a program. The program implements
the proof of lemma 6; it has essential 4 lines:

(1) k = "en N' written in binary;
r 2, 1
(2) t « n-k-e” /m written in binary;
(3) i «~ some number between 1 and t depending on S written in binary;

(4) search through all s by t matrices with entries in [0...m-1] until
a (N,m,n) - perfect matrix is found; use the i-th column of that
matrix as the table of the hash function for S;

The correctness of this program is immediate from lemma 2; by lem-
ma 2 there is a 2k by t perfect matrix and hence we will find it in
step (4). One column of that matrix describes a perfect hash function
for s, say the i-th. We set i to the appropriate value in line (3).

The length of this program is log log N + O(1) for line (1), log n +
log log N + nz/m + 0(1) for lines (2) and (3) and 0(1) for line (4).
Note that the length of the text for line (4) is independent of N, t
and m. This proves the claim. a

Theorem A characterizes the program size of perfect hash functions;
upper and lower bounds are of the same order of magnitude. Unfortunate-
ly the program constructed in lemma 3 is completely useless. It runs
extremely slow and it uses an immense amount of work space. Therefore,
we have to look for constructive upper bounds if we also want to get
some insight on questions b) and c).

An answer to b) .and c) for very small load factor is given by

Theorem B: Let S = {x; < Xy <...<x) [0..N-1].

a) There is a prime p = o(n2 2n N) such that X4 mod p # xj mod p for
i+ 3.

b) A number p satisfying p = O(n2 ¢n N) and X4 mod p # x. mod p for

i # j can be found in time O(n-log n-(log n + loglog N)) by a ran-
domized algorithm. ’

c) There is a number t and primes Pyrecer Py such that
1) t £ an*N

2) the mapping x - (...((x mod p;) mod p,)...) mod pt) operates
injectively on S.

3) Py < O(n3) and

4)

™Mt
-

zn(pi) = 0(gn n + gn &n N)
i . o

For very small load factor, namely B = 1/n2 and hence m = n3, Theorem B
answers all three questions. The mapping described in c2 is a perfect
hash function for S, it can be evaluated in time O(&n* N) by c1, it can
be found fast by a randomized algorithm (part b) and it has minimal
program size (part c4).

Sketch of proof of theorem B: part c) follows from part a) by induction
Parts a) and b) follow from the fact that there is a constant c such
that at least 50 % of the primes < cn2 &n N do not divide n(xi—xj) and
hence satisfy part a). a

Of course, not many people want to work with a load factor as small as
1/n2. Load factor B = 1 is called for. We can only give an almost optimal
answer in that case.

Theorem C: Let B = 1. Then for every S =< U, IS| = n, there is a program
of size O(n log n + log log N) and time complexity O(log* N) which com-
putes a perfect hashfunction for S. The program can be found in polyno-
minal time by a randomized algorithm.

Proof: Let h be the function described in theorem B, part'cz. Then h(S)
[0...0(n>)] and Ih(S)| = n. Apply Tarjan and Yao's construction to set
h(s). This gives a program of size O(n log n) and time complexity O(1)
computing aqn injective function from h(S) into [0...n-1]. goh is the
desired perfect hash function. o

n

Universal Hashing (Carter/Wegman) ist based on hashing with separate

chaining. It deals with the complete dictionary problem. The major and
crucial difference with respect to ordinary hashing is that universal
hashing works with an entire class H of hashfunctions instead of a
single hashfunction. In any particular application the hashfunction to
be used is chosen at random from class H. In order for the approach to
work class H has to be a c-universal class of hashfunctions for some c.

Definition: Le c€R . H S {(h; h : U-»[0..m-1]} is c-universal if for
all x,y €U, x %y

I{h; h € H and h(x) = h(y)}| s c - |H|/m o

Note that only a fraction c/m of all functions from a c-universal class
leads to collision on any particular pair x,y €U, x # y. The analysis
of Carter/Wegman shows that universal hashing is an O(c-8) average case
solution to the dictionary problem. The big advantage of universal
hashing is the fact that averaging is done over class H and not over
the set of possible inputs as in ordinary hashing. The algorithm con-
trols the dice. We consider the following question.

How large must a universal class be?

Carter and Wegman describe a universal class with log |H| = O(log N).
This was later improved by Wegman/Carter to log |H| = O0((log m +

log log log N)log log N). There are several reasons why the size of
universal classes is important. First of all, log |H| is a lower bound
on the number of coin tosses required to select an element of H. Se-
cond of all, log |H| is a lower bound on the program size of a typical
member of H. Third for all, Wegman/Carter apply universal hashing in an
authentication scheme. In this application U is the set of messages, H
is the set of keys and [0.. m-1] is the set of authentication tags. Two
partners in a communication select h € H at random and exchange it se-
cretly. Then message x U and authentication tag h(x) can be send in
the open. Of course, this scheme is only useful if keys are considera-
bly shorter than messages. We show:

Theorem D: a) Let H ¢ {h; h : [0...N-1] > [0...m=1]} be a c-universal

class. Then

IHl 2 m-(rlogmN1 - 1)/c

= 8 o

and hence log |H| =Q(log m + log log N - log c).

b) Let N,m € IN, N 2 m. Then there is a 8-universal class
H < {(h; h : [0...N=1] » [0...m-1]} of hash functions with

log |IH | = O0(log m + log log N)
Moreover, the elements h € H can be evaluated in time 0(1). o

Sketch of proof: a) Let H = {h1,...,ht). As in the proof of lemma 1,
a) we construct a sequence Uy = [0...N-1], Uy/Uyse.. such that hy,...,
h, are constant functions on U; and IUilzIUi_1I/n12N/ml. Let

>t0 = "log N' - 1. Then lU_ | > 1. Let x,y € U X # y. Then
m to

to’
to < | {h€H; h(x) = h(y)}| £ c-lHI/m

since H is c-universal. Thus |H| 2 m-(rlogmN1 - 1)/c.

b) Let N,m € N and let t be minimal such that t-%n Py > m-&n N. Here
Py denotes the t-th prime. Then t = O(m &n N). Let

H = {gc,d(hl(x)); t <2 <£2t, 0 £c,d< pZt}
where

hﬁ(x) = x mod Py
and

9. d(Z) = [(cz + d) mod p2t] mod m.

Then |H | = t-pgt and hence log lel = O(log t) = 0(log m + log log N)
since log Py = O(log t) by the prime nqmber theorem. It remains to
show that H is 8-universal. Let x,y € U, x % Y, be arbitrary. We have

to count the number of h €H with h(x) = h(y). Suppose g d(hz(x))
gc,d(hl(y))' i. e. °r

-9_

[c(x mod pg) + d] mod Py = [c(y mod pl) + d] mod Poe mod m

Thus there have to exist q € [0...m-1] and r,s € [O..."pZt/m'l -1] such
that

[c(x mod Py) + d] mod Py =g + rem

[c(y mod py) + d]l mod Py =9 + s:m

We have to count the number of triples (c,d,%) which solve this pair
of equations. We count the solutions in two groups. The first group
contains all solutions (c,d,%) with x mod Py * Y mod Py and the second
group contains all solutions (c,d,%) with x mod Py =Y mod Py-

Group 1: Of course, there are at most t different %'s such that
x mod Py * Y mod bl‘ For each such % and any choice of q,r and s there
is exactly one pair c,d which solves our equations. This follows from

the fact that Zp2t is a field. Hence the number of solutions in group

one is bounded by

t m('pzt/m1)2 < t m(1 + p2t/m)2 2

A

(t-p%t/m)°(1 + m/pZt)

IA

(HH V) - (1 + m/py,) 2

Group 2: Let L = {?; t
P = n[pl; % € L}. Then
Thus |LI < (&n N)/2&n Py

2 £ 2t and x mod Py =Y mod pg} and let

pLLI. Also P divides x - y and hence P < N.

t/m by definition of t.

AN T A
I\

Consider any fixed £ € L and any choice of q,r and s. If r # s then
there is no pair (c,d) solving our pair of equations. If r = s then
there are exactly Po¢ pairs (c,d) solving our pair of equations. Hence
the number of solutions in group two is at most

LI m"(pm__/m)"pzt < (t-p%t/m)(1 + m/py) = (IHy1/m) (1 + m/py,)

Altogether, we have shown that the number of solutions (c,d,%) is
bounded by 2(1 + e)z I |/m where € = m/pZt < 1. (Note that pPyy ST

would imply t &n Py < Pyt n Po¢ <mfnm<m i N, a contradiction to

- 1o -

the definition of t. Thus H is 8-universal. o

Acknowledgement: This research was started by a intensive discussion

with J. Nievergelt. N. Blum provided lemma 1b.

References:

R. Sprugnoli. Perfect Hash Functions: A single probe retrieving
method for static sets, CACM 20, 11 (Nov. 1977), pp. 841-850.

R.E. Tarjan/A. C-C. Yao. Storing a Sparse Table. CACM, Nov. 1979,
Vol 22 , No 11, pp. 606-611.

J.L. Carter/M.N. Wegman. Universal Classes of Hash Functions,

ch ACM Symposion on Theory of Computing, 1977, pp. 106-112.

M.N. Wegman/J.L. Carter. New Classes and Applications of Hash
Functions. 20%° Focs, 1979, pp. 175-182.

G. Jaeschke. Reciprocal Hashing: A Method for Generating Minimal
Perfect Hashing Functions. CACM, Dez. 1981, Vol 24, No 12, pp. 829-833.

