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Summary. Top-down and bottom-up decision strategies for van Wijngaarden
grammars led to type R and type L van Wingaarden grammars. The
corresponding language families are now shown to be equal and, further-
more, to equal EXSPACE. Thus, EXSPACE is characterised syntactically.
and the closure properties of type L and type R languages are those of
EXSPACE.

0. Introduction

Regarding the hyperrules of a van Wijngaarden grammar as a means for
generating infinitely many contextfree productions by which from a startsymbol
the terminal words of the generated language are produced, one is naturally led
to the idea of top-down and bottom-up decision procedures for such grammars.

These decision procedures work for type R and for type L grammars
respectively [1].

Let L,[L] denote the class of all languages generated by type L [type R]
van Wijngaarden grammars. L, contains all contextsensitive languages and, as
we shall see, so does L.

The symmetry of reasoning in introducing both types of van Wijngaarden
languages as well as a big lot of examples suggested the conjecture L; =Lg. Al
the first attempt, however, this conjecture could not be proved.

The aim of this report is to close this gap. In the sequel, the inclusions

L.cL; cEXSPACEcL,

will be shown in that order where EXSPACE is the class of languages whose
space complexity is ¢”. The first and the last inclusion exhibits characteristic
techniques in handling van Wijngaarden grammars, the second inclusion con-
sists in a estimation of numerical bounds.

*  Address for offprint requests
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Thus, L, =L, on one hand and L, =Lgz=EXSPACE (=NEXSPACE, see
[2]) on the other: as a byproduct, EXSPACE is characterised independently in
a syntactic way by type R (or type L) grammars which fact seems to be of
interest in its own right. The result furthermore states that L, properly contains
the class CS of contextsensitive languages and, in terms of tape complexity, is
much larger than CS. Closure properties of L,, L, are then characterised by

those of EXSPACE.
To avoid lengthy repeats the reader is assumed to be familiar with the

content of [1].

1. L,cL,;
As in the theory of Chomsky grammars. one defines right- and leftlinear

hyperrules:

Definition. A van Wijngaarden grammar is called right- [left-]linear if all its
hyperrules are of either of the forms:

Giy::=x(im)y  [Kiy: =i )x]
{Uy..=Xx

(i, e(MUT)", xel7).

Without loss of generality we may assume that the startsymbol (s} is shown and
does not appear on the right hand side of any hyperrule.
Then by the following translation table

(s)::=X o——2 {5y ::=X
() i=x{li) i) =X
(it):i=x{iyye—e () : =Ly x
(i) =X e—e (5) 1:=(U)X

rightlinear van Wijngaarden grammars are converted to equivalent lefthinear
ones, and vice versa. The idea is the same as for Chomsky-3 grammars.
Lemma 2 in [1] shows that to each van Wijngaarden grammar there exists a
leftlinear van Wijngaarden grammar equivalent to the former.

If a right- [left-]linear van Wijngaarden grammar is of type R (or of type L)
then the left- [right-]linear grammar as obtained by the above translation is of

type L (of type R).
Consequently, the following theorem concludes part 1.

Theorem. To each type R van Wijngaarden grammar there is an equivalent
rightlinear grammar of type R [4].

Proof. Due to Lemma 1 in [1] we may assume that the van Wijngaarden
grammar ¥ is in separated form, and its terminating rules are

Chy:i=a, i=L..,n (gel).
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Construction of the rightlinear grammar % ":

.. I =F uii+}

M= HU{H,K,M,N}.

All added symbols are assumed to be completely new.
2. To the metaproductions of ¥ add productions to obtain

Fy=Lx=1{h,hy,..., h,, + 1%,
f_“=fﬁq={fU{+},*.

3. The hyperrules of ¥  are transformed as follows:

r ! i
1. {Dt=<u;) ' (H:M+u+N)::=(H:M+iu;+N)
2. (=) (). ..{u)y 2. (H-:M+u+N)::=oKHM+:M
(k=2) ity iy 4+, +N)

for i=1...n
3. ({H4+:H+K) ::={(+K)
4. {+h+K) =, {+K)
5. (h)i=uw 5. {+h;+> =g (i=1...0)

The startsymbol of #7 1s {( +:+5+ ).

As already mentioned, we may assume that the hyperrules of #  show the
startsymbol (s> and {s) does not occur on any right hand side. Therefore the
same holds for I'" which is. by construction, rightlinear. I' is of type R by

assumption and, hence, so is I
The transfurmatiﬂn is similar to that used in Lemma 2 in [1], the difference

being that in hyperrules 2. terminals z, are generated nondeterministically and
their corresponding h's are kept in H. This is done to force that the transformed
rules 2". need be rightbound only and not strictly right-bound.

LW )< L({¥7'):
Since I is separated, any derivation {s) = x can be rearranged to read
(s> = (hy<h) ---<hy<h,) - ) = x

where in the first part rules 1. and 2. are applied, and in the second part only
rules 5. By the above transformation one obtains from the first derivation part:

{+:+5+)=
oty &, ...0 - {+hy+h,+--+h+:+h+h+---+h+h +-+h+).

It is important to note that in any case |, ...2,| is less than the number of h's
in+h,+h;+---+h,+h +---+h+ since, in I, rules 2. are applied at most |x|—1
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times. Therefore rule 3'. is applicable if we have chosen the x,%,,...2, to be the
first symbols of x:

= o 0. At

Then, by rules 4". and 5, this can be derived into x. LW ) L(#") 1s now
obvious from the mechanism of I'". |
Except for rule 3. the transformation used in the proof would also work for

type L grammars, but the exceptional rule is essential and at the same time
essentially not (strictly) leftbound.

2. L, ~ EXSPACE

Let AeL, be a language and let #  be a type L grammar for A. We show how to
simulate the derivations of #" in nondeterministic exponential space.

It should be obvious that the crucial step is to derive a bound on the length
of intermediate sentential forms in a derivation. We show that their length is
bounded by an exponential function of the length of the string derived.

The hyperrules of ¥ are of the form

Cip: =0,y p 0, Uy)...Klhy) Oy 4y
Since ¥  1s a type L grammar there exists an integer c¢ such that

litl,y =cli,...i%],, forall Me.#

and

ulg, =c

for all hyperrules of #". B - -
We split the set of hyperrules I" of #  into two disjoint sets [, and I, =TI

—T,. I, consists of all hyperrules of the form (u): :=(u,). The decomposition
of the set of rules induces a decomposition of the derivations {(s) = xel¥,
namely

($)=vg—W, — U, —=W, U, —="— 0, | —=W,~—=U,=X
0 I] 1 r] 1 f. 2 r: 2 ri rz n 1 ﬂ ] r: n

where w, v,e(@uU X)*. We prove several simple facts about the length of the
strings w; and v; with respect to the alphabet 7,U 2.
From strict left-boundness of all hyperrules in I}, we obtain

tl‘j!_a—n uzéf“‘fﬂl,-ﬂ, or O=izn-1). (1)
v. is derived from w, by applying a single production of I for which
ul; Sc+cluyuy.. s

holds due to the properties of the constant c. Consequently we get
wil=clly] +1),
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and, using (1), by induction

i+1

w,_;|=cH ol + z .
j=1

This last inequality together with (1) and n=<2|x|—1 (see [1]) yields fori=n—1:

2|x|—1
ohlwi < -1 x+ Y .
j=1
The length of intermediate sentential forms is thus bounded by an exponential
in the length of the string derived. It is now easy (and left to the reader) to built
a nondeterministic exponentially space bounded TM which accepts 4. In VIEW
of Savitch’s result (see [2]) NSPACE (Su)=SPACE (§7) for all tape-
constructable functions S, =log( this suffices.

3. EXSPACE L,
3.1. General Considerations

The technique used to show this result bears some general aspects and sym-
metries that are worthwile to be discussed.
Consider a Semi-Thue system

S =(V.1I)

with finite vocabulary V containing X, a distinguished subset, and with finite set
IT of productions p::=q. In the usual way, IT gives rise to the relation — of
direct derivation. and to its reflexive, transitive closure =.

For ¥ and some s V'* define

L(S,s)={xeX*:s=x},
the set of terminal words generated by % from s and, dually,
ALY 5)={xeX*:x =5},

the set of terminal words accepted by % from s. (Actually, it is this duality that
goes through the whole theory of formal languages like a read thread, although
it is in most cases obscured by an inappropriate terminology.)

If IT consists of Chomsky-productions and s€ V'~ X is the startsymbol then
L(¥s) is a Chomsky language. Taking then [I° to consist of the converse
productions (ie. g: :=p), we obtain L(¥s)= A(F<, s), a simple acceptor. Later on
we shall slightly change such acceptors in order to include the usual finite
control by states.

Van Wijngaarden grammars now allow for incorporating both the generat-
ing and the accepting aspect into one grammar. This Is the requisit to generate
the accepted set A(% s) by a van Wijngaarden grammar without changing IT!
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The following tables show how van Wijngaarden grammars generating
L(¥. s) and A(%.s) may be constructed.

Metasystem:
Metanotions: T with =2,
LRW with ¥r=%p=ZLw=V".
Hyperrules:
L(¥. 5) AL, s)
start: {s) { 11y 1y> for some arbitrary but fixed t,eZ
17 Litgte) H=Citt) for all teX
2. AW:TT)::=t{Wt:TT) forall teX
Y. W TT)2={WT:T)
4. {LpR)::={LgR) 4. (LpR:TY::=<{1LgR:T)
for all p::=gell
5. (Wi =(W)Hi 3. L9y et

for all tel

The left column uses the idea of [3, 1]. The right column was found by [4]:
rule 2. generates the terminal string highly nondeterministically and keeps track
of it in (Wt:TT>: 3. then switches to the accepting rules 4. by adding the
“last™ terminal to W without loosing it: {(WT:T): 4. leads to {s:t) if and only
if the terminal string just generated plus this ¢ belongs to A(5s).

In both columns, the type of the van Wijngaarden grammar —type R or L
—depends solely on IT: rules 1', 3. are strongly left —and right —bound, and
rules 2'.. 5., 5. are left —and rightbound. Because of rules 4.. 4. both grammars
are of type R if and only if |p| = |q| for all p: :=gell and, vice versa, for type L.

As a preliminary result we see therefore that each contextsensitive language
is in L, as well as in Lg: take se V'~ X and let |p|<|q| for each p::=gell, then
L(% s) is contextsensitive, and the left column is of type L; consequently, for
each g: :=pell", |q| = |p| holds. And, using II°, the right column will be of type R,
furthermore L(.%, s)=A(%".s).

3.2. Proof of EXSPACEcCL,

The right column in the above table provides the tool for proving our last result.
A (one sided) Turing-acceptor with tape-complexity ¢" can be regarded as
the following Semi-Thue system:

V=VyuZuib}uQ.
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Here. # is the “blank ’-symbol. and Q is a (finite) set of "states’ containing the set
F of final states. g,Q is the initial state.

11

consists of productions of the following forms only:

¥ [

qu.:=0v4g

rveVouZu {b}

where (v'elyul

VieVouZ:lquv::=q'lv

The accepted set then is

A={xeX*:3r,se(VouZu{B})*IgeF: gox b =rgs}.

4.9’ 0.

The corresponding van Wijngaarden grammar is:

Metasystem

T.L.R.W as in Section 3.1

B with Z,={b}*

Hyperrules

start: (oD :tyty)
1. {@oDF:totyy ::={qoD°:tLL)

for some i,el
for all teX

2. {goWB:TT)::=t{qoWtB°:TT)
3. {goWB:TT)::={qoWTB:T)

K LaR:Ty a=CLdR:T)
3. Chalk:t) ot

Hyperrules 1'.. 3". are strictly rightbound, and 4

foreach a::=dell
foreach geF, tel

are rightbound. which concludes the proof. 1

. also because of IT; rule 2', 5.
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