
Contents

0.1 Maximum Cardinality Matchings in General Graphs page 1

Bibliography 23

0.1 Maximum Cardinality Matchings in General Graphs

A matching M in a graph G is a subset of the edges no two of which share an

endpoint, see Figure 0.1. The cardinality |M | of a matching M is the number of

edges in M .

A node v is called matched with respect to a matching M if there is an edge in

M incident to v and it is called free or unmatched otherwise. An edge e is called

matching if e ∈ M . A matching is called perfect if all nodes of G are matched and

is called maximum if it has maximum cardinality among all matchings.

The structure of this section is as follows. In Section 0.1.1 we discuss the func-

tionality of our matching algorithms, in Section 0.1.2 we derive the so-called blos-

som shrinking algorithm for maximum matchings, and in Section 0.1.3 we give an

implementation of it.

0.1.1 Functionality

The function
list<edge> MAX CARD MATCHING(const graph& G, int heur = 0)

returns a maximum matching in G. The underlying algorithm is the so-called

blossom shrinking algorithm of Edmonds [Edm65b, Edm65a]. The worst case run-

ning time of the algorithm is O(nmα(m,n)) ([Gab76]), the actual running time is

usually much better. Table 0.1 contains some experimental data.

1

2 Contents

1

0

1

2

2

2

0

0

3

3 3

Figure 0.1 A maximum matching and a proof of optimality: The edges of the
matching are shown in bold. The node labels prove the optimality of the matching.
Observe that every edge is either incident to a node labeled 1 or connects two nodes
that are labeled 2 or connects two nodes that are labeled 3. There are two nodes labeled
1, three nodes labeled 2, and three nodes labeled 3. Thus no matching can have more
than 2 + ⌊3/2⌋ + ⌊3/2⌋ = 4 edges. The matching shown has four edges and is hence
optimal. You may generate similar figures with the xlman-demo gw mc matching.

With heur = 1, the greedy heuristic is used to construct an initial matching which

is then extended to a maximum matching by the blossom shrinking algorithm. As

Table 0.1 shows, the influence of the greedy heuristic on the running time is small.

It sometimes helps, it sometimes harms, and it never causes a dramatic change.

The cost of checking optimality is negligible in all cases.

In the remainder of this section we discuss the check of optimality. A labeling l

of the nodes of G with non-negative integers is said to cover G (or to be a cover for

G) if every edge of G (which is not a self-loop) is either incident to a node labeled

1 or connects two nodes labeled with the same i, for some i ≥ 2. The capacity of l

is defined as

cap(l) = n1 +
∑

i≥2

⌊ni/2⌋,

where ni is the number of nodes labeled i. Observe that there may be nodes that

are labeled zero. The capacity of a covering1 is an upper bound on the cardinality

of any matching.

Lemma 1 If l covers G and M is any matching then |M | ≤ cap(l).

1 In bipartite graphs only the labels zero and one are needed. The nodes labeled one form a node cover
in the sense of Section ??.

0.1 Maximum Cardinality Matchings in General Graphs 3

n m MCM MCM+ Check

10000 10000 0.287 0.223 0.024

20000 20000 0.905 0.717 0.074

40000 40000 2.178 1.758 0.184

80000 80000 4.857 3.934 0.413

10000 15000 1.049 1.03 0.027

20000 30000 3.799 3.862 0.102

40000 60000 11.45 11.9 0.262

80000 120000 30.51 33.57 0.583

10000 20000 1.247 1.304 0.04199

20000 40000 4.876 5.357 0.136

40000 80000 14.2 15.3 0.343

80000 160000 38.42 43.81 0.789

10000 25000 1.322 1.347 0.05099

20000 50000 4.761 4.782 0.169

40000 100000 13.95 14.22 0.422

80000 200000 35.2 37.3 0.959

Table 0.1 Running times of the general matching algorithm: The table shows the
running time of the maximum cardinality matching algorithm without (MCM) and with
the greedy heuristic (MCM+) and the time to check the result for random graphs with
n nodes and m edges (generated by random graph(G, n,m)). In all cases the time for
checking the result is negligible compared to the time for computing the maximum
matching. In each of the four blocks we used n = 2i · 104 for i = 0, 1, 2, 3 and a fixed
relationship between n and m (m/n = 1, 3/2, 2, 5/2). The time to compute the
maximum matching seems approximately to triple if n and m are doubled. Each entry
is the average of ten runs. Except on the very sparse instances (m ≈ n) it does not pay
to use the greedy heuristic.

Proof Since l covers every edge of G and hence every edge in M , each edge in M

is either incident to a node labeled one or connects two nodes labeled i for some

i ≥ 2. There can be at most n1 edges of the former kind and at most ⌊ni/2⌋ edges

of the second kind for any i, i ≥ 2. Thus |M | ≤ cap(l).

We will see in the next section that there is always a covering whose capacity is

equal to the size of the maximum matching. The function
list<edge> MAX CARD MATCHING(const graph& G, node array<int>& OSC,

int heur = 0)

4 Contents

returns a maximum matching M and a labeling OSC (OSC stands for odd set

cover, a name to be explained in the next section) with:

• OSC covers G and

• |M | = cap(OSC).

Thus OSC proves the optimality of M . Figure 0.1 shows an example. The addi-

tional running time for computing the proof of optimality is negligible.

The function
void CHECK MAX CARD MATCHING(const graph& G, const list<edge>& M,

const node array<int>& OSC)

checks whether OSC is a node labeling that covers G and whose capacity is equal

to the cardinality of M . The function aborts if this is not the case. It runs in linear

time.

The implementation of the checker is trivial. We determine for each i the number

ni of nodes with label i and then compute S = n1+
∑

i≥2⌊ni/2⌋. We assert that S

is equal to the size of the matching.

We also check whether all edges are covered by the node labeling. Every edge

must either be incident to a node labeled one or connect two nodes labeled i for

some i ≥ 2.

〈MCM: checker〉≡

static bool False(string s)
{ cerr << "CHECK_MAX_CARD_MATCHING: " << s << "\n";

return false;
}

bool CHECK_MAX_CARD_MATCHING(const graph& G, const list<edge>& M,
const node_array<int>& OSC)

{ int n = Max(2,G.number_of_nodes());
int K = 1;
array<int> count(n);
int i;
for (i = 0; i < n; i++) count[i] = 0;
node v; edge e;

forall_nodes(v,G)
{ if (OSC[v] < 0 || OSC[v] >= n)

return False("negative label or label larger than n - 1");
count[OSC[v]]++;
if (OSC[v] > K) K = OSC[v];

}

int S = count[1];
for (i = 2; i <= K; i++) S += count[i]/2;
if (S != M.length())
return False("OSC does not prove optimality");

forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);
if (v == w || OSC[v] == 1 || OSC[w] == 1 ||

(OSC[v] == OSC[w] && OSC[v] >= 2)) continue;

0.1 Maximum Cardinality Matchings in General Graphs 5

return False("OSC is not a cover");
}
return true;

}

0.1.2 The Blossom Shrinking Algorithm

We derive the blossom shrinking algorithm of Edmonds [Edm65b, Edm65a] for max-

imum cardinality matching in non-bipartite graphs. In its original form the running

time of the algorithm is O(n4). Gabow [Gab76] and Lawler [Law76] improved the

running time to O(n3) and Gabow [Gab76] showed how to use the partition data

structure of Section ?? to obtain a running time of O(nmα(m,n)). Tarjan [Tar83]

gave a very readable presentation of Edmond’s algorithm and Gabow’s improve-

ment. Our presentation and our implementation is based on [Law76] and [Tar83].

The algorithm follows the general paradigm for matching algorithms: repeated

augmentation by augmenting paths until a maximum matching is obtained. We

assume familiarity with the paradigm, which can, for example, be obtained by

reading Section ??. The natural way to search for an augmenting path starting in

a node v is to grow a so-called alternating tree rooted at v.

The root of an alternating tree is a free node, the nodes on odd levels are reached

by odd length alternating paths (and hence their incoming tree edge is a non-

matching edge) and the nodes on even levels are reached by even length alternating

paths (and hence their incoming tree edge is a matching edge). The root is even.

All leaves in an alternating tree are even and odd nodes have exactly one child

(namely their mate). Figure 0.2 shows an alternating tree. A node on an even level

is called an even node and a node on an odd level is called an odd node. In the

implementation an even node is labeled EVEN, an odd node is labeled ODD, and

every node belonging to no alternating tree carries the label UNLABELED. This

suggests calling a node labeled if it belongs to some alternating tree and calling it

unlabeled otherwise.

We start the algorithm by making every free node the root of a trivial alternating

tree (consisting only of the free node itself) and by labeling all free nodes even. We

will maintain the following invariants:

• For each free node there is an alternating tree rooted at the free node.

• All nodes belonging to one of the alternating trees are labeled EVEN or

ODD. Nodes on even levels are labeled EVEN and nodes on odd levels are

labeled ODD.

• All nodes belonging to no alternating tree are unlabeled (= labeled

UNLABELED).

6 Contents

O E O EE

v

Figure 0.2 An alternating tree: It is rooted at a free node, nodes on odd levels (= odd
nodes) are reached by odd length alternating paths, and nodes on even levels (= even
nodes) are reached by even length alternating paths.

E O E O E

v w mate(w)

Figure 0.3 Growing an alternating tree: Exploration of the edge (v, w) turns w and its
mate into labeled nodes, w becomes an odd node, and its mate becomes an even node.

• All unlabeled nodes are matched and if a node is unlabeled then its mate is

also unlabeled.

An alternating tree is extended by exploring an edge {v,w} incident to an even

node v. It is a matter of implementation strategy which alternating tree is extended

and which edge is chosen to extend it. There are four cases to be distinguished: w

may be unlabeled, w may be odd, w may be even and in a different tree, and w

may be even and in the same tree. The first three cases occur also in the bipartite

case.

Case 1, w is unlabeled: We make w the child of v and the mate of w the

child of w, see Figure 0.3. In this way, w becomes an odd node, its mate becomes

an even node, and both nodes become labeled. Observe that the growth action

maintains the invariant that a matched node and its mate are either both labeled

or both unlabeled.

Case 2, w is an odd node: We have discovered another odd length alternating

path to w and do nothing.

0.1 Maximum Cardinality Matchings in General Graphs 7

v w

Figure 0.4 Discovery of an augmenting path: v and w are even nodes in distinct trees.
The edge {v, w} and the tree paths from v and w to their respective roots form an
augmenting path.

Case 3, w is an even node in a different tree: We have discovered an

augmenting path consisting of the edge {v,w} and the tree paths from v and w to

their respective roots, see Figure 0.4. We augment the matching by the augmenting

path and unlabel all nodes in both trees. This makes all nodes in both trees matched

(recall, that the root of an alternating tree is the only node in the tree that is

unmatched) and destroys both trees. Observe that the remaining alternating trees,

i.e., the ones whose roots are still free, are not affected by the augmentation. They

are still augmenting trees with respect to the increased matching.

The three cases above also occur for bipartite graphs. The fourth and last case

is new.

Case 4, w is an even node in the same tree as v: We have discovered a

so-called blossom, see Figure 0.5. Let b be the lowest common ancestor of v and w,

i.e., v and w are both descendants of b and there is no proper descendant of b with

the same property. Since only even nodes can have more than one child, b is an

even node. The blossom consists of the edge {v,w} and the tree paths from b to

v and w, respectively. The stem of the blossom consists of the tree path to b and

b is called the base of the blossom. The stem is an even length alternating path

ending in a matching edge; if the stem has length zero then b is free. The blossom

is an odd length cycle of length 2k + 1 containing k matching edges for some k,

k ≥ 1. All nodes in the blossom (except for the base) are reachable by an even and

odd length alternating path from the root of the tree. For an even node u the even

length path is simply the tree path to u and for an odd node u, say lying on the

tree path from b to w, the even length path is the tree path to v followed by the

edge {v,w}, followed by the path down the tree from w to u. For the odd length

paths, the situation is reversed.

The action to take is to shrink the blossom. To shrink a blossom means to

collapse all nodes of the blossom into the base of the blossom. This removes all

edges from the graph which connect two nodes in the blossom and replaces any

edge {u, z} where u belongs to the blossom and z does not belong to the blossom

8 Contents

w

b v

u

Figure 0.5 Discovery of a blossom: v and w are even nodes in the same tree. The
node b is their lowest common ancestor. The blossom consists of the edge {v, w} and
the tree paths from b to v and w, respectively. The stem of the blossom consists of the
tree path to b. The node b is the base of the blossom. The blossom consists of seven
edges, three of which are matching. The even length alternating path to u follows the
tree path to v, uses the edge {v, w} and then proceeds down the tree to u.

w

b v

u

Figure 0.6 Shrinking a blossom: All nodes of the blossom are collapsed into the base of
the blossom. After the shrinking, b stands for all the nodes enclosed by the dashed line.

by the edge {b, z}, see Figure 0.6. The node b is free after the shrinking iff it was

free before the shrinking.

Lemma 2 Let G′ be obtained from G by shrinking a blossom with base b. If G′

contains an augmenting path then so does G.

Proof Suppose G′ contains an augmenting path p. If p avoids b then p is an

augmenting path in G and we are done. So let us assume that b lies on p. We

break p at b into two pieces p1 and p2 and assume w.l.o.g that p2 uses a non-

matching edge e incident to b (in G′). The path p1 is either empty (if b is free) or

uses the matching edge incident to b. The edge e = {b, z} in G′ is induced by an

edge {u, z} in G where u is some node of the blossom. An augmenting path in G

is obtained by first using p1 then using the even length alternating path from b to

u in the blossom, and then using p2 (with its first edge replaced by {u, z}).

We can now summarize the blossom shrinking algorithm. We grow alternating

trees from the free nodes. Whenever a blossom is encountered it is shrunk. When-

ever an augmenting path is discovered (this will in general happen after several

shrinkings occurred), Lemma 2 is used to lift the augmenting path to the original

graph. The matching is augmented by the augmenting path, the two trees involved

are destroyed, all nodes in both trees are unlabeled, and the search for augmenting

paths continues. The algorithm terminates when no alternating tree can be ex-

0.1 Maximum Cardinality Matchings in General Graphs 9

tended anymore. At this point the matching is maximum. Of course, this requires

proof.

In order to show correctness we need the concept of an odd-set cover. It refines

the notion of a covering introduced in Section 0.1.1.

For a subset N of an odd number of vertices of G we define the set of edges

covered by N and the capacity of N as follows. If |N | = 1 then N covers all edges

incident to the node in N and the capacity of N is equal to one. If |N | = 2k + 1

for some k ≥ 1 then N covers all edges which have both endpoints in N and the

capacity of N is k.

An odd-set cover2 OSC of G is a family {N1, . . . , Nr} of odd cardinality subsets

of V such that each edge of G is covered by at least one of the sets in OSC . The

capacity c(OSC) of OSC is the sum of the capacities of the sets in OSC .

Lemma 3 Let OSC be an odd-set cover in a graph G. Then the cardinality of any

matching in G is at most c(OSC).

Proof Let M be any matching and let e be any edge in M . Then e must be

covered by some set in OSC . Moreover, the number of edges in M covered by any

particular set in OSC is at most the capacity of the set.

We are now ready for the correctness proof of the blossom shrinking algorithm.

We will show that if the blossom shrinking algorithm does not find an augmenting

path with respect to a matching M then there is an odd-set cover whose capacity

is equal to the size of M , thus proving the optimality of M .

Let G(0) = G be our graph and let M be a matching in G. Suppose that the

blossom shrinking algorithm does not discover an augmenting path. The blossom

shrinking algorithm constructs a sequence G(0), G(1), G(2), . . . , G(h) of graphs

where for all i, 0 < i ≤ h, G(i) is obtained from G(i−1) by shrinking a blossom.

Each node v of every G(i) stands for a set of nodes of G. In G(0) every node

represents itself, and a node v in G(i) either stands for the same set as in G(i−1)

or, if v is equal to the base node of the shrunken blossom, stands for all nodes

represented by the nodes of G(i−1) collapsed into it.

Lemma 4 For every i and every node v of G(i):

• v stands for an odd set of nodes in G,

• if v is odd or unlabeled then v stands for the singleton set consisting of v itself,

• if v stands for a set B of 2k + 1 nodes in G for some k ≥ 1 then the number

of edges in M connecting nodes in B is equal to k.

2 An odd-set cover gives rise to an integer labeling of the nodes as follows: nodes that are contained in
no set of the cover are labeled zero, nodes that are contained in a singleton set are labeled one, and
nodes that are contained in an odd set of cardinality larger than one are labeled i for some i > 1.
Distinct i’s are used for distinct sets.

10 Contents

Proof The claim is certainly true for i equal to zero. When a blossom is shrunk

an odd number of nodes is collapsed into a single node. By induction hypothesis

each collapsed node represents an odd number of nodes of G. The sum of an odd

number of odd numbers is odd.

The result of a shrinking operation is an even node. Thus odd and unlabeled

nodes represent only themselves.

Consider a shrinking operation that collapses 2r+1 nodes into one. Out of these

nodes, r+1 were even before the shrinking (namely the base v and every even node

on the two tree paths belonging to the blossom) and r were odd. Every odd node

represents a single node of G and every even node stands for an odd set of nodes

of G. Suppose that the i-th odd node represents a set Bi of 2ki + 1 nodes in G.

After the shrinking operation v stands for the r odd nodes and the union of the

Bi’s. Thus B consists of

r +
∑

1≤i≤r+1

(2ki + 1) = 2(r +
∑

1≤i≤r+1

ki) + 1

nodes and hence k = r+
∑

1≤i≤r+1 ki. The number of edges in M running between

nodes of Bi is ki, and the number of edges of M belonging to the blossom is r. We

conclude that k edges of M connect nodes in B.

Consider now the graph G(h). In G(h) we have an alternating tree rooted at each

free node and the tree growing process has come to a halt. Thus there cannot be an

edge connecting two even nodes (because this would imply the existence of either

an augmenting path or a blossom) and there cannot be an edge connecting an even

node to an unlabeled node (as this would allow us to grow one of the alternating

trees). Thus every edge either connects two nodes contained in the same blossom,

or is incident to an odd node, or connects two unlabeled nodes. Every unlabeled

node is matched to an unlabeled node (since a matched node and its mate are

either both unlabeled or both matched) and hence the number of unlabeled nodes

is even. We construct an odd-set cover OSC whose capacity is equal to M . OSC

consists of:

• all odd nodes (interpreted as singleton sets),

• for each even node that stands for a set of cardinality at least three: the set

represented by the node,

• no further set if there is no unlabeled node, a singleton set consisting of an

arbitrary unlabeled node if there are exactly two unlabeled nodes, and a

singleton set consisting of an arbitrary unlabeled node and a set consisting of

the remaining unlabeled nodes if there are more than two unlabeled nodes.

Lemma 5 The capacity of the odd-set cover OSC is equal to the cardinality of M .

0.1 Maximum Cardinality Matchings in General Graphs 11

Proof The number of edges in M that still exist in G(h), i.e., have not been

shrunken into a blossom in the course of the algorithm, is equal to the number of

odd nodes plus half of the number of unlabeled nodes. For each even node v of G(h),

representing a set B of 2r + 1 nodes of G, the number of edges in M connecting

nodes in B is equal to r by Lemma 4. This concludes the proof.

Theorem 1 The blossom shrinking algorithm is correct.

Proof The algorithm terminates when it does not find an augmenting path. When

this happens, there is, by Lemma 5, an odd-set cover whose capacity is equal to

the size of M . Thus M is optimal.

0.1.3 The Implementation

The goal of this section is to implement the blossom shrinking algorithm. Our

implementation refines the implementation described in [Tar83] and is similar to

the implementation given in [KP98]. The refinement does not change the worst

case running time, but improves the best case running time from Ω(n2) to O(m).

The observed behavior on random graphs with m = O(n) seems to be much better

than O(n2), see Table 0.1.

The overall structure of our implementation is given below. In the main loop we

iterate over all nodes of G. Let v1, . . . , vn be an arbitrary ordering of the nodes

of G. When v = vi is considered, every free node vj with j ≥ i is the root of a

trivial alternating tree, and the collection of alternating trees rooted at free nodes

vj with j < i is stable. A collection T of alternating trees is stable if every edge

{u,w} incident to an even node u in T connects u to an odd node w in T . In

other words, every edge {u,w} connecting a node u in T to a node outside T has

u odd, and every edge connecting two nodes contained in T has at least one odd

endpoint. It follows from our tree growing rules that the trees in T will not change

in the future.

When v = vi is considered and v is already matched we do nothing. If v is still

unmatched we grow the alternating tree T with root v until either an augmenting

path is found or the growth comes to an end. We use a node list Q to store all

even nodes in T which have unexplored incident edges. We organize Q as a queue

and hence grow the tree in breadth-first manner.

The growth process comes to an end when Q becomes empty. We claim that

T ∪{T } is stable when Q becomes empty. Consider any edge {u,w} with u an even

node in T . Then w is odd, since otherwise the growth of T would not have come

to an end. Moreover, w belongs to a tree in T ∪ {T }, since trees outside T ∪ {T }

are rooted at free nodes vj , j > i, and consist only of a root and roots are even.

Thus T can be added to our stable collection of alternating trees (this requires no

action in the implementation) and the next free node can be considered.

When an augmenting path is found by exploring an edge {u,w} with u an even

12 Contents

node in T and w an even node in a tree different from T , w must be a free node vj
with j > i. Observe, that w cannot belong to T (since u and w are in distinct trees)

and that w cannot belong to a tree in T (since T is stable). Thus w must belong to

a tree rooted at some vj, j > i, and hence must be equal to some vj, j > i (since the

trees rooted at these nodes are trivial). When the matching is augmented by the

augmenting path from v to w, all nodes in T ∪ w become matched and unlabeled.

In order to be able to unlabel all nodes in T ∪ w in time proportional to the size

of T we collect all nodes in T in a list of nodes (which we call T). We also set the

variable breakthrough to true whenever an augmenting path is found in order to

guarantee that we proceed to the next node in the main loop.

〈 mc matching〉≡

enum LABEL {ODD, EVEN, UNLABELED};

〈MCM: helpers〉

list<edge> MAX_CARD_MATCHING(const graph& G,
node_array<int>& OSC, int heur)

{
〈MCM: data structures〉
〈MCM: heuristics〉

node v; edge e;

forall_nodes(v,G)
{ if (mate[v] != nil) continue;

node_list Q; Q.append(v);
list<node> T; T.append(v);
bool breakthrough = false;

while (!breakthrough && !Q.empty()) // grow tree rooted at v
{
node v = Q.pop();

〈explore edges out of the even node v〉
}

}

list<edge> M;

〈MCM: compute M 〉

〈general checking: compute OSC 〉

return M;

}

The Main Data Structures: We next discuss the main data structures used

in the program. We use a node array<node> mate to keep track of the current

matching and we use a node partition base to keep track of the blossoms.

〈MCM: data structures〉≡

node_array<node> mate(G,nil);
node_partition base(G); // now base(v) = v for all nodes v

0.1 Maximum Cardinality Matchings in General Graphs 13

b

E O E O E O E

Figure 0.7 Snapshot of the data structure: The node labels are indicated by the labels
“E” and “O”. All nodes enclosed by the dashed line form a blossom and hence a block
of the partition base . The canonical element of this block is b.

If two nodes v and w are matched then mate [v] = w and mate [w] = v and if a

node v is free then mate[v] = nil . At the beginning, all nodes are free.

The node partition (see Section ??) base establishes the relationship between

the current graph G′ and the original graph G; recall that the current graph is

obtained from the original graph by a sequence of shrinkings of blossoms, that a

node partition partitions the nodes of a graph into disjoint sets called blocks, and

that for a node v, base(v) is the canonical representative of the block containing v.

The relationship between G and G′ is as follows:

• For any node v of G: if base(v) = v then v is a node of G′ and if base(v) 6= v

then v was collapsed into base(v). Thus {base(v) ; v ∈ V } is the set of nodes

of G′.

• An edge {v,w} represents the edge {base(v), base(w)} of G′.

Every node is labeled as either EVEN, ODD, or UNLABELED. A node is labeled

UNLABELED if it does not belong to any alternating tree and it is labeled EVEN

or ODD otherwise. A node is labeled when it is added to an alternating tree. It

retains its label when it is collapsed into another node. At the beginning all nodes

are free and hence the root of an alternating tree. Thus all nodes are EVEN at

the beginning. For an odd node v we use pred [v] to store its parent node in the

alternating tree. The pred value is set when a node is added to an alternating tree;

it is not changed when the node is collapsed into another node.

〈MCM: data structures〉+≡

node_array<int> label(G,EVEN);
node_array<node> pred(G,nil);

Figure 0.7 shows an example.

Exploring an Edge: Having defined most of the data structures we can give the

details of exploring edges. Assume that v is an even node and let e = {v,w} be

14 Contents

an edge incident to v. Recall that e stands for the edge {base(v), base(w)} in the

current graph.

We do nothing if e is a self-loop or if base(w) is ODD. If base(w) is UNLABELED

(this is equivalent to w being unlabeled) we grow the alternating tree containing v

and if base(w) is EVEN we have either discovered an augmenting path or a blossom.

〈explore edges out of the even node v〉≡

forall_inout_edges(e,v)
{ node w = G.opposite(v,e);

if (base(v) == base(w) || label[base(w)] == ODD)
continue; // do nothing

if (label[w] == UNLABELED)
{ 〈grow tree〉 }

else // base(w) is EVEN
{ 〈augment or shrink blossom〉 }

}

Growing the Tree: Let us first give the details of growing a tree. We label w as

odd, make v the parent of w, label the mate of w as even, add the mate of w to Q,

and add w and the mate of w to T .

〈grow tree〉≡

label[w] = ODD; T.append(w);
pred[w] = v;
label[mate[w]] = EVEN; T.append(mate[w]);
Q.append(mate[w]);

Discovery of a Blossom or an Augmenting Path: The node base(w) is even.

We have either found an augmenting path or a blossom. We have found an aug-

menting path if base(v) and base(w) belong to distinct trees and we have discovered

a blossom if they belong to the same tree. We distinguish the two cases by tracing

both tree paths in lock-step fashion until we either encounter a node that lies on

both paths or reach both roots3.

We discover a node lying on both paths as follows. We keep a counter strue

which we increment in every execution of 〈augment or shrink blossom〉. Since there

are at most n augmentations and at most n shrinkings between two augmentations

the maximal value of the counter is bounded by n2. It would therefore be unsafe

to use type int for the counter, but type double is safe.

We use the counter as follows. As we trace the two tree paths we set path1 [hv]

3 An alternative strategy is as follows: we have found an augmenting path if w is the root of a tree
outside T ∪ {T }. We could, for each node, keep a bit to record this fact. The alternative simplifies the
distinction between blossom shrinking and augmentations. However, it does not simplify the code
overall, as all the information gathered in the program chunk 〈augment or shrink blossom〉 is needed
in later steps of the algorithm.

0.1 Maximum Cardinality Matchings in General Graphs 15

to strue for all even nodes hv on the first path and path2 [hw] to strue for all even

nodes hw on the second path. The two paths meet iff path1 [hw] or path2 [hv] is

equal to strue for some even hw on the second path or some even hv on the first

path. The first node for which this is true is the base of the blossom. Recall that

the base of a blossom is always even.

The cost of tracing the paths is proportional to the size of the blossom found, if

a blossom is discovered, and is proportional to the length of the augmenting path

found otherwise. Also observe that we define the arrays path1 and path2 outside

the loop that searches for augmenting paths. Thus the cost for their initialization

arises only once.

〈MCM: data structures〉+≡

double strue = 0;
node_array<double> path1(G,0);
node_array<double> path2(G,0);

〈augment or shrink blossom〉≡

node hv = base(v);
node hw = base(w);

strue++;
path1[hv] = path2[hw] = strue;

while ((path1[hw] != strue && path2[hv] != strue) &&
(mate[hv] != nil || mate[hw] != nil))

{ if (mate[hv] != nil)
{ hv = base(pred[mate[hv]]);
path1[hv] = strue;

}

if (mate[hw] != nil)
{ hw = base(pred[mate[hw]]);
path2[hw] = strue;

}
}

if (path1[hw] == strue || path2[hv] == strue)
{ 〈shrink blossom〉 }

else
{ 〈augment path〉 }

Shrinking a Blossom: Let us see how to shrink a blossom. The base b of the

blossom4 is either hv or hw . It is hw if hw also lies on the first path and it is

hv otherwise. We shrink the blossom by shrinking the two paths that form the

blossom.

The call shrink path(b, v, w, . . .) collapses the path from v to b into b and the call

4 With the alternative case distinction between blossom shrinking and augmentation we would have to
compute hv and hw at this point.

16 Contents

bridge

E EOEO

w

b

v

Figure 0.8 The bridge of a blossom: The edge {v, w} closes a blossom with base b.
For the odd nodes on the tree path from b to v we set source bridge to v and
target bridge to w and for the odd nodes on the tree path from b to w we set
source bridge to w and target bridge to v.

shrink path(b, w, v, . . .) collapses the path from w to b into b. Both calls also have

the other end of the edge that closes the blossom as an argument.

〈shrink blossom〉≡

node b = (path1[hw] == strue) ? hw : hv; // Base

shrink_path(b,v,w,base,mate,pred,source_bridge,target_bridge,Q);
shrink_path(b,w,v,base,mate,pred,source_bridge,target_bridge,Q);

Before we can give the details of the procedure shrink path we need to introduce

two more node labels. When an edge {v,w} closes a blossom, all odd nodes in the

blossom also get an even length alternating path to the root of their alternating

tree. This path goes through the edge that closes the blossom. We call this edge

the bridge of the blossom. The odd nodes on the tree path from v to b use the

bridge in the direction from v to w and the odd nodes on the tree path from w to b

use the bridge in the direction from w to v. We use the node arrays source bridge

and target bridge to record for each odd node shrunken into a blossom the source

node and the target node of its bridge (now viewed as a directed edge).

〈MCM: data structures〉+≡

node_array<node> source_bridge(G,nil);
node_array<node> target_bridge(G,nil);

The details of collapsing the tree path from v to b into b are now simple. For each

node x on the path we perform union blocks(x, b) to union the blocks containing

x and b, for each odd node we set source bridge to v and target bridge to w, and

we add all odd nodes to Q (because the edges out of the odd nodes now emanate

from the even node b), see Figure 0.8.

There is one subtle point. After a union operation the canonical element of the

newly formed block is unspecified (it may be any element of the resulting block).

It is important, however, that b stays the canonical element of the block containing

it. We therefore explicitly make b the canonical element by base.make rep(b).

0.1 Maximum Cardinality Matchings in General Graphs 17

〈MCM: helpers〉≡

static void shrink_path(node b, node v, node w,
node_partition& base, node_array<node>& mate,
node_array<node>& pred, node_array<node>& source_bridge,
node_array<node>& target_bridge, node_list& Q)

{ node x = base(v);
while (x != b)
{
base.union_blocks(x,b);

x = mate[x];

base.union_blocks(x,b);
base.make_rep(b);

Q.append(x);

source_bridge[x] = v; target_bridge[x] = w;

x = base(pred[x]);
}

}

Augmentation: We treat the discovery of an augmenting path. The nodes v and

w belong to distinct alternating trees with roots hv and hw , respectively. In fact,

w is a root itself. The augmenting path consists of the edge {w, v} plus the even

length alternating path from v to its root hv .

For a node v let p(v) be the even length alternating path from v to its root (if it

exists). The path p(v) can be defined inductively as follows:

If v is a root then p(v) is the trivial path consisting solely of v.

If v is EVEN, p(v) goes through the mate of v to the predecessor of the mate

and then follows p(pred [mate [v]]).

If v is ODD, p(v) consists of the alternating path from v to source bridge[v]

concatenated with p(target bridge[v]).

Lemma 6 The above characterization of p(v) is correct.

Proof The claim is certainly true when v is a root. So assume otherwise and

consider the time when p(v) is discovered in the course of the algorithm. For an

even node this is the time when v is labeled EVEN and for an odd node this is

the case when it becomes part of a blossom. In either case the characterization is

correct.

How can we find the alternating path from v to source bridge[v] when v is odd?

The problem is that the pred -pointers are directed towards the roots of alternating

trees and hence there is no direct way to walk from v to source bridge[v]. We walk

from source bridge[v] to v instead and then take the reversal of the resulting path.

The path from source bridge[v] to v is the prefix of p(source bridge[v]) ending in v,

see Figure 0.9.

18 Contents

E O E O E O E

b

r

a

d e

fg

c

Figure 0.9 Tracing augmenting paths: The node labels are indicated by the labels “E”
and “O”. The predecessor pointer of the odd nodes are shown. When the bridge {e, f }
was explored we set source bridge[d] to e, target bridge[d] to f , source bridge[g] to f ,
and target bridge[g] to e, and when the bridge {c, d} was explored we set
source bridge [a] to c, target bridge [a] to d, source bridge [b] to d, and target bridge [b] to c.
The even length alternating path from b to its root r consists of the reversal of the path
from d = source bridge [b] to b followed by the even length alternating path from
c = target bridge[b] to r. The former path consists of the reversal of the alternating path
from e = source bridge[d] to d followed by the alternating path from f = target bridge [d]
to b.

We cast this reasoning into a program by defining a procedure find path(P, x, y, . . .)

that takes two nodes x and y, such that y lies on p(x) and such that the prefix

of p(x) ending in y has even length (the program would be slightly less elegant

without the second assumption), and appends the prefix of p(x) ending in y to the

list P . Find path distinguishes three cases:

If x is equal to y then the path consists of the single node x.

If x 6= y and x is EVEN the path consists of x, mate [x], followed by the path

from pred [mate[x]] to y.

If x 6= y and x is ODD, let P1 and P2 be the paths from target bridge[x] to y and

from source bridge[x] to mate[x], respectively. Then path consists of x followed by

the reversal of P2 followed by P1 .

〈MCM: helpers〉+≡

static void find_path(list<node>& P, node x, node y,
node_array<int>& label, node_array<node>& pred,
node_array<node>& mate,
node_array<node>& source_bridge,
node_array<node>& target_bridge)

{ if (x == y)
{
P.append(x);
return;

}

if (label[x] == EVEN)
{
P.append(x);
P.append(mate[x]);
find_path(P,pred[mate[x]],y,label,pred,mate,

source_bridge,target_bridge);

0.1 Maximum Cardinality Matchings in General Graphs 19

return;
}
else // x is ODD
{
P.append(x);

list<node> P2;
find_path(P2,source_bridge[x],mate[x],label,pred,mate,

source_bridge,target_bridge);
P2.reverse_items();
P.conc(P2);

find_path(P,target_bridge[x],y,label,pred,mate,
source_bridge,target_bridge);

return;
}

}

Given find path , it is trivial to construct the augmenting path. We construct

the path from v to hv in P and append w to the front of the path. We augment

the current matching by the path by walking along the path and changing mate

accordingly.

It remains to prepare for the next search for an augmenting path. All nodes in

T ∪{w} are now matched. We unlabel all nodes in T ∪{w} and split the blocks of

base containing nodes of T . No action is required for the other alternating trees.

Finally, we set breakthrough to true and break from the forall-inout-edges loop.

Setting breakthrough to true makes sure that we also leave the grow tree loop. The

next action will therefore be to grow an alternating tree from the next free node.

〈augment path〉≡

list<node> P;

find_path(P,v,hv,label,pred,mate,source_bridge,target_bridge);
P.push(w);

while(! P.empty())
{ node a = P.pop();

node b = P.pop();
mate[a] = b;
mate[b] = a;

}

T.append(w);
forall(v,T) label[v] = UNLABELED;
base.split(T);

breakthrough = true;
break;

Computing the Node Labeling OSC : We compute the node labeling OSC as

described in the paragraph preceding Lemma 5. We initialize OSC [v] to −1 for all

nodes v. This will allow us to recognize nodes without a proper OSC -label later.

20 Contents

We then determine the number of unlabeled nodes (= nodes labeled UNLABELED

and select an arbitrary unlabeled node. If there are unlabeled nodes, the selected

unlabeled node is labeled one and all other unlabeled nodes are either labeled

zero (if there are exactly two unlabeled nodes) or two (if there are more than two

unlabeled nodes). We then set K to the smallest unused label larger than one.

Next we determine the number of sets of cardinality at least three and assign

distinct labels to their representatives. We do so by iterating over all nodes. Every

node v with base(v) 6= v indicates a set of cardinality at least three. If its base is

still unlabeled, we label it.

Finally, we label all other nodes. Nodes belonging to a set of cardinality at least

two inherit the label of the base, and nodes that belong to sets of cardinality one

(they satisfy base(v) == v && OSC[base(v)] == -1) are labeled one iff they are

ODD and are labeled zero if they are EVEN.

〈general checking: compute OSC 〉≡

forall_nodes(v,G) OSC[v] = -1;

int number_of_unlabeled = 0;
node arb_u_node;

forall_nodes(v,G)
if (label[v] == UNLABELED)
{ number_of_unlabeled++;
arb_u_node = v;

}

if (number_of_unlabeled > 0)
{ OSC[arb_u_node] = 1;

int L = (number_of_unlabeled == 2 ? 0 : 2);
forall_nodes(v,G)
if (label[v] == UNLABELED && v != arb_u_node) OSC[v] = L;

}

int K = (number_of_unlabeled <= 2 ? 2 : 3);

forall_nodes(v,G)
if (base(v) != v && OSC[base(v)] == -1) OSC[base(v)] = K++;

forall_nodes(v,G)
{ if (base(v) == v && OSC[v] == -1)

{ if (label[v] == EVEN) OSC[v] = 0;
if (label[v] == ODD) OSC[v] = 1;

}
if (base(v) != v) OSC[v] = OSC[base(v)];

}

Computing the List of Matching Edges: The list M of matching edges is

readily constructed. We iterate over all edges. Whenever an edge is encountered

whose endpoints are matched with each other, the edge is added to the matching.

We also “unmate” the endpoints in order to avoid adding parallel edges to M .

0.1 Maximum Cardinality Matchings in General Graphs 21

〈MCM: compute M 〉≡

forall_edges(e,G)
{ node v = source(e);
node w = target(e);
if (v != w && mate[v] == w)
{ M.append(e);
mate[v] = v;
mate[w] = w;
}

}

Heuristics: If heur = 1, the greedy heuristic is used to compute an initial match-

ing. We iterate over all edges. If both endpoints of an edge are unmatched, we

match the endpoints and declare both endpoints unlabeled. Recall that matched

nodes that do not belong to an alternating tree are UNLABELED.

〈MCM: heuristics〉≡

switch (heur) {

case 0: break;

case 1: { edge e;
forall_edges(e,G)
{ node v = G.source(e); node w = G.target(e);

if (v != w && mate[v] == nil && mate[w] == nil)
{ mate[v] = w; label[v] = UNLABELED;
mate[w] = v; label[w] = UNLABELED;

}
}
break;

}
}

Summary: We summarize and complete the running time analysis. The algorithm

computes a maximum matching in phases. In each phase an alternating tree T from

a free node is grown to find an augmenting path. If the search for an augmenting

path is successful, the matching is increased and all nodes in the alternating tree

are unlabeled, and if the search is unsuccessful, the tree will stay around and will

never be looked at again.

The running time of a phase is O((nT +mT)α(nT ,mT)), where nT is the number

of nodes included into T , mT is the number of edges having at least one endpoint

in T , and α(n,mT) is the cost of mT operations on a node partition of n nodes.

This can be seen as follows. In a phase zero or more blossoms are shrunken. The

search for a blossom (if successful) has cost proportional to the size of the blossom,

and shrinking a blossom of size 2k+1 removes 2k nodes from the graph. Therefore

the total size of all blossoms shrunk in a phase is O(nT). In each phase each

edge is explored at most twice (once from each endpoint). Each exploration of

22 Contents

an edge and each removal of a node involves a constant number of operations on

the node partition base . We conclude that the total cost of a phase is O((nT +

mT)α(n,mT)) = O((n + m)α(n,m)) = O(mα(n,m)), since nT ≤ n ≤ m and

mT ≤ m.

There are at most n phases and hence the total running time is O(nmα(n,m))

in the worst case. One may hope that nT is significantly smaller than n and mT

is significantly smaller than m for many phases. The running times reported in

Section 0.1.1 show that the hope is justified in the case of random graphs. There

are no analytical results concerning the average case behavior of general matching

algorithms.

In an earlier implementation of the blossom shrinking algorithm we did not

collect the nodes of the alternating tree grown into a set T . Rather, we iterated

over all nodes at the beginning of a phase and labeled all free nodes EVEN and

all matched nodes UNLABELED. With this implementation the running time is

Ω(n2). The implementation discussed in this section is significantly faster. It is

superior for two reasons. Firstly, the cost of a phase is proportional to the size of

the alternating tree grown in the phase and hence may be sublinear, and secondly,

an alternating tree that does not lead to a breakthrough is not destroyed, but kept

till the end of the execution.

Exercises for 0.1

1 Compare the running time of the general matching algorithm and the bipartite
matching algorithm on bipartite graphs.

2 Exhibit a family of graphs where the running time of our matching algorithm
is Ω(nm). Write a program to generate such graphs and provide it as an LEP.

Bibliography

[Edm65a] J. Edmonds. Maximum matching
and a polyhedron with 0,1 - vertices.
Journal of Research of the National Bureau
of Standards, 69B:125–130, 1965.

[Edm65b] J. Edmonds. Paths, trees, and
flowers. Canadian Journal on Mathematics,
pages 449–467, 1965.

[Gab76] H. N. Gabow. An efficient
implementation of Edmond’s algorithm for
maximum matching on graphs. Journal of
the ACM, 23:221–234, 1976.

[KP98] J.D. Kececioglu and J. Pecqueur.
Computing maximum-cardinality matchings
in sparse general graphs. In Proceedings of
the 2nd Workshop on Algorithm
Engineering (WAE’98), pages 121–132.
Max-PlanckInstitut für Informatik, 1998.

[Law76] E.L. Lawler. Combinatorial
Optimization: Networks and Matroids.
Holt, Rinehart, and Winston, 1976.

[Tar83] R. E. Tarjan. Data Structures and
Network Algorithms. SIAM, 1983.

23

