
July 24, 2003 16:15 WSPC/INSTRUCTION FILE article

International Journal of Image and Graphics
c© World Scientific Publishing Company

COMBINING 2D FEATURE TRACKING AND VOLUME

RECONSTRUCTION FOR ONLINE VIDEO-BASED HUMAN

MOTION CAPTURE

CHRISTIAN THEOBALT

MARCUS A. MAGNOR

PASCAL SCHÜLER
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The acquisition of human motion data is of major importance for creating interactive
virtual environments, intelligent user interfaces, and realistic computer animations. To-

day’s performance of off-the-shelf computer hardware enables marker-free non-intrusive
optical tracking of the human body. In addition, recent research shows that it is possi-
ble to efficiently acquire and render volumetric scene representations in real-time. This

paper describes a system to capture human motion without the use of markers or scene-
intruding devices. Instead, a 2D feature tracking algorithm and a silhouette-based 3D

volumetric scene reconstruction method are applied directly to the image data. A person
is recorded by multiple synchronized cameras, and a multi-layer hierarchical kinematic

skeleton is fitted to each frame in a two-stage process. The pose of a first model layer

at every time step is determined from the tracked 3D locations of hands, head and feet.

A more sophisticated second skeleton layer is fitted to the motion data by applying a
volume registration technique. We present results with a prototype system showing that

the approach is capable of running at interactive frame rates.

Keywords: Marker-less Human Motion Capture; Feature Tracking; Volume Reconstruc-

tion; Shape-from-Silhouette; Kinematic Body Model.

1. Introduction

In recent years, the task of human motion capture has brought together researchers

from computer vision and computer graphics. Motion capture is the process of

finding a mathematical description of observed motion in terms of an underlying

model. Finding such a mathematical description of human motion has long been of

scientific interest.

At the end of the 19th century, Edward Muybridge already undertook studies

in human and animal locomotion from camera images 1. In the 1970’s Johannson

1
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examined the psychophysical aspects behind visual motion perception of humans

by examining so-called Moving Light Displays, light emitting markers on the body

of a person 2. Nowadays, the number of scientific disciplines interested in accurate

human motion acquisition and the range of possible applications for motion capture

systems is manifold:

Realistic animation of virtual characters is an important choreographic element

in today’s feature films and computer games 3. In order to animate characters in a

natural looking way, accurate motion data of real actors performing are needed. In

sports and bio-mechanics research, human motion capture can be a great support for

the analysis of gait anomalies or inefficient motion cycles in athletic movements 4.

Another important application area is surveillance, where image sequences of

moving people are to be interpreted automatically 5. Possible applications are au-

tomatic crime detection and general monitoring scenarios where a high-level inter-

pretation of the video footage is needed.

The design of more user-friendly machines has been a field of intensive research

for years. Many scientists aim at equipping computers with means to visually per-

ceive the environment. The first step towards vision-based user interfaces are ges-

ture recognition and interpretation systems enabling a more intuitive way of human

computer interaction 6,7,8.

The advent of new media technology has opened new challenging application

areas. The ongoing development of video broadcasting technology, as well as video-

on-demand and teleconferencing makes necessary efficient encoding algorithms for

image data transmission 9. Since many video sequences are centered around human

actors, model-based encoding schemes that are based on transmitting a 3D model

of the person and its motion parameters instead of the full video stream can help to

significantly reduce the bandwidth needs 10,11. The MPEG-4 standard meets the

demands by defining so-called body-animation parameters for 3D shape models of

humans 12,13.

The challenge, however, lies in the fact that in video-based encoding and many

other applications the motion parameters have to be estimated without using any

form of intrusion into the scene. Unfortunately, existing commercial human motion

capture systems fail to fulfill this requirement.

Commercial human motion capture systems existing today can be mainly classi-

fied into the following categories 3: Mechanical, electromagnetic and optical systems.

Mechanical systems consist of an exoskeleton structure that needs to be attached

to the body of the performing actor and the angles of the joints are measured

directly. Electromagnetic systems require the person to wear emitters or receivers

whose positions and orientations are measured.

This paper describes a video-based motion capture system for full body motion

that works without the use of optical markers. The presented method is based on

and extends our work that has been previously published in 14 and 15.

The described system enables fitting of a complex kinematic human body model

to human motion based on multi-view video footage depicting a moving person. A
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color-based feature tracking algorithm is combined with a fast silhouette-based

volume reconstruction and registration method. The tracking algorithm is applied

in the image planes of two of the available camera views to track the locations of

salient body parts such as the head, the hands, and the feet. The 3D locations

of theses parts are computed via triangulation. This information is sufficient to

fit a first layer kinematic skeleton to the motion data at each time frame. The

configuration of elbows, knees and the torso are found by employing a volumetric

reconstruction of the person at each time step by means of a shape-from-silhouette

approach. The voxel-based volume of the person is used to fit a more complex second

layer kinematic skeleton. The result of the algorithm are the joint parameters of

the kinematic skeleton model for every frame of the observed motion sequence.

The rest of the paper begins with a review of relevant related work in Sec. 2.

An overview of the motion capture system architecture is given in Sec. 3. The

applied silhouette computation method is described in Sec. 5, and the color-based

feature tracking is explained thereafter in Sec. 6. In Sec. 7 the shape-from-silhouette

approach for the computation of the visual hulls is illustrated. The applied multi-

layer body model and the fitting of the model layers to the volume data is presented

in Sec. 8. Results with our prototype system are described in Sec. 9, and the paper

concludes in Sec. 10.

2. Related work

Commercial optical motion capture systems only work in a very constrained scene

setup. The person to be tracked has to wear markers, and many cameras have

to observe the scene from different viewpoints to prevent occlusions 16,17. The first

marker-free vision-based motion capture systems have only recently become feasible

thanks to increasing computational power of off-the-shelf hardware 5,18.

Non-real time approaches 19,20,21 use features extracted from video frames to fit

simple kinematic skeleton models with volumetric limb representations to human

body poses. Image differencing 22 and silhouette skeletonization 23 are also used to

fit simple kinematic models to video streams. The use of TV image sequences for

the acquisition of articulated motion is presented in 24. In 25 an implicit-surface

human body model is fitted to video material. More recently, Bregler et. al. use the

combination of optical flow, a probabilistic region model, and the twist parameteri-

zation for human body joints to fit a kinematic model to video footage 26. Existing

real-time systems use comparably simple models, such as probabilistic region rep-

resentations and probabilistic filters for tracking 27, or combine feature tracking

and dynamic appearance models 28. Unfortunately, these approaches cannot sup-

port sophisticated human body models like kinematics skeletons or dynamic body

representations.

At the same time, a new method for the acquisition and efficient rendering of

volumetric scene representations obtained from multiple camera views, known as

shape-from-silhouette or the visual hull 29, has been proposed. Early approaches in
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the field construct discrete three-dimensional grids of volume elements (voxels) from

a set of silhouette images of a scene, a method known as voxel carving or volume

intersection 30,31,32. More recently, it was shown that a polyhedral representation

of the visual hull can be acquired and rendered in real-time 33. An image-based ap-

proach to visual hull construction samples and textures visual hulls along a discrete

set of viewing rays 34. State-of-the-art graphics hardware can be used to accelerate

the construction of slices of the visual hull 35. Most work focuses on improving the

quality of the reconstructed scene 36.

Only recently, methods have been presented that use the reconstructed visual

hulls of a person to capture human motion. In 37 ellipsoids are used to represent the

torso, the arms and the legs in a human body model. An expectation-maximization-

like algorithm is applied to fit these ellipsoidal shells to the voxel volume of the

person in real-time. Luck et al. 38 use a kinematic skeleton without an accompanying

surface representation that is fitted to the volume data by means of forces exerted

from the volume elements to the bones. Their system is also capable of running in

real-time.

Mikić et al. 39 fit a body model that consists of simple shape primitives to vol-

umes of a moving person in an off-line process. Compared to the previous approach,

the employed body model is more detailed. It explicitly enforces the connectivity

of body parts and the limb segments are modeled in more detail. An Extended

Kalman Filter is used in the tracking algorithm.

A kinematic skeleton parameterized by 32 joint parameters and consisting of

15 segments covered with a triangle mesh surface representation is used in 40. The

body model is fitted to the visual hull data by minimizing a distance metric.

Weik and Liedtke 41 fit a kinematic skeleton with attached surface patches to

the visual hull data of a moving person by applying a hierarchical iterative closest

point procedure.

Unfortunately, most of the previously mentioned volume-based human motion

capture methods fail to robustly resolve body poses in which the limbs are po-

sitioned very close to the torso. Our new method handles these situations more

robustly by combining the information originating from a fast feature tracking al-

gorithm with the information stemming from the reconstructed visual hulls of a

person.

3. System Overview

3.1. Software architecture

In Fig. 1 the architecture of our motion capture system is illustrated. Currently,

there are up to 3 clients, each of which is running on a 1 GHz single processor

AthlonTM PC. One client computer controls two SonyTM DFW-V500 IEEE1394

video cameras that run at a resolution of 320x240 in color mode. Each client per-

forms a background subtraction (Sec. 5), as well as the computation of a partial

visual hull, i.e. a visual hull that is reconstructed from the two connected cam-
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Fig. 1. Motion capture system architecture.

era views only, in real-time. Additionally, the client controlling the two front view

cameras identifies and tracks the positions of hand, head and feet at interactive

frame rates (see Sec. 5 and Sec. 6). The partial visual hulls from both clients are

transferred to a server which builds the complete visual hull and renders it using

OpenGL. The server also sends the trigger signals to the cameras for synchroniza-

tion. The software architecture scales easily to more cameras and more clients by

employing a hierarchical network structure. In the following, the previously de-

scribed client-server components are referred to as the online system. The model

fitting is currently implemented as a separate application which works with recorded

visual hulls and 3D locations acquired with the online system.

3.2. Scene setup

The person to be tracked is supposed to move inside a confined volume. The scene

is observed from up to six synchronized cameras (variable setups using 4-6 cameras

are possible) that are arranged in a convergent setup around the center of the

scene. We require that two of these cameras are observing the person from nearby

positions in front (Fig. 2). The person moves barefooted and needs to face these

cameras allowing only limited rotation around the vertical body axis. The cameras

are calibrated using Tsai’s method 42.

4. Initialization

In the first frame, the person is supposed to stand in an initialization position,

facing the two frontal cameras, with both legs next to each other and spreading the
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arms horizontally away to the side at maximal extent. The model fitting application

(see Fig. 1) takes visual hulls and 3D feature locations that are saved by the online

system as input.

The dimensions of the kinematic skeleton need to be adjusted to the body

dimensions of the moving person. This is either done by manually measuring the

limb lengths and loading them into the application, or by an interactive step. In

this step the user marks shoulder, hip, elbow and knee locations in the two camera

frames showing the person in the initialization position from front. Together with

the tracked positions, the 3D locations of all joints can be computed and the lengths

of the body segments are derived. The thicknesses of the arms and legs are set by

the user.

5. Silhouette Segmentation

The segmentation step consists of two parts. First, the person’s silhouette is sep-

arated from the background in each camera perspective. Then, the silhouettes ob-

tained from the front-view cameras are segmented in order to identify hand, feet

and head. The former step is performed for every time step, the latter is performed

for the initial frame only.

Separating the person from the background is done by using a background

distribution for each camera perspective consisting of a mean image µ(x, y) and

a standard-deviation image σ(x, y). These are generated from several consecutive

video frames of the static background scene. For the silhouette extraction a method

originally proposed in 37 is used which proves to be robust against shadows cast by

the person on the floor and the walls. If a pixel p(x, y) differs in at least one color

channel by more than an upper Tu threshold from the background distribution

‖p(x, y) − µ(x, y)‖ > Tu · σ(x, y) , (1)

it is classified as foreground. If its difference from the background statistics is smaller

than the lower threshold Tl in all channels it is surely a background pixel. All pixels

Fig. 2. Scene setup: Camera studio, four visible cameras marked with circles.
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Fig. 3. Video frame after background subtraction (l) and the corresponding silhouette (m). Shad-

ows cast by the person onto the floor are identified by the background subtraction (r).

which fall in between these thresholds are possibly in shadow areas. Shadow pixels

are classified by a large change in intensity but only small change in hue. If p(x, y)

is the color vector of the pixel to be classified, and µ(x, y) is the corresponding

background pixel color vector, their difference in hue is

∆ = cos−1

(

p(x, y) · µ(x, y)

‖p(x, y)‖‖µ(x, y)‖

)

. (2)

If ∆ > Tangular the pixel is classified as foreground, else as shadow. A 0/1-silhouette

image for each camera is computed this way.

The binary silhouette images of the person standing in the initialization position

seen from the two front view cameras are segmented using a Generalized Voronoi

Diagram (GVD) decomposition (see Fig. 4). Often used in free space segmentation

of cognitive topological maps of mobile robots 43,44,45, the Generalized Voronoi

Diagram is the set of all points in the silhouette which is equidistant to at least two

silhouette boundary points.

The GVD point set can be used to segment the silhouette into distinct regions

by searching for critical points, i.e. points locally minimizing the clearance to the

silhouette boundary. These points are used as centers for border lines between

adjacent regions in the silhouette. These lines connect the two boundary pixels

closest to the critical point (Fig. 4). Since in the silhouette the boundaries to the

head, hand and feet are identified by constrictions, the algorithm nicely segments

these parts from the rest of the body. This way, the position and the regional extent

of these body parts are extracted.

The connectivity of the recovered silhouette regions can be represented by a

graph connecting the region centers. For the case of the human silhouette in the

initialization position, the five terminating nodes in the connectivity graph corre-

spond to the head, the hands and the feet of the person.

6. Tracking head, hands and feet

To track the motion of body parts in 2D, we implemented a fast tracking strategy.

We use a continuously adaptable mean-shift algorithm which is capable of tracking
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Silhouette boundary

GVDregion 1

Critical points

region 3

region 2

Fig. 4. GVD with critical points (l). Silhouette segmented by Generalized Voronoi Diagram de-

composition (r).

the mean of dynamically changing probability distributions, originally developed

for face tracking 46,47. From the segmentation step, it is known which pixels belong

to the head, the hands and the feet for both front camera views at t = 0. The HSV

color is the principal cue used for tracking body parts. The color range of human

skin in the camera view is different depending on lighting conditions and camera

adjustment. Since the locations and extents of the head, the hands and the feet in

the image planes are known, average skin colors for each tracked feature can be

computed. These values are used to define tolerance intervals in color space. For

the colors in these intervals, color histograms are computed based ont the video

frames with the person in initialization position.

After the first video frames, the algorithm proceeds as follows. For each new

frame and for each tracked feature, an intermediate gray-scale image is computed

that contains for each pixel an approximation to the probability of belonging to the

body part under consideration. This can be done by back-projecting the appropriate

color histogram into the corresponding video frames after background subtraction.

Alternatively, we can simply filter out all pixels in the allowed color interval and

set all pixels passing the test to the maximum pixel value. In practice, this leads to

fast convergence of the tracking algorithm.

We use a separate continuously adaptable mean shift tracker for each of the five

body parts in both front views that takes the intermediate gray-scale images as

input. The algorithm iteratively repositions the center of a rectangular search win-

dow to the mean of the pixel values within the search area. The tracking algorithm

terminates if no further change in search window position is performed (see 46 for

details). Starting with the mean position in the previous frame, the center of the

search window after convergence is taken as the new body part position in the cur-

rent frame. At time step t = 0 the trackers are initialized with the center positions

found during the Voronoi decomposition step.

The whole procedure runs for each pair of video frames acquired from the two

front view cameras. Figure 5 shows a screen-shot of our system where the tracked

body parts are marked by circles. We assume that the colors of the head, the hands

and the feet are sufficiently different from the colors of the clothes that the person
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Fig. 5. A screen-shot of the server application showing the visual hull (l) and silhouettes with

tracked feature locations (r).

wears. Head, hands and feet colors need to be similar in HSV space for our method

to work properly. Requiring that the person moves barefooted is the easiest way to

fulfill this constraint. The drawback of the method is that in case of overlapping

body parts, the trackers can be mislead.

Once their locations in the front camera views are determined, the 3D positions

of the body parts are computed via triangulation. We assume that the tracked cen-

troids of the hands correspond to the projected wrist joint locations, the centroids

of the feet to the ankle joint locations, and the centroid of the head to the model

root joint.

7. Volume reconstruction

From the silhouettes of the moving person, we reconstruct a voxel-based approx-

imation to the visual hull 29 at every time step. Our approach adapts the voxel

carving method and is similar to the algorithms presented in 37 and 38.

The box in space in which the person is allowed to move is subdivided into a regular

grid of volume elements.

Fig. 6. Visual hulls reconstructed from 4 camera views, each voxel is drawn as small box. The

volumes are rendered into a model of the acquisition room.
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Fig. 7. The left image shows skeleton layer 1 and layer 2 with the attached cylinder samples and
the cylindrical torso area. Skeleton layer 1 (m) and skeleton layer 2 (r) rendered into a model of
the camera room.

From the camera calibration, the camera matrices are know which enables the

computation of image plane locations of world space points for each camera view.

In our distributed implementation, each voxel is simultaneously projected into the

views of the two cameras connected to one client computer. If it projects into the

silhouettes of the person in both views, it is classified as occupied space. This way,

each client computes a partial visual hull that is reconstructed from two camera

views only. The partial hulls from each client i, Vi, are run-length-encoded and

transferred to the server application via LAN. On the server, the complete visual

hull VH is constructed by intersecting the volumes, VH =
⋂

iVi. The intersection

can be efficiently implemented using bitwise boolean operators. The voxel projec-

tions can be precomputed for each static camera view. Two example visual hulls

reconstructed from four camera views can be seen in Fig. 6.

8. Skeleton Fitting

The skeleton fitting algorithm estimates the joint parameters of a multi-layer kine-

matic model for each time step t of a recorded motion sequence. It uses the stored

volume models and 3D location data of head, hands and feet , as well as the model

parameters in the previous time step t − 1 as input (Fig. 8). In a three-step pro-

cedure, the orientation of the torso is estimated first, then the layer-1 skeleton is

fitted, and as a last step, the refined layer-2 skeleton is adapted to the body pose at

time t. The joint parameters for time t = 0 are known since the person is required

to stand in an initialization position.

8.1. The Skeleton

The human body is modeled as a 2-layer kinematic skeleton. The first layer of the

model consists of a structure of 10 bone segments and 7 joints. Each joint spans a

local coordinate frame which is defined by a rotation matrix R and a translation
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vector ~t relative to the preceding joint in the skeleton hierarchy.

The second layer refines the layer-1 structure by upper arm and forearm segments,

as well as thigh and lower leg segments (Fig. 7). The volumetric extents of the

corresponding limbs are modeled by means of point samples taken from cylindrical

volumes centered around the segments, henceforth called cylinder samples (Fig. 7).

Every pair of these new segments is connected via a 1-DOF revolute joint which

serves as a simplified model of the elbow or knee joint (Fig. 8). The lengths of the

additional layer-2 segments are constant and known from initialization (lforearm

and lupperarm in Fig. 8), the lengths of the attached layer-1 segments vary during

the fitting of layer 1 (lwhole in Fig. 8). Together with the corresponding layer-1 leg

and arm segments, triangles are formed in which the lengths of the first layer bones

vary during model fitting. The bending angles of the elbow and knee (henceforth

denoted by φ) at each time step t are fully determined by the cosine theorem (see

Sec. 8.3). The additional rotational degree of freedom (henceforth denoted by ρ)

of the layer-2 arm and leg constructions around the corresponding layer-1 segment

in each time step t is found using the cylinder samples and the visual hull voxels

(Sec. 8.4).

The layer-1 model has 24 degrees of freedom in total. Layer 2 extends this by 4

degrees of freedom.

Visual Hull (t) 3D feature skeleton
parameters (t−1)

Finding torso orientation

Fitting skeleton layer 1

parameters (t)
skeleton

position (t)

Fitting skeleton layer 2

Fig. 8. Skeleton fitting steps overview (l). Arm structure of model layer 2 (r).

8.2. Finding the torso orientation

Pure optical tracking of the shoulder positions is difficult due to the lack of de-

tectable salient features. However, the reconstructed volume can be used to find

the shoulder position and torso orientation. The voxel positions are interpreted as

a 3-dimensional data set with coordinate origin in its center of gravity. For this

set a 3 × 3 covariance matrix C is computed. The 3 eigenvectors of the symmetric

matrix C, the principal components (PCs), denote the directions of strongest vari-

ance in the data and are mutually orthogonal. If the data is limited to the voxels
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corresponding to the torso of the person, the first principal component lies along

the spine segment direction, the second along the connection between the shoul-

ders, and the third is orthogonal to these two (see Fig. 9). For segmenting out the

torso voxels, we make use of the skeleton model. A cylindrical volume around the

spine axis (Fig. 7) is used to constrain the PC computation to the torso part. The

algorithm to find the upper body orientation makes use of temporal coherence:

The parameterization of the skeleton model is known from the previous time

step t − 1. Assuming that the change in body orientation is small from time t − 1

to time t, the position and orientation of the cylindrical volume at time t − 1 are

used to separate the torso part from the complete visual hull at time step t. The

principal components of the torso volume at time t can now be computed.

PC2

neck

PC1

PC3

pelvis

Fig. 9. The principal components of all the voxels inside the torso (l). Aligning the skeleton with

the recovered torso orientation (r).

8.3. Fitting the first skeleton layer

The 2D feature tracking (Sec. 6) reports a set of 3D goal locations for the head,

the hands and the feet. From the initialization, the skeleton dimensions are known.

The neck bone is assumed to be upright at all time steps, so that the 3D location of

the neck joint in world coordinates is known from the 3D location of the head. The

model root located at the head is translated to match the triangulated 3D head

position at t.

The principal components of the torso voxels define the goal orientation for the

neck joint local coordinate system at time step t (Fig. 9). The corresponding neck

joint rotation for time t is directly available by using the PC vectors as the column

vectors of the rotation matrix Rneck. To keep the hip bones parallel to the floor

level, the pelvis joint rotation is set to the inverse neck rotation.

The locations of shoulder and hip joint in world coordinates as well as the

locations of hands and feet are known. The distances between the left and right
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shoulder and hand as well as the left and right hip and foot are computed, and the

lengths of the corresponding layer-1 segments are adapted to these values.

The skeleton is represented as a hierarchical kinematic chain. Each joint cor-

responds to a rotation matrix Rj and a translation ~tj , which can be represented

as a combined matrix A(Rj ,~tj) in homogeneous coordinates. To find the rotation

transformation Rshoulder of the shoulder and hip joints, the following procedure is

applied which is illustrated using an arm as an example. The layer-1 arm segment is

assumed to be aligned with the x-axis of the coordinate frame spun by the shoulder

joint. Knowing all preceding joint transformations in the skeleton hierarchy and

assuming that Rshoulder is the identity rotation I, the position of the hand in the

shoulder coordinate frame is computed. The actual rotation of the shoulder joint

Rshoulder at time t is the rigid body transform that aligns the tip of the arm seg-

ment with the hand position. This rotation is straightforward to compute (Fig. 10).

Since the translation component of the complete shoulder joint transform is known

from the skeleton structure, A(Rshoulder,~tshoulder) is completely determined. The

same procedure applies to the leg segments.

8.4. Fitting the second skeleton layer

Once the model parameters are found for the first skeleton layer, the additional

degrees of freedom of the second model layer are recovered by using the visual hull

information. During the fitting step of model layer 1, the lengths of arm and leg

segments are recomputed for each time step. Knowing the lengths of the additional

two segments of arms and legs enables computing the elbow and knee joint angles

(φ in Fig. 8) directly using the cosine theorem. In order to find the additional

angle ρ(t) of the layer-1 arm and leg segments (see also 8.1), a maximal overlap

between the set of cylinder samples attached to the layer-2 model and the voxel

data obtained from the visual hull is searched. The search procedure is as follows,

using the arm segment as an example:

Pl

A 1

A2 A3

lwhole

before fitting
arm segment

head

neck joint

y

z

x

joint
left shoulder

arm segment after
fitting

neck

left shoulder

left shoulder joint CS

fitting
rotation

Fig. 10. Illustration of layer-1 fitting using the left arm segment as an example.
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Making use of the temporal coherence, we start with the rotation of the arm in

the previous frame, ρ(t− 1), and rotate the arm segment to ν equidistant angles ξl

in the interval [ρ(t − 1) − s, ρ(t − 1) + s], with s defining the search neighborhood

size. For each such orientation, ξl, a quality measure for the overlap between the

cylinder samples and the visual hull, matchl, is computed which is the higher the

better the model fits to the voxel set. For each cylinder sample, the corresponding

voxel it lies in is computed (see Fig. 11) . If n is the number of these voxels which

belong to the visual hull (i.e. are filled), then nk is the overlap match score for the

current configuration ξl, where a value of k = 4 is used for best performance.

Using the set of ν match scores, the final rotation ρ(t) of the arm segment is found

by computing the center of gravity of the set Ξ = {ξl × matchl | l = 1, . . . , ν}, the

set of angles ξl each multiplied by its corresponding match score

ρ(t) =
1

∑ν−1

l=0
matchl

ν−1
∑

l=0

ξl × matchl . (3)

This particular match function is a heuristic which exaggerates good overlap scores.

The procedure for the leg segments is the same. Although the difference between

match scores for neighboring ξl can be very small, this approach still allows us to

recover small changes in rotation from t−1 to t. The accumulation of model fitting

errors on layer 2 is prevented by searching for the best fit in a search interval at

every time step.

..

.

..

.

Fig. 11. (l) Testing rotations between search interval bounds (stippled lines), (r) slice through
voxel volume showing overlap between samples (black dots) and voxels (gray boxes). A volume
sample overlaps with a voxel if it is contained within the voxel’s cubic volume.

The fitting step for a layer-2 segment is only performed if the corresponding

knee or elbow joint is sufficiently bended. If this is not the case, the rotation angle

ρ(t − 1) from the previous time step is used for this segment at time t.

For each video frame, the 2-step fitting procedure results in a set of model pa-

rameters describing the body pose. These parameters can be easily used to animate

any artificial character based on a similarly structured skeleton.
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Table 1. Timing results.

PCA computation 4 ms
Torso segmentation 5.5 ms

Layer-1 fitting 16 ms

Fitting one layer-2 segment 211 ms

9. Results

The system is tested on several sequences of a person moving in front of the camera

setup shown in Fig. 2. Figure 12 shows sample frames taken from an example

motion sequence to which the skeleton model was fitted. From the different viewing

positions it can be seen that the complete human skeleton is nicely fitted to the

volumes of the moving person. The orientations of the shoulders and the torso are

also correctly recovered over the whole sequence.

The number and positions of the cameras are crucial for the quality of the visual

hull. Typical reconstruction errors produced by shape-from-silhouette approaches

are visibility artifacts observable as arms or legs that are too thick, also known as

phantom volumes. In the case of the visual hulls of humans, these artifacts arise

in the from of voxel planes around the arms or legs in which the skeleton must lie

(Fig. 12). Our approach can still recover the correct arm and leg configurations in

the presence of these visual hull errors. A camera looking at the scene from the top

is not required, and even with as few as four cameras looking from the side, robust

fitting is possible.

The combination of feature tracking and volume reconstruction makes the sys-

tem more robust. The knowledge of correct head, hands and feet positions enables

correct model fitting even in cases that are problematic for pure volume-based mo-

tion capture approaches 37,40. For instance, if the arms are very close to the body

the feature tracking prevents them from getting stuck in the torso volume.

The combined visual hull reconstruction, background subtraction, feature track-

ing and visual hull rendering can run at approximately 6-7 fps for a 643 voxel volume

using 2 client computers and a server. Measurements show that currently feature

tracking consumes over 30% of total computation time. Furthermore, we experi-

ence a network overhead in our current implementation, since the frame rates of

one client running independently without sending data to the server can reach up

to 19 fps (measured using the internal camera trigger). The performance of the

model fitting depends on the chosen parameters, such as the number of cylinder

samples and angular search steps. For an average motion sequence a model fitting

frame rate of 1-2 fps is achieved. In Table 1, the timings that we obtained while

using 256 cylinder samples in total and 15 angular search steps are summarized.

With the current implementation, the recovery of a single layer-2 arm or

leg segment rotation is by far the computationally most expensive step. Fit-

ting the layer-1 model can be done at almost no cost. Higher frame rates

can be achieved if less cylinder samples and less search steps are used.
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More results including videos of the system in action can be found at

http://www.mpi-sb.mpg.de/∼theobalt/VisualHullTracking.

Fig. 12. Skeleton fitted to visual hulls (rendered as point sets) of a moving person. In this sequence,

the person is recorded from four camera views. In the middle row reconstruction errors in the

visual hull arising as arms which are too thick can be seen. These “phantom volumes” are due

too insufficient visibility from the input camera views and are typical for visual hull methods. The

fitting method can nonetheless correctly recover the body pose.
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10. Conclusion

In this paper we present a method that combines color-based feature tracking and

3D scene reconstruction from silhouettes for human motion capture. The algorithm

enables fast fitting of a kinematic skeleton model to the video footage recorded

simultaneously from multiple video cameras. The feature tracking enables fitting of

a simplified skeleton to the motion data. The special multi-layer parameterization

enables the alignment of a more complex skeleton with the body poses in a second

step. This layer-2 skeleton features a special representation for arm and leg segments

including cylinder samples attached to the skeleton. The presented method uses

the reconstructed volumetric visual hull to find the correct configuration of the

kinematic skeleton at every time step by means of a volume registration technique.

Results of a prototype implementation capturing the motion of a human per-

former demonstrate the system’s ability to fit the skeleton in real-time and a more

detailed skeleton at near interactive frame rates. This hybrid approach of combin-

ing feature tracking and volume reconstruction is found to be capable of correctly

finding human body configurations even in the presence of typical visibility artifacts

in the visual hull.

The feature tracking in the online system and constraints in the model parame-

terization currently limit the range of movements which can be captured. The fitting

method itself, however, allows arbitrary rotations of the human actor around the

vertical body axis.

In the future, the model fitting step and the visual hull reconstruction will be

integrated into one real-time motion capture and character control application.

The use of a dynamic motion model for feature tracking is also another area of

our research. Furthermore, extending the method to handle a higher range of body

orientations by pose-dependent selection of cameras for tracking is currently con-

sidered.
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