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Abstract

Time-of-flight (TOF) cameras robustly provide depth
data of real world scenes at video frame rates. Unfortu-
nately, currently available camera models provide rather
low X-Y resolution. Also, their depth measurements are
starkly influenced by random and systematic errors which
renders them inappropriate for high-quality 3D scanning.
In this paper we show that ideas from traditional color im-
age superresolution can be applied to TOF cameras in or-
der to obtain 3D data of higher X-Y resolution and less
noise. We will also show that our approach, which works
using depth images only, bears many advantages over al-
ternative depth upsampling methods that combine informa-
tion from separate high-resolution color and low-resolution
depth data.

1. Introduction
Depth sensing is a core component of many machine vi-

sion systems. Among the technologies available, time-of-
flight (TOF) based systems are attractive since they are real-
time, robust, and rapidly becoming inexpensive. However
their resolution is still limited. In this work, we address one
of the main limitations of TOF sensors by showing that su-
perresolution methods can be used to increase their effective
resolution.

Time of flight cameras sense depth by emitting a pulse
or modulated light signal and then measuring the time dif-
ferential in the returning wavefront. This process is largely
independent of the scene texture and full frame real-time
depth estimates are possible. Unfortunately, the data is
noticeably contaminated with random and systematic mea-
surement errors. In addition the X-Y resolution of the sen-
sors is often limited to 320x240 pixels or fewer, far below
the resolution of modern cameras.

Prior researchers using TOF cameras have combined a
high resolution RGB camera with a low resolution depth
camera [2, 16]. Resolution is increased by assuming align-
ment of depth and intensity discontinuities in both views
while smoothing elsewhere. These techniques work well
when image features such as edges are collocated, but break

down when this assumption of common scene statistics is
violated. In this work we show that superresolution meth-
ods which rely only on the depth data perform better for
these scenes.

Superresolution for traditional cameras has been well ex-
plored. Rather than reinvent these methods, we draw from
the existing literature and show that it is applicable to depth
cameras as well. Low resolution depth images are under-
stood as degraded samples of a single high-resolution scene.
A sequence of low resolution depth images is aligned and
then merged to produce a single high quality result.

The primary contribution of this work is showing that
high quality depth maps can be obtained from TOF cameras
using multi-frame superresolution methods. In addition, we
provide a comparison with color-fusion based superresolu-
tion, showing that multi-frame methods are superior when
edge discontinuities are not collocated.

2. Related Work
Depth and color fusion: Depth image superresolution
has primarily been accomplished by using a high resolution
color image taken from the same location. The low resolu-
tion depth images are upsampled and regularized subject to
an edge consistency term with respect to the color image.
Regularization has taken the form of a MRF [2], bilateral
filtering of the cost volume [16], and bilateral filtering in
the image plane [8]. These methods can reproduce high fre-
quency detail, however they incorrectly assume that color is
correlated with depth. This causes difficulties with colored
textures and when a true depth discontinuity is not visible in
the color channel. Another approach was taken by Lindner
et al. [10], who applied noise and edge aware upsampling.
Using a pure upsampling method, they do not to recover de-
tails which are beyond the depth sensor’s resolution limit.

Color superresolution: Image based superresolution tar-
geted at standard color or intensity images has been well
studied for many years [3][5][14]. Multiple low resolution
images are aligned and then a high resolution image is es-
timated which explains the image stack. Interested readers
will find a survey informative [1].

Some researchers have formulated a joint optimization
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of superresolution together with shape-from-X. Shape from
photometric cues [6] as well as defocus [12] have both been
explored.

The noise and data statistics of depth data exhibit effects
which may not be found in normal color images, so it is not
obvious that color based methods are applicable. Indeed,
earlier work targeted at depth superresolution pursued an
alternate strategy. In this paper we show that color methods
are applicable in the depth domain, and that they can per-
form better than the specialized depth superresolution meth-
ods previously introduced.

Improving TOF sensors: The depth accuracy of time-of-
flight sensors can be increased by a variety of methods, e.g.
by accounting for ambient light [4], simulating the shape
of the reflected signal [7], and performing time gated su-
perresolution [9]. While these methods improve resolution
in the depth direction, they all operate at the level of peak
detection in the sensor itself and are not directly related to
improving resolution in the X-Y plane as discussed in this
work.

3. The Depth Camera and its Characteristics
The Z-cam [15] used in our experiments exploits the

time-of-flight principle of light to measure the distance of
each pixel from the scene. The camera features a lens and
a CMOS sensor, thus is based on video camera technology.
However, it houses additional components, like a ring of in-
frared LEDs and a rapid controlled shutter, to enable depth
rather than intensity measurement only. When capturing a
single frame, the camera emits a single-pulse light wave-
front from the LEDs into the scene. The returned pulse is
”shaped” by the scene structure and this shape information
can be extracted by gating the returned signal with the rapid
shutter. After normalization, the measured intensity values
can be interpreted as depth values. The Z-cam can measure
full frame depth at video rate and at a resolution of 320×240
pixels. The control of the shutters also enables the defini-
tion of a 3D frustum in space in which depth measurements
are taken.

In contrast to competing TOF cameras, the Z-cam fea-
tures a normal video camera of 640 × 480 pixels in the
same device which enables recording of texture-mapped ge-
ometry. Unfortunately, video and depth are not recorded
through the same optics and the homographic registration of
both data provided by the manufacturer can easily be sev-
eral pixels off. In our comparison experiments we therefore
resort to our own external color camera (Sect. 5).

Although the Z-cam delivers scene geometry at unprece-
dented speed and largely independently of scene texture, the
quality of recovered 3D data in a single frame is not suffi-
cient for high-quality 3D scanning, as shown in Fig. 2b. In
this image three wall plugs should be visible, but are mostly
masked by noise. The depth measurements are starkly con-

Figure 1: Variance distribution in a depth image taken at
approx. 1.5 m average distance from a scene. Depth images
contain heavy noise near the corners.

taminated by random noise which can, at 1 m average scene
distance, vary by up to 5 cm. Depth measurements also be-
come more unreliable towards the boundary of the field of
view, since there, optical aberrations like vignetting play a
stronger role, and the PSNR of the returned signal natu-
rally decreases. Fig. 1 shows the strongly increasing vari-
ance in random noise towards the field-of-view boundary.
Noise variance is also much higher at mixed pixels that in-
tegrate over depth discontinuities in the scene. Fortunately,
pixels with high measurement uncertainty typically exhibit
low measurement intensity and therefore the camera’s raw
intensity data can be interpreted as a confidence map. Ex-
perimentally, we could verify that the depth readings at a
single pixel location over time follow a slightly heavy-tailed
distribution.

In addition to random noise, the camera is likely to ex-
hibit a systematic measurement bias that may depend on re-
flectance, angle of incidence, and environment factors like
temperature and lighting. A detailed analysis of these con-
sistent inaccuracies is beyond the scope of this paper. In
our controlled lab setting, systematic errors played no sig-
nificant role.

The Z-cam delivers ray-space depth maps, i.e. gray-
scale images that store at each pixel the distance along the
ray from the center of projection to the point in the scene,
Fig. 3a. For reconstructing metric 3D data, one has to un-
project ray space measurements according to:

(X,Y,Z) = D · V̄ . (1)

Here, V = (x,y,f)√
(x2+y2+f2)

is the measurement ray direc-

tion (viewing vector) from the camera’s center of projec-
tion through the sensor pixel at location (x, y) relative to
the sensor center, and f is the camera’s focal length. For
metric reconstruction, x and y have to be specified in terms
of metric pixel size µ, i.e. x = ix ·µ with ix being the pixel
index in x-direction relative to the pixel center. Further on,
D = Pd +Pw

255−g
255 is the depth along the measurement ray

which is computed from the distance to the frontal clipping
plane Pd, the depth of the 3D view frustum Pw, and the gray
value g in the depth image which is quantized to eight bit.



4. Depth Superresolution
It is our goal to obtain high-quality 3D measurements of

a static scene despite the significant noise in the raw data.
By performing superresolution, we increase X-Y measure-
ment resolution and, at the same time, reduce the overall
random noise level. To this end, several depth maps cap-
tured from minimally displaced viewpoints are aligned, and
subsequently combined into a higher resolution depth im-
age. From this superresolved depth image, we can eventu-
ally reconstruct superresolved 3D geometry.

4.1. Setup
In our measurement setup, the depth camera is located

between 50 cm and 150 cm away from the scene. Typi-
cally, we capture N = 15 images by slightly translating the
camera orthogonally to the viewing direction. Please note
that the alignment of images captured by the above proce-
dure effectively leads to the creation of a multi-perspective
image in which parallax effects may play a role. One way to
overcome these effects would be to slightly rotate the cam-
era around the center of projection rather than translate it.
However, with as small displacements as we apply them we
could experimentally not verify an increase in reconstruc-
tion quality if the camera is rotated. Therefore, we always
record with translational offsets.

From the first to the last frame of a superresolution se-
quence, the camera is, in total, displaced by around 1 cm to
1.5 cm. In order to cancel out random noise, we average 30
depth measurements at each camera position.

4.2. Extracting High Resolution 3D Data
By appropriately combining the low resolution depth im-

ages Yk, k = 1, . . . , N taken from slightly displaced view-
points, we can create new depth maps at significantly higher
resolution. Using Eq. (1), the upsampled depth maps can
then be converted to high resolution 3D geometry. Our
depth superresolution method is based on the approach by
Farsiu et al. [3] who investigated superresolution for normal
photographs.

We cast superresolution as the problem of inverting the
formation process of low resolution depth images of a high
resolution 3D scene. To formulate the problem, we make
the simplifying assumption that the formation process of a
depth image can be described in analogy to the image for-
mation process of a normal optical camera. However, the
quality of our final results shows that this simplification is
valid. For a single depth image Yk, the formation process
therefore looks as follows:

Yk = DkHkFkX + Vk ,

where X is the original scene or, in other words, the su-
perresolved image of the 3D scene from which we sample.

Henceforth, we will refer to the upsampling factor between
low and high resolution images in x- and y-direction as β.
Fk is a translation operator representing the motion between
the superresolution image and the current low resolution
image. In our setting, we assume pure translational motion.
Hk is a blur operator accounting for the blur introduced dur-
ing the capture process (i.e. due to the optic system or mo-
tion). In our experiments we assumed no blur, hence Hk

was equivalent to the unity matrix. Dk is a decimation op-
erator modeling the downsampling from the superresolution
image to the size of the low resolution image. Finally Vk

represents additive noise inherited during the capture pro-
cess. To extract the high resolution image from the set of
low resolution depth maps, we need to solve the following
minimization problem:

X̂ = argmin
X

[
N∑

k=1

‖DkHkFkX − Yk‖p
p

]
, (2)

where [3] readily argues that p = 1 gives optimal results in
terms of robust statistics. Since with a typical set of images
this estimation problem is ill-posed, one is to add a regular-
ization term Υ(X) with weight λ yielding

X̂ = argmin
X

[
N∑

k=1

‖DkHkFkX − Yk‖p
p + λΥ(X)

]
(3)

Different regularization terms such as Tikhonov regulariza-
tion or Total Variation could be imagined. For this paper,
we used bilateral regularization. This robust technique, also
referred to as bilateral filtering, has the advantage of pre-
serving edges and removing random noise in areas of slowly
varying depth. Also, the computation of the regularizer is
relatively cheap. The bilateral regularization is given by

Υ(X)B =
P∑

l=−P

P∑
m=0︸ ︷︷ ︸

l+m>=0

α|m|+|l| ∥∥X − Sl
xSm

y X
∥∥

1

here Sl
x and Sm

y are shift operators that perform a shift in
x or y direction by l or respectively m pixels. The scalar
weight α, with 0 < α < 1, controls the spatial influence
area of the bilateral constraint, P ≥ 1 specifies the size of
the neighborhood used for bilateral filtering. Please refer
to [3] to learn about the equivalence of the above formu-
lation to the original bilateral filter proposed in [13]. The
robust bilateral formulation in Eq. (3) is preferable over
quadratic penalization since the latter would perform worse
in the presence of the heavy-tailed random noise in the raw
depth data, Sect. 3.

Solving the optimization problem in Eq. (3) yields a su-
perresolved depth image of the scene. In practice, we em-
ploy the solver implementation provided by Milanfar [11] to



(a) Color recording in high resolution (b) 3D model of single raw frame

Figure 2: Wall plug scene - details on the plugs, clearly visible in the color image, are entirely masked by random noise in an
unsmoothed 3D rendering of a single depth image.

compute the solution. From the superresolution depth im-
age, we reconstruct 3D geometry by means of Eq. (1). Prior
to 3D reconstruction, we median filter the superresolution
depth image with a kernel size of 3 × 3. Please remem-
ber that the effective metric pixel size in the high-resolution
image is µ/β.

5. Results and Discussion
We have tested our approach on three different scenes,

all of which show geometric detail that is close to the X-
Y resolution limit of the depth camera in one frame. The
test scenes also feature areas that contradict the assumption
color and depth discontinuities are well-aligned, which al-
lows us to show that methods relying on this simple prior
statistics will perform worse.

Resolving thin structure: We wanted to verify that our
superresolution method can resolve thin structures. There-
fore our first setup shows three wall plugs in front of a white
wall, Fig. 2a. The scene is approx. 50 cm away from the
camera, and was recorded from 15 displaced positions to
perform superresolution. For this scene, the camera was
configured to record objects from 0 cm up to 100 cm away.
To illustrate the performance of our method, we focus on a
dent and a long thin gap in the wall plugs which are marked
as A and B, respectively, in Fig. 2a. Since these features are
close to the resolution limit of the Z-cam, they do not appear
well in a single depth image, Fig. 3a, and consequently also
not in the corresponding low resolution 3D reconstruction,
Fig. 3d. In contrast, our 4-times superresolved result accu-
rately captures these details, as visible in the depth image
Fig. 3b, and in geometry Fig. 3e where they appear as true
3D structure with correct depth. To display the 3D geome-
try we convert the depth maps into triangulated height fields
and render them using basic Phong shading. Please note
that for fair comparison we always perform superresolution
at 8-bit depth precision in all tested methods, as this is the
limit of the software by Milanfar et al. [11]. Therefore, dis-
cretization artifacts in the form of depth steps are visible in
the renderings. To verify that our 3D reconstructions do not

suffer from incorrect scaling or distortion we compared the
size of several landmarks in our results to their real-world
size. In all cases, this comparison showed an exact match
which proves the reliability of our algorithm.

For comparison, we implemented a joint bilateral up-
sampling (JBU) approach [8], which uses a high-resolution
color and a low resolution depth image to raise the depth
resolution to the one of the color image. The color im-
age was recorded using a standard digital camera and has
been manually aligned using a homographic warp. By in-
spection the alignment error was determined to zero pix-
els for most pixels, while three pixels being the maximum
error. The method’s implicit assumption that color and
depth edges are collocated is frequently violated in our wall
plug scene causing erroneous reconstructions. Although the
depth map, Fig. 3c, shows crisp edges which is visually
pleasing if only the gray scale image is looked at, the ac-
tual reconstruction exhibits several errors. For instance, the
method wrongly reconstructs the shadowed area B on the
ripple of the left wall plug, Fig. 2a, as a depth discontinuity
that protrudes all the way through the scene Fig. 3f. Also,
joint bilateral upsampling performs excessive smoothing in
areas with low image gradient. Therefore, the dent in area A
on the right wall plug, whose edges are not clear in the color
image, is entirely smoothed out. Also, shadows on the back
of the table appear as geometry merged to the lower part
of the plugs, and the top of the right plug is cut off due
color similarity to the background. We thus conclude that a
slightly higher remaining level of noise, as in in our results,
is preferable over such excessive smoothing since in the lat-
ter case actual shape detail is lost or incorrectly estimated.

Preserving sharp edges: Another important characteris-
tic of superresolution is to preserve sharp edges. Hence, a
second scene, with a planar checkerboard spaced approx.
50 cm from a white background, was recorded to prove that
our method correctly captures both sharp edges and smooth
regions, Fig. 5a. In contrast, the joint bilateral upsampling
method runs into difficulties in the presence of strong tex-
ture on actually planar geometry. Here the camera was con-



(a) Depth map in native resolution (b) Depth map by superresolution, β = 4 (c) Depth map by joint bilateral upsampling

(d) 3D model from native resolution (e) 3D model from superresolution, β = 4 (f) 3D model from joint bilateral upsampling

Figure 3: Wall plug scene - superresolution (b),(e) unveils fine details, previously not visible in native resolution (a),(d). Joint
bilateral upsampling (c),(f) sharpens the image, but introduces false geometry. For better visibility the contrast of depth maps
was enhanced.

figured for recording between 70 cm and 200 cm. The
board features a color pattern with strong intensity gradi-
ents. The pattern is slightly smaller than the actual size of
the board, which has a 1 cm white boundary that is visually
indistinguishable from the white background. In Fig. 5a,
we marked the location of the actual depth edge with lines.
The low resolution depth image (Fig. 5d) has an apparent
staircase effect on the edge, while the edge appears sharp
and crisp in the depth map created by the proposed super-
resolution method (Fig. 5e). The joint bilateral upsampling
method is tricked by the non-collocation of the intensity
gradient (black pattern boundary) and true depth disconti-
nuity. Consequently, the true depth edge is smoothed with
the background leading to a blurred edge in the JBU depth
image, Fig. 5f. This effect can be studied best in 3D. While
our superresolved geometry, Fig. 5h, shows a sharp edge
with sharped depth discontinuity, the edge of the joint bi-
lateral upsampling result is incorrectly shaped like a curved
ramp, Fig. 5i. The rendering of the depth edges in a cross-
sectional views, Fig. 5j-5l, makes this effect even more ap-
parent. Or result shows a sharp corner and a straight depth
edge, Fig. 5j, whereas the JBU result is erroneously curved,
Fig. 5l. Another problematic region for joint bilateral up-
sampling is the surface of the checker board itself. Whereas
it appears up to noise as a plain, the color gradients in the
checker board provoke the bilateral filter to emboss this
structure into the geometry (Fig. 5c). In contrast, our up-

sampling result shows a planar board, Fig. 5b.

Gain in resolution: To further demonstrate the true gain
in resolution, we recorded three planar triangular wedges
30 cm in front of a flat wall. They exhibit clear sharp depth
edges and, close to the tips, fall below the resolution limit
of the camera. The recording settings were Pd = 50 cm
and Pw = 100 cm. While the depth map at original camera
resolution exhibits strong staircase aliasing at the bound-
aries, Fig. 4a, our 4-times upsampled result faithfully cap-
tures crisp depth edges, Fig. 4c. Consequently, the upsam-
pled 3D geometry also shows sharp edges, Fig. 4d. Simple
bicubic upsampling of the low resolution data cannot pro-
duce the same superresolution effect. It mainly upsamples
the staircase pattern and boosts the random noise, Fig. 4b.

Our method is subject to a few limitations. Since several
depth images have to be combined it is, in contrast to joint
bilateral upsampling, only suitable for static scenes. Also,
given a runtime of approximately one minute to compute a
superresolved depth map, our approach is not suitable for
real-time applications. Furthermore our approach relies on
faithful image registration which may be difficult in scenes
with few distinct depth discontinuities. In the future, we
plan to capitalize on noise characteristics and known mea-
surement uncertainty, from which we expect improved su-
perresolution quality.

We will also perform a more detailed analysis of the
range of achievable upsampling factors in dependence on



(a) Depth in native resolution (b) Depth by bicubic upsampling

(c) Depth by superresolution (d) 3D model from superresolution

Figure 4: Wedge scene - superresolution (β = 4) achieves
true resolution enhancement and shows straight alias-free
edges at depth boundaries (c),(d). In contrast, staircasing
artifacts are clearly visible at native resolution (a) and in the
bicubic upsampled result (b). Additionally noise is signifi-
cantly reduced by superresolution.

scene structure and recording conditions. Currently, we did
tests with β in the range of 2 − 6. Overall, we found that,
in our test scenes, β = 4 provides the best compromise be-
tween extracted shape detail and model size.

We would also like to remark that both tested superreso-
lution methods rely on a bilateral constraint of some form.
It is not the constraint itself that makes one method prefer-
able over the other, but the particular way how it is enforced.
Joint bilateral upsampling enforces the constraint in two dif-
ferent data domains, namely color and depth, and implic-
itly relies on the wrong prior. In contrast, we enforce the
constraint on depth data only and do not enforce the same
excessive smoothing as the former approach which renders
advantageous in our setting.

In summary, we have demonstrated that the concepts of
color superresolution can be used to greatly improve 3D re-
construction quality of static scenes.

6. Conclusion
In this work we have shown that superresolution methods

that were originally developed for color images can be ap-
plied to capture higher resolution 3D geometry with a time-
of-flight depth camera. We have also shown that a proper
formulation of superresolution only in terms of depth im-

ages frequently outperforms previous algorithms from the
literature that combine information from aligned color and
depth. Overall, the proposed superresolution strategy reli-
ably increases the X-Y resolution of captured 3D geometry.
Since it also severely reduces the noise level in the data, it
turns the TOF camera into a viable tool for 3D shape scan-
ning.
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(a) Color recording in high resolution (b) True structure by superresolution, β = 4 (c) False structure by joint bilateral upsampling

(d) Depth map in native resolution (e) Depth map by superresolution, β = 4 (f) Depth map by joint bilateral upsampling

(g) 3D model from native resolution (h) 3D model from superresolution, β = 4 (i) 3D model from joint bilateral upsampling

(j) Edge detail at native resolution (k) Edge detail by superresolution, β = 4 (l) Edge detail by joint bilateral upsampling

Figure 5: Board scene - The upper row shows that ”phantom” geometry is introduced by joint bilateral upsampling (b),
whereas superresolution retains the true geometry (c). This effect is also visible in the depth maps one row below. The two
lower rows show sharp edges being preserved by superresolution, while joint bilateral upsampling yields round edges.


