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Abstract

We present a dense 3D correspondence finding method
that enables spatio-temporally coherent reconstruction of
surface animations from multi-view video data. Given as in-
put a sequence of shape-from-silhouette volumes of a mov-
ing subject that were reconstructed for each time frame in-
dividually, our method establishes dense surface correspon-
dences between subsequent shapes independently of surface
discretization. This is achieved in two steps: first, we ob-
tain sparse correspondences from robust optical features
between adjacent frames. Second, we generate dense cor-
respondences which serve as map between respective sur-
faces. By applying this procedure subsequently to all pairs
of time steps we can trivially align one shape with all others.
Thus, the original input can be reconstructed as a sequence
of meshes with constant connectivity and small tangential
distortion. We exemplify the performance and accuracy of
our method using several synthetic and captured real-world
sequences.

1. Introduction

In recent years, ever more efficient computers and in-
creasingly accurate imaging devices have rendered it feasi-
ble to capture computer animations from subjects perform-
ing in the real-world rather than by hand-crafting them with
the traditional toolbox of the animator. To this end, a va-
riety of methods have been developed that reconstruct both
time-varying shape and appearance of arbitrary real-world
performers from multi-viewpoint video, Sect. 2.

Most of these methods provide convincing shape and
appearance for each time step of an input animation indi-
vidually. However, they fall short of reconstructing spatio-
temporally coherent scene geometry for arbitrary subjects
since the challenging 3D correspondence problem is not
addressed. Spatio-temporal coherence is an important
and highly-desirable property in captured animations, as it
greatly facilitates or even is inevitable for many tasks such
as editing, compression or spatio-temporal postprocessing.

We therefore propose a new spatio-temporal dense 3D
correspondence finding method that enables us to capture
coherent dynamic scene geometry using standard shape-
from-silhouette methods, Sect. 3. Our algorithm is tailored
to the characteristics of video-based reconstruction methods
which often capture high spatial detail in the input video
frames, but provide relatively sparsely sampled 3D geome-
try with a much lower level of shape detail and with a con-
siderable level of noise.

In a first step, shape-from-silhouette surfaces are recon-
structed for each time step of video yielding a sequence of
shapes made of triangle meshes with varying connectivity.
Thereafter, sparse 3D correspondences between subsequent
pairs of surfaces are computed by matching 3D positions of
optical features that can be accurately extracted from high-
resolution input video frames, Sect. 3.1. These sparse corre-
spondences represent control points for anchoring appropri-
ate bivariate scalar functions on each reconstructed surface
mesh, Sect. 3.2. The choice of these functions enables us
to establish dense correspondence essentially by matching
function values. The dense correspondences can be used
to straightforwardly align one mesh to all other reconstruc-
tions by performing a sequence of pairwise registrations,
Sect. 3.3. The output of our approach is a spatio-temporally
coherent animation, i.e. a sequence of meshes with constant
graph structure and low tangential distortion.

2. Related Work

Technological progress in recent years has made it
feasible to reconstruct shape and appearance of dynamic
scenes using video [16] or video plus active sensing [28].
Multi-view video methods based on the shape-from-
silhouette [17] or stereo principle [30] bear the intriguing
advantage that they enable reconstruction of arbitrary mov-
ing subjects. Unfortunately, None of these methods is de-
signed to reconstruct scene geometry with coherent con-
nectivity over time since the 3D correspondence problem
is not addressed. Model-based approaches employ shape
priors [7, 6] which limits them to certain types of scenes.
The algorithm proposed in this paper enables coherent dy-
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Figure 1. Input video frames (a), (c) and corresponding spatio-temporally coherent meshes rendered back into same camera view (b), (d).
The checkerboard texture shows the consistently small tangential surface distortion in our reconstruction even between temporally far apart
frames (e), (f). – See also accompanying video [1].

namic shape reconstruction while maintaining the flexibility
of shape-from-silhouette methods.

In geometry processing, the 3D correspondence prob-
lem is addressed in parametrization and its application in
(compatible) remeshing see, e.g., the surveys [12, 2] where
the goal is to match the connectivity of one single shape
model to the connectivity of another one. Generally, the
required robust parametrization techniques are limited to
fixed topology and are computationally involved, especially
in the presence of additional constraints from given corre-
spondences.

The key to spatio-temporally coherent reconstruction is
a robust solution to the 3D correspondence problem. Con-
ceptually similar to this problem, albeit in a reduced prob-
lem domain, is the shape matching problem [19]. One way
to solve this problem is to localize and match salient ge-
ometric features between two shapes [10]. By combining
feature matching with pose transformation, two shapes can
be aligned [13]. Some probabilistic alignment methods reg-
ister laser scans by finding the most probable embedding of
one shape into the other [3]. Iterative closest point (ICP)
procedures use a much simpler correspondence criterion
that iteratively pairs locations closest to each other [11].
ICP methods may easily get stuck in local minima if no
decent initial registration is provided. None of the afore-
mentioned algorithms explicitly addresses the problem of
multi-frame animation reconstruction.

Only few methods so far explicitly address the prob-
lem of reconstructing coherent animated surfaces from real-
time scanner data, such as real-time structured light scan-
ners [26, 24]. Unfortunately, in a video-based setting like
ours, the applicability of these methods is either limited by
high computational complexity, or by the requirement of
high spatial and temporal sampling density which is typi-
cally not fulfilled.

Similar to our approach is the algorithm proposed by
Shinya et al. [20] who deform a 3D model into sequences
of visual hull meshes by minimizing a deformation energy.
In contrast to our algorithm, accurate optical feature infor-

mation is not exploited, and the ICP-like correspondence
criterion is vulnerable to erroneous local convergence.

Matsuyama et al. [16] suggest a method to deform
a mesh based on multi-view silhouettes and multi-view
photo-consistencies. By optical means only, the required
dense matches are difficult to find, and therefore the
strongly constrained non-linear minimization takes several
minutes computation time per frame. In contrast, our algo-
rithm is computationally more efficient and creates dense
correspondences despite only sparse optical matches.

Starck et al. [22] also aim at establishing coherence in
sequences of shape-from-silhouette meshes. Their method
establishes correspondences in a spherical parametrization
domain which may fail in extreme poses and may introduce
distortion-dependent matching inaccuracies close to singu-
lar points. In a recent follow-up, Starck et al. [23] apply
a Markov random field to match isometry-invariant surface
descriptors based on local parametrization. This enables es-
tablishing correspondence over wide time-frames, which is
in fact a different problem. For both, [22, 23], numerical
problems are more involved and computational costs are or-
ders of magnitude higher [21] than for our method.

In contrast to the methods described above, our algo-
rithm provides the following advantages and novelties

• As an object space method it does not suffer from
parametrization-induced limitations.

• It establishes dense correspondence fields indepen-
dently of the level and structure of surface discretiza-
tion which makes surface alignment straightforward.

• It explicitly addresses the characteristics of shape-
from-silhouette-based animation reconstruction. By
combining both accurate image feature and function
matching, we are able to robustly match even coarsely
reconstructed surface geometry lacking coherent and
dense surface details.

• In practice, robustness to topology changes.



3. Spatio-temporal Correspondence Finding

The input to our method is a sequence of calibrated syn-
chronized video streams that were recorded from multiple
viewpoints around the scene and that show a subject per-
forming in the scene’s foreground. Our test acquisition sys-
tem features eight synchronized video cameras arranged in
a circular setup and delivering 25fps at 1004x1004 pixel
frame resolution.

Background subtraction yields a foreground silhouette
for each of the N captured video frames. In a pre-
processing step a polyhedral visual hull method [9] is ap-
plied to each time-step of video. In order to cure triangle de-
generacies in the input data and to produce a more uniform
surface discretization, the visual hull surfaces are resampled
and the resulting point clouds are fed into a Poisson sur-
face reconstruction approach [14] (we use their implemen-
tation). This way, a sequence of triangle meshes with vary-
ing vertex connectivity is produced that captures the shape
of the subject at each time step.

In the following we describe a triangle mesh as M =
(V, T ,p), where V denotes vertices and T their triangu-
lation or connectivity. Hence, (i, j, k) ∈ T denotes a tri-
angle, and with each vertex � ∈ V we associate positions
p� ∈ R3 defining the surface’s embedding in 3D. We con-
sider N time-frames and thus write a sequence of meshes as
M(t) = (V(t), T (t),p(t)), t = 0, . . . , N −1, where M(t)
approximates the (ideal) surface S(t).

Our algorithm propagates the connectivity of mesh
M(0) by iteratively matching it against reconstructed visual
hull meshes. In the following, we write M0(t) for meshes
with connectivity (V0, T0) := (V(0), T (0)) of M(0), i.e.,
M0(t) = (T (0),V(0),p(t)) and in particular M(0) =
M0(0). Then given a subsequent pair of meshes M0(t)
and M(t + 1), where M0(t) is M(0) aligned with M(t)
during a previous iteration, our algorithm proceeds as fol-
lows:

In a first step, initial coarse correspondences are ob-
tained by matching robust optical features between image-
frames and mapping them to 3D-positions on the surfaces,
Sect. 3.1. We use SIFT [15] for this purpose, yielding a
sparse covering of the surfaces with feature points. In con-
trast to deformation transfer methods [25, 29], we can’t
choose ideal features, i.e. our sparse features alone gen-
erally don’t carry enough information for direct correspon-
dence or deformation-based alignment, see also Sect. 5.

Therefore, we estimate dense correspondences in a sec-
ond step, which constitutes the core of our approach: with
each feature point we associate a scalar, monotonic function
with certain interpolation properties. Requirements for such
functions will be discussed in detail in Sect. 3.2. Dense cor-
respondences are found by pairing surface locations with
similar function values.

This way we can provide surface correspondences which

are densely and faithfully distributed over the surface. We
use these matching 3D surface points as constraints for de-
forming one mesh over time without resorting to involved
deformation algorithms (see, e.g., [5]) that were necessary
if correspondences were sparse. The result is an animation
sequence with constant connectivity.

We remark that the approach is tailored to the partic-
ular animation setting: the acquisition and shape-from-
silhouette reconstruction provides only fairly accurate and
medium resolution geometry data, possibly contaminated
with noise, but at the same time high-resolution texture in-
formation per image frame. The individual matching steps
are detailed in the following subsections.

3.1. Coarse Correspondences

In order to establish coarse correspondences we find ro-
bust optical features between adjacent frames by localizing
them in the input video frames and inferring their 3D posi-
tions by means of the available reconstructed model geom-
etry. For localizing features we apply SIFT descriptors [15]
as this technique has a number of advantageous properties
for our video setting: identified features are largely invariant
under rotation, scale and moderate change in viewpoint, and
the rich descriptors also enable wide-baseline matching. In
particular the latter property pays off in our setting as rapid
scene motion may easily lead to large image disparities be-
tween subsequent frames. In such a scenario, alternative
image matching approaches, such as KLT or general optical
flow methods are more likely to fail [4]. Also, as opposed
to geometric feature matching [10] we can maintain preci-
sion even if the reconstructions don’t exhibit salient shape
details.

We compute 2D SIFT feature locations for each input
frame Ic(t) at all time steps t and all camera views c in a
preprocessing step. On a typical sequence we obtain be-
tween 300 and 500 features per time step (with multiple oc-
currences of the same feature across cameras discarded.

When aligning two subsequent meshes M0(t) and
M(t + 1), we compute 3D feature positions at either time
step by back-projection from images onto the 3D shapes.
To preserve the highest possible feature localization accu-
racy independently of triangulation (from Marching Cubes
after Poisson reconstruction), 3D positions of features are
computed from linear interpolation rather than nearest ver-
tex positions. To this end, we exploit the graphics hardware
and assign to each feature an interpolated 3D position ob-
tained via rasterizing the 3D shape’s coordinates into the
same camera view.

To facilitate later computation of dense correspondences,
we intermediately enforce association of features with ver-
tices by locally splitting each original triangle containing a
feature into three triangles. This is achieved by inserting
a new vertex at the interpolation point. By performing 3D
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Figure 2. Detected SIFT features in two consecutive frames (a) and (b). Matched features are shown in (c). Obvious outliers, such as
matches outside the silhouette, are filtered out during preprocessing. Intersecting iso-contours of harmonic functions centered on sparse
correspondences (shown as colored lines) can be used to localize surface points. For clarity, (e) zooms in on a subregion of (d).

localization and subdivision for all camera views at a each
time step t and t + 1, we create a set of possibly subdivided
versions of the original reconstruction meshes M′

0(t) and
M′(t + 1). Each of these meshes possesses an associated
set of feature vertex indices F(t) and F(t + 1). Note that
these meshes only serve as temporary helper structures to
gain accuracy. Local splits will be rolled back later, and are
neither used in the final output of our method nor induce
any other side effects, see Sect. 3.3. Therefore, and to keep
notation simple, we will continue to refer to M0 and M.

We find correspondences between SIFT feature vertices
on either mesh by looking for pairs with similar descriptors.
To this end, we compute the Euclidean distance De(i, j)
between the descriptors of all elements i ∈ F(t) and
j ∈ F(t + 1). A correspondence (i, j) is considered plau-
sible and hence established if De(i, j) is below a certain
threshold. This way, possible outliers in all correspondence
sets are filtered out by discarding matches with implausible
3D distances. Erroneous matches outside the silhouette area
are trivially discarded. Fig. 2(a-c) illustrates SIFT features.

3.2. Finding Dense Correspondences

The basic idea for establishing dense correspondence is
to infer additional values from the given sparse features and
the surface, and to then carefully analyze and compare these
values over time. For this purpose we define bivariate scalar
functions hi on the surfaces, each function is associated
with a particular feature fi ∈ F , i = 0, . . . ,m. In an
ideal setting we could think of these as distance or coor-
dinate functions: given three (feature) points a, b, c in the
plane, any point in the plane can be characterized by its dis-
tance to each of a, b, c or in terms of its barycentric coor-
dinates w.r.t. the triangle (a, b, c). Our choice of functions
hi resembles barycentric coordinates as we require inter-
polation hi(ui) = 1 and hi(uj) = 0 for all i �= j, and
monotonicity of hi with extrema at the interpolation points,
where ui ∈ R2 denotes a surface point associated with fi.

In order to be meaningful when evaluated for different
t over the time-dependent surface S(t), we additionally re-
quire that hi is taken from a class of functions which change

their values only slightly under moderate surface deforma-
tions. For this reason we chose harmonic functions which
satisfy

∆S(t) hi = 0 , (1)

where ∆S(t) denotes the Laplace-Beltrami operator. This is
justified by the isometry-invariance of the operator, i.e., for
isometric deformations of S into S ′ we have ∆S = ∆S′ .
We assume moderate deformations of S(t) to be largely
isometric. This property has previously been exploited to
compute signatures for shape matching and retrieval, see,
e.g., [8, 18].

So far we assumed continuous functions. In practice, hi

are piecewise linear functions w.r.t. M(t), and an appro-
priate discretization of the differential operator ∆S(t) is re-
quired. In particular, we require independence of the trian-
gulation, i.e. for different meshes approximating the same
shape, the discrete solutions of (1) should yield the same or
very similar results. We use the well-established cotangent
discretization which provides this linear-precision property
and is symmetric (see [27] for a comparison of alternative
discretizations).

With functions hi computed we proceed in several steps
to find dense correspondence. Given a surface point u0 ∈
S(t) that corresponds to a vertex k of M0(t), the goal is to
find a matching point u′

0 ∈ S(t + 1) using hi defined on
the mesh M0(t) and h′

i defined on M(t + 1). Evaluation
of the harmonic functions yields “coordinates” h(u) :=
[h0(u), . . . , hm(u)] and h′(u) := [h′

0(u), . . . , h′
m(u)] for

both surfaces. As contributions of h are localized we re-
strict ourselves to the K coordinate values of largest mag-
nitude at u0, i.e., we consider hK(u0) := [hi1 , . . . , hiK

],
i1, . . . , iK ∈ K, where h�(u0) ≥ h�(u0) for all � ∈ K, � /∈
K. In our implementation we use K = 10. We can visual-
ize the local influence of the hi geometrically by the analog
of a planar Voronoi diagram thinking of 1 − hi as distance
function. Then for each element in a “Voronoi cell”, we ex-
pect significant or meaningful contribution only from func-
tions associated with the cell and its immediate neighbor
cells. We therefore chose K conservatively, as on average
one will find 6 immediate neighbors. In an ideal setting,
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Figure 3. (a) Vertex k (corresponding to u0) and the iso-contours intersecting at it. For better visibility only K = 3 contours are shown.
At time t + 1, the same iso-contours don’t intersect in a single point. Each candidate triangle (shown in red) is intersected by two of the
iso-contours. (b) A vertex k′ from the candidate triangle set on M(t + 1) that is closest to k according to Dh criterion is selected. (c)
Finding the surface point u′

0 within the best-matching triangle (a′, b′, k′) (according to Dh) that is adjacent to k′.

h(u) = h′(u), and retrieving u′ can be imagined as inter-
secting iso-contours h′

i(·) = hi(u0), i ∈ K. Fig. 2(d),(e)
illustrates this concept by visualizing several iso-contours
on the surface of a visual hull mesh intersecting in a sin-
gle vertex. In the presence of moderate deformations and
given discrete meshes, the equality generally does not hold.
Therefore, instead of exact intersections, we are interested
in a set of triangles E ⊂ T (t + 1), which are intersected by
at least one of the iso-contours passing through u0. These
are triangles in which u′

0 potentially resides. To put this
idea into practice, we add to E all those triangles that are in-
tersected by the highest number of contours with iso-value
hi(u0). This yields a (potentially) 1-to-many match from
u0 to a set of candidate triangles, see Fig. 3(a). To han-
dle possible localization inaccuracies, in practice we build
E conservatively and also include all candidate triangles for
the vertices in a 1-ring around u0 which are identified by
the same procedure.

To determine the final position of u′
0 on M(t + 1), we

first identify the vertex k′ ∈ Vt+1 that is closest to u′
0. We

extract this vertex k′ from the set E by computing a distance
measure between hK(u0) and h′

K
(u′

�) for all vertices � out
of E , see Fig. 3(b) for illustration on a simplified setting.
(Note that the set K is determined w.r.t. h on M0.)

Through experiments we found the following measure to
work very satisfactorily. Let dK := hK(u0) − h′

K
(u′

�). We
define the distance Dh(u0,u′

�) as

Dh(u0,u′
�) = dK (I − diag(h′

K(u′
�))

3 d�
K .

Let EV contain all vertices shared by triangles in E . We
select that vertex k′ ∈ EV with minimal distance, i.e.
Dh(u0,u′

k′) ≤ Dh(u0,u′
�) for all � �= k′, � ∈ EV .

The final step in finding u′
0 is to localize its position at

sub-discretization accuracy since, in general, u′
0 is an ar-

bitrary surface point and won’t coincide with a vertex lo-
cation. To achieve this purpose, we first identify the tri-
angle (a′, b′, k′) in the 1-ring of k′ for which the aver-
age of Dh(u0,w) (with w ∈ {ua′ ,ub′ ,uk′}) is minimal.
The best-matching surface point is expressed linearly as
u′

0 = λa′ ua′ +λb′ ub′ +λk′ uk′ . We determine u′
0 within

(a′, b′, k) as
arg min

λa′ ,λb′ ,λk′
||dJ||2 ,

where dJ := hJ(u0) − h′
J
(u′

0) and J ⊂ K contains the
indices of the three largest coordinate values at u0. Intu-
itively, we thereby place u′

0 as close as possible to either
of the three highest-value iso-contours within the area of
(a′, b′, k′), ideally at their intersection point. Fig. 3(c) illus-
trates this last step.

3.2.1 Remarks on practical implementation

Computation of coordinate functions. Numerically, hi

can be computed for every M(t) very efficiently by fac-
toring a sparse matrix and then applying m + 1 back-
substitutions. As a result we obtain m + 1 linear functions
hi , i.e., for every vertex j ∈ V we have hi(uj). In prac-
tice, we compress this data efficiently by storing only the
K largest values together with associated feature indices
Ij = {i1, . . . , iK} ⊂ F . Hence, for every vertex j we
store h�(uj), � ∈ Ij , where h�(uj) ≥ h�(uj), � /∈ Ij . Con-
sequently, we implicitly assume h�(uj) = 0, which is rea-
sonable and induces only small error as the values of hi fall
off quickly and significant contribution is localized. This
way, we never require more storage than for (K + 1)×#V
values and indices for the cost of #V K-element sorts after
each solution of the Laplace equation.

Intersection with iso-contours. The intersections of tri-
angles with an iso-contour hi(u) = c can be implemented
by a local search without additional data structures: Start-
ing from the vertex associated with the feature fi, i.e. where
hi(ui) = 1, we apply a gradient descent (hi is monotone)
on an arbitrary triangle attached to this vertex. We keep de-
scending neighboring triangles until we hit a triangle that is
intersected by the iso-contour. We then iteratively traverse
all neighboring triangles which are also intersected.

Prefiltering of SIFT features and adaptive refinement.
Coarse correspondences identified in Sect. 3.1 may be dis-
tributed unevenly on the surface and can therefore be re-
dundant if concentrated in certain areas. We can exploit
this redundancy and reduce computation time by prefilter-
ing keeping only a well-distributed subset. To identify the
active feature subset, we partition the surface into patches
with similar geodesic radius or geometric complexity. For



(a) (b)
Figure 4. Feature prefiltering and refinement. (a) zoom-in onto
hand region of the model at two subsequent time steps. Colored ar-
eas represent surface regions. Due to sparse distribution of coarse
features, the correspondences (colored dots) are not correct. (b)
Adaptively increasing the number of coarse features leads to accu-
rate correspondences.

each resulting surface cell, we maintain only one coarse fea-
ture (colored regions in Fig. 4(a)). In local sub-regions this
reduction of coarse correspondences may lead to too few
adjacent “cells” to yield meaningful coordinates. There we
raise the number of coarse correspondences, thereby adap-
tively increase the patch density and then proceed iteratively
as described above. Fig. 4(b) shows that – on this particular
data set – the latter greatly improves matching robustness in
the hand region of the reconstructed human.

3.3. Alignment by Deformation

One intriguing advantage of our approach is that in the
ideal case the dense correspondence field specifies the com-
plete alignment of M0(t) and M(t+1). To register the two
meshes, we can therefore trivially move vertex locations
without having to resort to involved deformation schemes.
In practice, we find it advantageous to apply a fast and sim-
ple Laplacian deformation scheme rather than to perform
vertex displacements only. This setting allows for trivial
enforcement of surface smoothness during alignment hence
smoothing out noise and mismatches. We refer to the re-
cent survey [5] and the references therein for information
on the method and its many variants. Laplacian deforma-
tion helps us to cure local reconstruction inaccuracies which
may occur in surface regions for which feature localization
was non-trivial, e.g. due to texture uniformity. Also, we
take care that no loss of volume is introduced by the lat-
ter deformation approach: in rare cases where this becomes
necessary, we force vertices of M0(t) back onto M(t + 1)
along the shortest distance. This way we effectively de-
form M0(t) to time-step t + 1, and as we iterate the whole
matching process over time, we track a single consistent
mesh over the whole sequence, see Fig. 1 and Fig. 7

4. Results

To demonstrate the performance of our reconstruction
approach, we recorded two real-world motion sequences in
our multi-camera system. The first sequence comprising of
105 frames shows a walking subject, Fig. 1(a)-(d), and the
second sequence comprising of 100 frames shows a human
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Figure 5. (a) Average vertex distance (in R
3) over time. (b) Recall

accuracy (geodesic) for all vertices in complete sequence. Errors
given w.r.t. ground truth sequence in % of bounding box size (1%
error ∼ 1.8 cm)

performing a simple capoeira move, Fig. 7. As shown in
these images as well as the accompanying video [1], our
method enables faithful reconstruction of spatio-temporally
coherent animations from this footage. A side-by-side
comparison of the original input sequence and the recon-
structed mesh sequence shows that our method delivers co-
herent scene geometry with low tangential distortion. When
texturing our result with a fixed checkerboard, coherence
and low distortion properties become very obvious, see
Fig. 1(e),(f) and the accompanying video [1]. We chose
this visualization as texturing with the input video images
would hide any geometric distortions.

Our algorithm is computationally more efficient than
most deformation-based registration methods (see Sect. 2).
Even if very detailed meshes comprising of roughly 10,000
vertices are reconstructed (Fig. 7(a)-(d)) and almost 600
coarse features are used, correspondences between pairs of
frames can be computed in approximately 2 minutes on a
Pentium IV 3.0 GHz. Prefiltering and adaptive refinement
down to 120 coarse matches reduces alignment time to 1
minute per frame. In the more likely and practical case that
mesh complexity is around 400 vertices, two frames can be
aligned in as fast as 2 seconds even without prefiltering.

Even if surface triangulations are very coarse, our
method produces high-quality coherent mesh animations
and the advantages of the coherent mesh representa-
tion become even more evident. In the non-coherent
version large triangulation differences between adjacent
frames, Fig. 7(g),(h), lead to strong temporal noise which
is practically eliminated in the coherent reconstructions,
Fig. 7(e),(f).

5. Evaluation and Discussion

In order to measure the accuracy of our algorithm we
created a synthetic ground truth video sequence by tex-
turing a virtual human character model (skeleton+surface
mesh) with a constant noise texture, animating the model
with captured motion data, and rendering it back into 16
virtual camera views. By this means, we obtain for each
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Figure 6. Overlap of silhouettes of input and reprojected recon-
structions in one camera view (red: non-overlapping pixels of in-
put silhouette; green: non-overlapping pixels of reconstruction).
(a) Coarse correspondences alone don’t lead to a satisfactory align-
ment. (b) Dense correspondences, however, lead to an almost per-
fect alignment.

time step a ground truth 3D model with constant triangula-
tion, as well as respective image data. To compare our re-
sults against ground truth, we reconstruct visual hull meshes
for all frames of the synthetic input and align the ground
truth 3D model of the first frame with all subsequent ones.
Fig. 5(a) shows that the average vertex distance between
the ground truth and the coherent reconstruction remains at
a very low level of 1% of the bounding box dimension over
time. The plot also shows no significant error drift which
underlines the robustness of our algorithm. Fig. 5(b) shows
recall accuracy: for more than 90% of the vertices (all time-
steps) we are within 1% bounding box diagonal (< 2cm)
error radius.

By comparing the overlap between the coherent anima-
tions and the input silhouette images, we can assess the re-
construction quality of real sequences. On average, around
2.4% of the input silhouette pixels do not overlap with the
reprojection which corresponds to an almost perfect match
between input and our result, see Fig. 6(b). This comparison
also clearly shows that dense correspondences are indeed
needed to achieve this quality level as a deformation based
on coarse features alone leads to a high residual alignment
error, Fig. 6(a).

Our visual and quantitative results confirm effectiveness
and efficiency of our method. In the following we discuss
some properties and limitations inherent to the approach.

As we reconstruct shape from silhouette in every frame,
the quality of results depends on the quality of the input
video data and may suffer from artifacts attributed to the vi-
sual hull method itself. Some of the apparent phantom vol-
umes in the results are solely due to the inability of shape-
from-silhouette method to reconstruct concavities, and they
are not introduced by our correspondence method. The
focus of this paper is not improving per-time step shape-
reconstruction itself, and our method could be used in just
the same way with more advanced reconstruction methods
that also enforce photo-consistency, such as space carving.

Comparing to related work by Starck et al. [22], our ap-
proach is more flexible (handles surfaces of arbitrary genus)

and more efficient [21] as it does not rely on spherical
parametrization, which is a non-trivial problem in its own.
For their recent follow-up paper [23], we first remark that
their goal is different in that wide time-frames are taken
into account to solve a global problem. Hence, it is natu-
ral that our local approach is much more efficient. At the
same time is accurate (they report typical errors of 5–10cm
in their setting) and provides a map for any surface point.

Also, some video sequences show a fair amount of
motion blur, and hence some reconstruction errors appear
which could be easily overcome with faster cameras. De-
spite these unfaithful reconstructions our tests show the ro-
bustness of our method.

Our approach does not require surface parametriza-
tion. However, it shares one limitation with most practical
parametrization methods, namely the absence of guarantees
to obtain a valid one-to-one mapping: this means local fold-
overs may occur when triangles are mapped between sur-
faces [12]. In practice, the alignment by means of Laplacian
deformation smoothes out such local mismatches. This fact
and experiments back the assumption of nearly isometric
deformations.

From a theoretical point of view our method is not
proven to handle changes of the surface topology over time:
“coordinate” functions might be locally unrelated in this sit-
uation, hence there is no guarantee that results are mean-
ingful in the affected surface regions. Note that similar ar-
guments are true for any method relying on local isome-
try which is not given under topology changes. In practice
however, our method performs robustly towards typically
observed topology changes (such as arms and legs merging
in the visual hulls) similarly to [23]. To illustrate this robust
handling, the video contains two synthetically generated ex-
ample sequences (similar to the sequence used for accuracy
measurement) in which arms and legs merge with the rest of
the body. Generally, our goal is spatio-temporally coherent
reconstruction, hence, topology changes should be avoided
or corrected during the initial reconstruction step.

We gave intuitive motivation for selecting suitable “co-
ordinate” functions and applying appropriate matching of
surface points. We should remark that several aspects of our
approach are based on heuristics which are justified only
empirically, in particular the choice of distance measure
Dh. An alternative approach might be based on learning
techniques which compute perfectly parametrized distance
functions for training sets.

Despite these limitations we have presented a robust and
efficient dense correspondence finding method that enables
spatio-temporally coherent animation reconstruction from
multi-view video footage.
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Figure 7. (a)-(d) Sample frames from a spatio-temporally coherent reconstruction of a capoeira move. Note that the actor’s shape is
faithfully reconstructed and triangle distortions are low. Remaining geometry artifacts are solely due to limitations of shape-from-silhouette
methods. – The advantage of our reconstruction becomes very apparent in case of coarse triangulations (∼ 750 triangles). (e), (f) show
subsequent frames from our reconstruction, and (g),(h) the same frames from the non-coherent input. The triangulation in the former
models remains very consistent while in the latter case the triangulation dramatically changes even from one time step to the next.

6. Conclusions

We presented a method to establish dense surface cor-
respondences between originally unrelated shape-from-
silhouette volumes that have been reconstructed from multi-
view video. Our approach relies on sparse robust opti-
cal features from which dense correspondence is inferred
in a discretization-independent way and without the use of
parametrization techniques. Dense correspondences serve
as maps between surfaces to align a mesh with constant con-
nectivity to all per-time-step reconstructions. Our experi-
ments confirm efficiency and robustness of our approach,
even in the presence of topology changes. As results we
reconstruct animations from video as a deforming mesh
with constant structure and low tangential distortion. This
kind of input is required by subsequent higher-level pro-
cessing tasks, such as analysis, compression, reconstruction
improvement, etc., which we would like to further explore
and adapt in future work.
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