A Parallel Framework for Silhouette-based Human Motion Capture

Christian Theobalt, Joel Carranza, Marcus A. Magnor, Hans-Peter Seidel

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken, Germany
Email: {t heobal t, carranza, magnor, hpsei del }@rmpi - sb. npg. de

Abstract

This paper presents a method to capture human
motion from silhouettes of a person in multi-view
video streams. Applying a hierarchical kinematic
body model motion parameters are estimated by op-
timizing the overlap between the projected model
silhouettes and the input silhouettes. The energy
function driving the optimization is computed very
efficiently using off-the-shelf graphics hardware.
Exploiting the hierarchical structure of the human
body, energy function evaluation is greatly sped
up and a distributed implementation becomes feasi-
ble. Therefore, we present an algorithm for parallel
silhouette-based motion capture employing multi-
ple PCs and GPUs.

1 Introduction

Many conventional methods for estimating human
motion parameters are intrusive, requiring optical
markers or complex mechanical setups [16]. As a
consequence, a separation of the generation of real-
istic motion from the generation of realistic physical
appearance of the person is necessary. If the motion
and appearance of the person need to be acquired si-
multaneously, such as in 3D video, no intrusion into
the scene can be tolerated.

We have developed a method which non-
intrusively estimates motion parameters using sil-
houette information [3, 21]. This method employs
the use of a detailed geometric body model which,
when combined with image-based rendering tech-
niques, generates highly realistic images of a body
in motion. The method optimizes the overlap be-
tween the projected model silhouette and all input
silhouettes. The energy function that drives the
optimization is efficiently computed using latest-
generation graphics hardware.

Following the hierarchical structure of the human
skeleton, the motion parameter estimation problem
for the whole body can be decomposed into multi-
ple smaller problems on kinematic sub-chains. Sev-
eral of these sub-problems can be solved indepen-
dently from each other. In this paper, we present
several methods that exploit the compartmentalized
nature of the problem to speed up motion param-
eter estimation. First, the energy function evalua-
tion rate can be improved by only considering sub-
windows in the image plane. Second, the rendering
overhead can be significantly reduced by selectively
rendering only those body parts that are currently
optimized. Finally, the available computing envi-
ronment can be optimally used by implementing the
motion parameter estimation in a distributed system
making use of several CPUs and GPUs.

The paper proceeds with a discussion of related
work in Section 2, and a general overview of the
proposed motion capture method in Section 3. The
acquisition environment and the employed human
body model are described in Sections 3.1 and 3.2,
respectively. The energy function and its implemen-
tation in graphics hardware are described in Sec-
tions 4 and 4.1. Two techniques for speeding up the
optimization, namely the application of a variable
window size, and the pre-rendering of unchanged
model-parts are described in Sections 4.2 and 4.3.
The distributed computation is described in Sec-
tion 5 and results with our system are given in Sec-
tion 6. The paper concludes in Section 7 with an
outlook to future work.

2 Rdated Work

In the Computer Vision literature, a variety of non-
intrusive optical human motion capture techniques
from video have been proposed (see [6] for a re-
view). Some methods work on a single 2D image

VMV 2003

Munich, Germany, November 19-21, 2003

stream and apply, for example, frame differencing
[11] or image skeletonization [8] to fit simple body
models to human motion. Active contour models,
i.e. deformable curves aligning with image discon-
tinuities, have also been considered for 2D human
body tracking [1]. An extension of a simple stick-
figure model can be found in the First Sight sys-
tem [13], where the 2D skeleton model is extended
via ribbons to model volumetric body extent. In
the Pfinder system [25], contingent image regions,
called blobs, are represented by Gaussian distribu-
tions and tracked over time. In [2] optical flow
information and the twist parameterization for ro-
tations was used to capture human motion, the ap-
proach applies to multiple views too.

3D human motion capture approaches typically
employ an explicit human body model consisting of
a joint structure and some form of surface represen-
tation. Simple shape primitives, such as cylinders
[9, 20] or superquadrics [7], are commonly used to
represent limbs. The body models are fitted to the
motion by aligning their projection with features
in the image plane, such as image discontinuities.
Inverse kinematics algorithms invert the model-to-
image mapping to solve for the optimal parameters
[27]. Physics-based approaches simulate forces to
align the models with the image data[10], model de-
formations are also considered.

Silhouette information has demonstrated to be a
powerful cue for the registration of texture informa-
tion with 3D geometry [12]. The application of sil-
houette images for human motion capture has also
been considered. In [5] a force field exerted by
multiple image silhouettes aligns a 3D body model.
In [18] a combination of stereo and silhouette in-
formation is used to fit a human body model. Re-
cently, the application of reconstructed volumetric
models (visual hulls) from silhouettes of a mov-
ing person for motion capture has also been consid-
ered. Ellipsoidal body models [4] , kinematic skele-
tons [14], or skeleton models with attached volume
samples [23] are fitted to the volume data.

In 3D video, dynamic models of scenes that
were recorded from several camera perspectives
are reconstructed for re-rendering from novel view-
points. The methods applied involve shape-from
silhouette-like approaches, such as visual hull [15,
26] or stereo-based approaches [17]. In [3] the au-
thors demonstrated that the combination of a non-
intrusive human motion capture algorithm with a

666

multi-view texture generation approach produces
high quality free-viewpoint videos of human actors.
Making use of graphics hardware, human motion
parameters are estimated by maximizing the over-
lap between the projection of a template human
body model and image silhouettes from multi-view
video streams. The method presented in this paper
extends this work by exploiting parallelism and by
further improving the fitting times via decomposi-
tion of the whole optimization problem into smaller
scale problems.

3 Overview

Motion parameters are estimated from a set of
multi-view synchronized video streams recorded in
our acquisition room [22]. Each of these video
streams is transformed into a silhouette image by
segmenting foreground and background. At every
time instant, the set of input silhouettes defines an
energy function which drives motion parameter es-
timation. We have specifically formulated our en-
ergy function so that it can be evaluated rapidly us-
ing commodity graphics hardware. We make use
of a generic body model which is adapted to fit the
actors dimensions and whose pose is determined
by a set of 35 parameters which define rigid body
transformations between body segments. The en-
ergy function measures how close a specific model
pose is to the input images by comparing the dif-
ference between the input silhouette and a rendered
model silhouette. The optimal pose is found using
simple modifications of standard downhill energy
minimization techniques (direction set method with
Brent’s line minimization [19]).

The optimization could easily be performed over
the complete (and very large) parameter space. This
approach, however, is not suitable since it often con-
verges to incorrect local minima.

We have found that by breaking the optimization
up into several sub-optimizations over lower dimen-
sional parameter spaces, a-priori information about
the problem can be exploited to increase both the
speed and accuracy of motion parameter estimation.
Techniques for accurate sub-optimizations were in-
troduced in [3] which augmented the downhill op-
timization process with an efficient grid search. The
grid search is a pre-processing technique that regu-
larly samples a local neighbourhood in the param-
eter space to find a good starting point for the non-

linear minimization. A general overview of the op-
timization process for a given time instant is as fol-
lows:

Starting from the pose found in the last time instant.

1. Optimize torso position using standard down-
hill minimization.

Separately optimize each limb (arm/leg) pose
using downhill minimization with grid search.
Separately optimize head, hands, and feet pose
using standard downhill minimization.

Repeat procedure starting at (1) until conver-
gence.

The use of this hierarchical optimization tech-
nique provides the opportunity to accurately esti-
mate motion parameters extremely quickly. In this
paper, we introduce two techniques to improve the
energy function evaluation and demonstrate their
application in a parallel implementation.

2.
3.

4.

3.1 Acquisition

Our system uses synchronized multi-view video
streams recorded in our camera studio as inputs.
The studio [22] contains eight IEEE1394 cameras
arranged at approximately equal angles and dis-
tances around the center of the room. The cameras
are synchronized via an external trigger to record
video frames at a resolution of 320x240 at 15fps.
The use of an external trigger imposes a maximum
frame rate of 15fps. Using Tsai’s algorithm [24] the
cameras’ intrinsic and extrinsic parameters are de-
termined, calibrating every camera into a common
global coordinate system. The lighting conditions
are controlled and all cameras are color-calibrated.

In each video frame, the foreground subject is
segmented from the background via background
subtraction. The algorithm employs per-pixel color-
statistics to generate binary silhouettes (see [4]
for details). Shadow regions that might lead to
an incorrect classification of background pixels as
foreground are eliminated via an additional angular
threshold on pixel hue values.

3.2 Modd

Our motion parameter estimation system makes use
of a generic body model consisting of a hierarchic
arrangement of 16 body segments (head, upper arm,
torso etc.), each of which is represented by a closed
triangle mesh. In total, the surface geometry con-
sists of 21422 triangles. The model’s kinematics are

666

| Server

Client 1 Client 2
] []
- —
fe—x =
Client 4 Client 3

Figure 1: Exploded view of the body model and as-
signment of different kinematic sub-chains to com-
puters in the distributed client server setup.

defined by a skeletal system consisting of 17 joints
with interconnecting bone segments (Fig. 1). Rigid
transformations at each of these joint locations de-
fine a specific body pose for the model. These trans-
formations are constrained to imitate the actual mo-
tions of the body. Shoulder and hip joints are rep-
resented by 3 degree-of-freedom (DOF) ball joints
and elbow and knee joints are represented by 1-
DOF hinge joints. Assuming the actor stands in a
specific initialization pose, the generic body model
shape is conformed to that of the person through a
silhouette-based fitting process [3]. From this point
on, bone lengths and segment geometry is fixed and
motion parameter estimation is performed by en-
ergy function minimization.

4 Energy Function

The energy function is a score of how closely a body
model in a specific pose corresponds to the input
images at a given time instant. In order to esti-
mate motion parameters, for each time frame, the
pose parameters are varied until they converge to
some minimum of the energy function. \We make
use of standard techniques for downhill minimiza-
tion. Naturally, this requires a significant number of
function evaluations, and thus it is absolutely neces-

sary to formulate an energy function which is both
accurate and efficient.

[3] demonstrated that robust parameter estima-
tion can be accomplished by computing an XOR be-
tween input silhouettes and rendered model silhou-
ettes. Each camera has an input silhouette which
is generated by background subtraction and is con-
stant for a given time instant. To evaluate how
closely a given model pose conforms to that input
silhouette, the model is rendered as a silhouette and
the two images are XOR’ed. The score for that cam-
era is the sum of all non-zero pixels in the XOR re-
sult. The energy function result for a given pose is
the sum of results from all eight camera views.

Energy function evaluation can be implemented
efficiently by using commodity graphics hardware.
Each input silhouette is packed into a bit plane of
a byte sized buffer. That buffer is transferred into
the OpenGL stencil buffer, and successive drawings
of the model compute the XOR in each bit plane.
The buffer is then loaded back into main memory
and bit-counting is performed on the CPU. Having
8 cameras and an 8-bit stencil buffer, each function
evaluation requires the rendering of the model from
each camera perspective, but only requires a single
read and write to the stencil buffer to compute the fi-
nal value. The major bottleneck in our system is the
evaluation of the energy function. Evaluation speed,
and thus motion parameter estimation speed, can be
increased significantly by reducing the amount of
information that must be transferred to and from the
GPU.

4.1 Implementation in Hardware

An understanding of the internal implementation of
the XOR function is critical to understanding Sec-
tion 4.3 and so is presented here. The stencil buffer
stores 8-bit values which can by modified through
a number of simple operations on a per-fragment
basis. To compute an XOR in the stencil buffer,
the model is rendered from each camera perspective
into that camera’s bit plane. Each fragment which
passes the depth test is told to invert the bit at its
corresponding pixel. In order to prevent multiple
fragments from inverting a single pixel more than
once, the camera’s projection matrix is modified so
that all vertices project into z=0 plane. With the
depth test properly set to reject all fragments with
a z-value larger or equal to the value in the depth
buffer, at most one inversion occurs per pixel. Once

666

the XOR has been computed for all 8 cameras, the
stencil buffer is transferred back to the CPU which
counts the total number of bits that are set.

4.2 VariableWindow Size

The partitioning of the motion parameter estimation
process into a number of sub-optimizations over
specific body parts means that in any given opti-
mization, only one body part is moving at a time.
The energy function evaluation can be restricted to
the region of the image plane in which the body part
is moving. This body part may take up only a small
portion of the overall silhouette. An arm or leg is
much smaller than a person’s torso, and a hand or
foot is much smaller than an arm or leg. Therefore,
there is no need to transfer the entire camera silhou-
ette to the GPU. For each body part in the hierarchy,
a fixed size window is chosen over which to evalu-
ate the energy function. When that body part’s pose
is being estimated, only that window of the input
silhouette is transferred to and from the GPU. The
location of this window is taken to be the center of
mass of the body part in the pose estimated from
the last time instant (see Fig. 3). Consequently, the
window location, and thus the silhouette informa-
tion sent to the GPU, does not vary for a given time
instant.

A reduced window size allows for rapid evalu-
ation of the energy function for small body parts.
As such, the choice of window sizes is critical to
both performance and accuracy. The projected size
of a body part can vary greatly depending on po-
sition. Obviously, in some extreme cases (for ex-
ample the person goes and puts his face in front
of a certain camera), a body part may exceed the
window size in a specific camera. However, it is
worth noting that with a reasonably camera setup
and window sizes, even if a body part exceeds the
window of a certain camera, it will certainly fall en-
tirely within the window of several other cameras,
and thus its pose still be reliably estimated. Regard-
less of this fact, we choose our window size very
conservatively (128x128 pixels for arms and legs,
64x64 pixels for head, hands and feet).

Estimating the torso pose results in motion of
all body parts. The model silhouette varies over a
large region making it impossible to choose a sig-
nificantly reduced-size window. However, we have
found that the torso and its linked body parts are
large enough to be reliably tracked with silhouette

Figure 3: Global energy function (center) and
smaller sub-windows (128x128 pixels) used to op-
timize the arm positions (shown for one camera).

images at half-resolution. We simply use the silhou-
ette images scaled down to 160x120 resolution for
estimating the pose of the torso.

4.3 Body Part Pre-rendering

The energy function evaluation rate can be further
sped up by reducing the number of geometric prim-
itives that need to be rendered each time. During
optimization of a limb, for example, the pose pa-
rameters of all the other body parts are not modified,
hence their projection into all the camera views does
not change. The energy function evaluation speed
can therefore be greatly improved by only rendering
the geometry of those body parts that are currently
optimized. The problem with this approach is that it
adds a wrong contribution to the XOR energy func-
tion. During computation of the XOR in the stencil
buffer the bits are set in those regions where there
are pixels from the image silhouettes, but where no
body part projects to, since it was excluded from
rendering. To eliminate this erroneous contribution
to the energy function, an additional pre-rendering
step needs to be performed which creates a mask
that corrects the error function on the CPU. For each
camera view, this mask contains a 0-bit for each
pixel to which a body part projects that does not
change during optimization, and a 1-bit for all other
pixels. The masks are generated by setting the sten-
cil buffer configuration appropriately and rendering
the model without the body parts that are optimized
from each camera view. The energy function error
is corrected on the CPU by computing a pixel-wise
AND between the stencil buffer bit-planes and all
camera masks before counting the set bits. Figure 2
illustrates the modified error function evaluation.

666

5 Distributed Computation

The compartmentalized nature of the problem sug-
gests that a distributed computation approach is fea-
sible. The optimization of a specific body part is
primarily dependent on the optimization of body
parts which are higher in the hierarchy and rela-
tively independent of any other body parts. For ex-
ample, the correct position for the left arm is unaf-
fected by the position of the right arm and legs.

Whereas the redefinition of the energy func-
tion minimizes the amount of information travelling
across the GPU bus, running a distributed computa-
tion model effectively increases the bandwidth of a
single "virtual” bus. The task of motion parameter
estimation is split among five computers (each with
a high-performance GPU) in our distributed system.

A single computer, designated as the server, is
responsible for estimating the position of the torso
and head, while each of the four clients’ task is to
estimate the position of the limb and attached hand
or foot. The computers are connected over standard
100 MBit/s network connections and communicate
with a very basic protocol over TCP/IP.

Motion parameter estimation at each time step
begins at the server who packs the input silhouettes
into a single buffer and then transfers this informa-
tion to the clients. The server optimizes the position
and rotation of the torso and then sends the result-
ing model pose to the clients. At this point, each
client begins estimating the motion parameters for
its respective limb and extremity, while the server
estimates the pose parameters of the head. In this
way 29 out of the 35 parameters are estimated con-
currently over 5 GPUs (Fig. 1). Once each client
completes its pose estimation, its results are trans-
ferred back to the server, which, after receiving all
results, will iterate over this time step again and re-
fine the estimates, or move on to the next time step.
The grid search used by each limb to robustly esti-
mate pose parameters is a significant portion of the
computation in the larger pose estimation process,
and so by performing all limb fitting concurrently, a
significant speedup is expected.

Certainly, other models for distributed compu-
tation exist. It is feasible to subdivide the opti-
mization of a given body part up among several
GPUs as well. However, we chose this model for
our system because of its proper balance of speed,
simplicity, and hardware requirements. Introduc-

stencil buffer

mask

corrected stencil
buffer

Figure 2: Body part pre-rendering: During the motion parameter estimation of a kinematic sub-chain, only
the segments of this sub-chain are rendered. To correct for errors in the XOR energy function, a mask is
pre-computed before the optimization starts. A bitwise AND between the mask and the stencil buffer is
computed to get the final value of the energy function. The same process applies to all bit-planes of the

stencil buffer.

ing the additional complexity of several computers
per body part would provide relatively minor speed
improvements in comparison to the speed improve-
ments of using a single computer versus five. The
investment in such significant additional hardware
for small speed increases is rarely desirable. The
use of five systems is well suited for our purposes,
as four computers are needed anyway to control our
camera setup (see Sect. 3.1).

Our motion capture results do not deteriorate us-
ing our distributed system. With some rare excep-
tions, the estimates obtained for each limb or ex-
tremity are completely independent of that of other
limbs. This is because, for a large majority of poses,
the limbs are distinct from each other in at least
one camera view. The situation one would expect
to be problematic for distributed motion parameter
estimation, namely where there is no distinction be-
tween two limbs in any camera view, is a fundamen-
tal problem for any silhouette based method. Fortu-
nately, such poses (for example a person in the fetal
position) are quite uncommon.

6 Results

The impact of our newly introduced methods on
function evaluation times are presented in table 1.
All the computers used for our tests feature a 1.8
GHZ Intel™ Xeon CPU, 512 MB RAM and an
Nvidia GeForce3™ GPU.

The XOR energy function gains a significant per-
formance increase by decreasing the window size.
Nevertheless, it is evident that as the window size
decreases, rendering the model becomes a signifi-

666

Window Size XOR XORPR
320x240 (full) 95.9 95.5
160x120 (half-res) | 131.1 131.2
128x128 (arm) 133.7 433.1
64x64 (head) 144.9 855.4

XOR - original method
XORPR - XOR with pre-rendering

Table 1: Energy function evaluations per second for
different stencil window sizes using one computer.

cant bottleneck. XORPR uses the silhouette sub-
traction energy function in combination with pre-
rendering to reduce the rendering time and provides
extremely good results. Observe that the XORPR
method gains significant speed compared to XOR
for smaller window sizes since during the optimiza-
tion of the arms (128x128 window) or the head and
the hands (64x64 window) most of the model ge-
ometry is excluded from rendering.

We evaluated our system on two different video
sequences. Sequence A shows a person exhibit-
ing a series of basic motions at slow speeds. Se-
quence B shows a ballet dancer performing a num-
ber of complex dance motions at high speed. To
accurately estimate the motion parameters, the size
of the grid search for arms and legs in sequence
B had to be set much larger than that of sequence
A. Both sequences were fairly long, roughly 400
frames in length. The motion parameters were esti-
mated for both of these sequences in three different
ways, XOR on a single computer, XORPR on a sin-
gle computer and XORPR in a parallel system using

Seq. A Seq. B
XOR 7.98 14.1
Single Client | 3.30 10.1
Distributed 1.16 1.76

XOR - original method with single computer
Single Client - XORPR with single computer
Distributed - XORPR with 5 computers

Table 2: Average fitting time per frame (s).

5 computers. The methods introduced in this pa-
per increase the speed of optimization by almost an
order of magnitude. Table 2 shows the average fit-
ting times we obtained for both sequences with the
different ways of parameter estimation. Whereas
the methods presented in this paper already pro-
duce a significant speedup if only one computer is
used for motion estimation, the parallel implemen-
tation leads to even faster fitting times. Fig. 4 shows
two input video frames and the corresponding re-
covered body pose from sequence A, in Fig. 5 the
same is shown for sequence B. The silhouette-based
motion estimation approach can robustly capture a
large range of human motion. Even complex twists
and turns of the human body and very fast move-
ments are reliably recovered. In comparison to the
results presented in [3] the results with the new ap-
proach don’t deteriorate, and the fitting times are by
orders of magnitude smaller.

7 Conclusion and Future Work

We have presented a distributed system which
makes use of multiple CPUs and GPUs to rapidly
and accurately estimate motion parameters using a
detailed body model. The major bottlenecks that
limit the performance of the motion parameter es-
timation, namely the memory transfers to and from
the graphics board, as well as the rendering over-
head for the body geometry, were identified. It has
been demonstrated that the influence of these bottle-
necks on the performance can be reduced by limit-
ing the energy function evaluation to sub-windows
of the image plane and by pre-rendering unchang-
ing body-parts. The fitting times can be further im-
proved by solving for the motion parameters in a
parallel system.

In our future work, we plan to incorporate texture
information into the tracking process and will inves-

666

Figure 4: Input views and corresponding captured
body poses from sequence A.

tigate the application of a single-skin body model.

References

[1] A. Baumberg and D. Hogg. An efficient
method for contour tracking using active
shape models. In Proc. of IEEE Workshop on
Motion of Non-Rigid and Articulated Objects,
pages 194-199, 1994,

C. Bregler and J. Malik. Tracking people

with twists and exponential maps. In Proc. of

CVPR 98, pages 8-15, 1998.

J. Carranza, C. Theobalt, M. Magnor, and H.P.

Seidel. Free-viewpoint video of human actors.

In Proc. of SIGGRAPH2003, to appear, pages

569-577, San Diego, USA, 2003. ACM.

K.M. Cheung, T. Kanade, J.-Y. Bouguet, and

M. Holler. A real time system for robust 3D

voxel reconstruction of human motions. In

Proc. of CVPR, volume 2, pages 714 — 720,

June 2000.

[5] Q. Delamarre and O. Faugeras. 3D articulated
models and multi-view tracking with silhou-
ettes. In Proc. of ICCV’99, pages 716-721,
1999.

[6] D.M. Gavrila. The visual analysis of hu-
man movement. CVIU, 73(1):82-98, January
1999.

(2]

3]

[4]

Figure 5: Input views and corresponding captured
body poses from sequence B.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

D.M. Gavrilaand L.S. Davis. 3D model-based
tracking of humans in action: A multi-view

approach. In Proc. of CVPR, pages 73-80,
1996.
Y. Guo, G. Xu, and S. Tsuji. Tracking human

body motion based on a stick-figure model.
Journal of Visual Communication and Image
Representation, 5(1):1-9, 1994.

D. Hogg. Model-based vision : a program to
see a walking person. Image and Vision Com-
puting, 1(1):5-20, 1983.

I. A. Kakadiaris and D. Metaxas. Model-based
estimation of 3D human motion with occlu-
sion based on active multi-viewpoint selec-
tion. In Proc. CVPR, pages 81-87, 1996.

Y. Kameda, M. Minoh, and K. lkeda. Three
dimensional motion estimation of a human
body using a difference image sequence. In
Proc. of ACCV’95, pages 181-185, 1995.

H. Lensch, W. Heidrich, and H. P. Seidel.
A silhouette-based algorithm for texture reg-
istration and stitching. Graphical Models,
64(3):245-262, 2001.

M. Leung and Y. Yang. First sight : A hu-
man body outline labeling system. PAMI,
17(4):359-379, 1995.

J. Luck and D. Small. Real-time marker-
less motion tracking using linked kinematic

666

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

chains. In Proc. of CVPRIP02, 2002.

W. Matusik, C. Buehler, and L. McMillan.
Polyhedral visual hulls for real-time render-
ing. In Proc. of EGRW’01, pages 116-126,
2001.

A. Menache. Understanding Motion Capture
for Computer Animation and Video Games.
Morgan Kaufmann, 1995.

P.J. Narayanan, P. Rander, and T. Kanade.
Constructing virtual worlds using dense
stereo. In Proc. of ICCV 98, pages 3 - 10,
1998.

R. Plaenkers and P. Fua. Tracking and mod-
eling people in video sequences. CVIU,
81(3):285-302, March 2001.

W.H. Press, S.A. Teukolsky, W.T. Vetterling,
and B.P. Flannery. Numerical Recipes. Cam-
bridge University Press, 1992.

K. Rohr. Incremental recognition of pedestri-
ans from image sequences. In Proc. of CVPR
93, pages 8-13, 1993.

C. Theobalt, J. Carranza, M. Magnor, and
H.P. Seidel. Enhancing silhouette-based hu-
man motion capture with 3D motion fields. In
Proc. of Pacific Graphics, to appear, page NN,
2003.

C. Theobalt, M. Li, M. Magnor, and H.P. Sei-
del. A flexible and versatile studio for syn-
chronized multi-view video recording 2003.
In Proc. of VVG, pages 9-16, 2003.

C. Theobalt, M. Magnor, P. Schueler, and H.P.
Seidel. Combining 2D feature tracking and
volume reconstruction for online video-based
human motion capture. In Proc. of Pacific
Graphics 2002, pages 96-103, 2002.

R.Y. Tsai. An efficient and accurate camera
calibration technique for 3D machine vision.
In Proc. of CVPR’86, pages 364-374, June
1986.

C.R. Wren, A. Azarbayejani, T. Darrell, and
A. Pentland. Pfinder: Real-time tracking of
the human body. PAMI, 19(7):780-785, 1997.
S. Wuermlin, E. Lamboray, O.G. Staadt, and
M.H. Gross. 3D video recorder. In Proc. of
Pacific Graphics 2002, pages 325-334, 2002.
S. Yonemoto, D. Arita, and R. Taniguchi.
Real-time human motion analysis and ik-
based human figure control. In Proc. of IEEE
Workshop on Human Motion, pages 149-154,
2000.

