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2.1 Introduction

In this chapter, we focus on constraint solving on terms, also called Herbrand
constraints in the introductory chapter, and we follow the main concepts
introduced in that chapter.

The most popular constraint system on terms is probably unification pro-
blems which consist of (possibly existentially quantified) conjunctions of equa-
tions. Such formulas have to be interpreted in the set of terms or one of its
quotients (see e.g. [JK91,BS99] for surveys on unification). Other constraint
systems on terms proved to be very useful, for instance introducing negation
as in PROLOG 1I [Col82] leads to study disunification (see [Com91] for a
survey). Ordering constraints on terms have been introduced to express orde-
red strategies in automated deduction (see the introductory chapter and the
chapter on “contraints and theorem proving”, or the survey [CT94]). Mem-
bership constraints may also express typing information and set constraints
deserved a lot of works recently (see e.g. [PP97] for a survey), ...

We will try here to describe very briefly most of the constraint systems
on terms, but our main focus will be on the method we are using. We follow
the distinction of [CDJK99] between syntactic methods and semantic me-
thods. Syntactic methods consist simply of rewriting the constraint into an
equivalent one until a solved form is reached, hence rewriting techniques are
relevant there (and we refer the reader to [DJ90a, BN98, KK99] for basics on
rewriting). Semantic methods are based on another representation of the set
of solutions. In the case of constraints on terms, such a representation could
be fruitfully given by means of automata.

Therefore, our chapter is divided into two parts: the first part will de-
scribe some constraint systems and their corresponding syntactic methods.
In particular, we consider unification problems in section 2.3, dis-unification
problems in section 2.4, ordering constraints in section 2.5 and matching
constraints in section 2.6. The ELAN system [BKKT98]|, designed to mecha-
nize the use of inference rules, easily implements these ideas: its computation
engine rewrites formulas under the control of strategies.

The second part of the lecture is dedicated to automata techniques. The
relationship between logic and automata goes back to Biichi, Elgot and
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Church in the early sixties [Biic60, Elg61, Chu62]. The basic idea is to as-
sociate with each atomic formula a device (an automaton) which accepts all
the models of the formula. Then, using some closure properties of the re-
cognized languages, we can build an automaton accepting all the models of
an arbitrary given formula. This is also the basis of optimal decision techni-
ques (resp. model-checking techniques) for propositional temporal logic (see
e.g. [Var96, BVW94]). In this lecture, we illustrate the method with three
main examples, using three different notions of automata: Presburger arith-
metic and classical word automata in section 2.8, typing constraints and tree
automata in section 2.9, set constraints and tree set automata in section
2.10. This second part heavily relies on the book [CDG197]. There was also
a survey of these techniques at the CCL conference in 1994 [Dau94].

2.2 The Principle of Syntactic Methods

As explained in the introductory chapter, a constraint is simply a formula,
together with its interpretation domain. The syntactic methods rely on an
axiomatization of this domain, together with a strategy for the use of these
axioms.

More precisely, a constraint solving method is defined by a (recursive) set
of rewrite rules. Each rewrite rule ¢ — 1 consists of a couple of constraint
schemes ¢, 1, i.e. constraints with logical variables. For instance

t="tANPw»x="tAP{z—t}

where x is a variable, t a term, P a formula and {x — t} is the substitu-
tion of = with ¢, is the replacement rule, x,t, P being logical variables of an
appropriate type.

Each rule is assumed to rewrite a constraint into an equivalent one, i.e.
both sides of the rewrite rule should have the same set of solutions in the
constraint domain. Let us emphasize two important consequences of this
assumption:

e the rewrite rules replace a constraint with another one. This makes an
important difference with deduction rules: the premises are destroyed.

e If several rules can be applied to the same constraint, i.e. when the system
is not deterministic, then we don’t care which rule is actually applied.
This makes a difference with e.g. logic programming in which the non-
determinism is "don’t know”. For constraint solving, we would like to
never have to backtrack.

Often, the rewrite rules are simple combination of the domain axiomatiza-
tion. (For instance, the replacement rule is a logical consequence of equality
axioms).

Then, each rule comes with an additional condition, expressing a stra-
tegy. This is necessary for the termination of rewriting. For instance, the
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replacement rule does not terminate. Hence we restrict it using the following
conditions:

x occurs in P and does not occur in t. The rule is applied at top position.

These conditions impose both restrictions to the formulas to which the rule
can be applied and restrictions on the positions at which the rule can be
applied. The above condition ensures termination of the replacement rule
alone (this is left as an exercise).

If the conditions are too strong, then constraint solving may become tri-
vial. For example we could prevent any application of a rule, which, of course,
ensures termination but is not very useful. Hence the definition of a con-
straint solving method includes the key notion of solved form. Solved forms
are particular constraints, defined by a syntactic restriction and for which
the satisfiability test should be trivial. The completeness of the set of rewrite
rules expresses that any irreducible constraint is a solved form. We will see
several examples in what follows.

In summary, a syntactic method consists in

A set of rewrite rules which is correct
Conditions on these rewrite rules which ensure termination
Solved forms with respect to which the rewrite rules are complete.

There are several advantages of such a presentation. First, it allows to
define general environments and tools for the design of constraint solving
methods. This is precisely the purpose of the programming language ELAN
whose first class objects are precisely rules and strategies [KKV95, Cas98,
Rin97, KR98]. We use ELAN in this lecture in order to operationalize con-
straint solvers. The system, together with its environment, the manual and
many examples, is available at: www.loria.fr/ELAN.

A second advantage is to separate clearly the logical part from the con-
trol, which allows easier proofs and helps a better understanding. Finally,
note that algorithms which are designed using this method are automatically
incremental since new constraints can always be added (using a conjunction)
to the result of former simplifications.

2.3 Unification Problems

We now define equational unification. But to give such a definition is not so
easy since it should be simple and allow convincing soundness and comple-
teness proofs. This is not the case with many of the definitions of equational
unification which are given in the literature. The reason is that there are two
contradicting goals: as far as generality is concerned, the definition should not
depend upon a particular case, such as syntactic unification. On the other
hand, since our approach is based on transforming problems in simpler ones
having the same set of solutions, the definition must allow to get a clear,
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simple and robust definition of equivalence of two unification problems but
also to be able to define what simpler problem means.

2.3.1 Solutions and Unifiers

When defining equational problems and their solutions and unifiers, we should
be aware that some variables may appear or go away when transforming a
given unification problem into a simpler one. As a consequence, our defini-
tion of a solution to a unification problem should not only care about the
variables occurring in the simplified problem, but also of the variables which
have appeared at the intermediate steps. The idea that the so-called “new
variables” are simply existentially quantified variables appeared first in Co-
mon [Com88] although quantifiers had already been introduced by Kirchner
and Lescanne [KL87] both in the more general context of disunification.

Definition 1. Let F be a set of function symbols, X be a set of variables,
and A be an F-algebra. A (F, X, A)-unification problem (unification problem
for short) is a first-order formula without negations nor universal quantifiers
whose atoms are T,F and s :; t, where s and t are terms in T (F,X).
We call an equation on A any (F, X, A)-unification problem s :?A t and
multiequation any multiset of terms in T (F, X).

Equational problems will be written as a disjunction of existentially quan-

tified conjunctions:
Y
jeJ i€l

When |J| = 1 the problem is called a system. Variables W in a system
P=3w /\i€ 1S :3‘ t; are called bound, while the other variables are called
free. Their respective sets are denoted by BVar(P) and Var(P).

The superscripted question mark is used to make clear that we want to
solve the corresponding equalities, rather than to prove them.

Ezample 1. With obvious sets X and F and for an F-algebra A,
Bz f(x,a) =Y g(f(2,9),9(z,0)) Az =/ 2

is a system of equations where the only bound variable is z and the free
variables are = and y.

A solution of an equational problem is a valuation of the variables that
makes the formula valid:

Definition 2. A A-solution (for short a solution when A is clear from the
context) to a (F, X, A)-unification system P = 3W A,c; s =4 t; is a ho-
momorphism A from T (F, X) to A such that

icl
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z+0—>z O+z—z
zx0—=0 Oxz — 0
pred(succ(z)) — x succ(pred(z)) — x
opp(0) — 0 opp(opp(x)) = =
z + opp(z) — 0 opp(x) +z — 0
opp(pred(x)) — succ(opp(x)) opp(succ(x)) — pred(opp(z))
suce(z) +y — suce(z + y) x + succ(y) — suce(z + y)
x + pred(y) — pred(z + y) pred(z) +y — pred(z +y)
opp(x +y) — opp(y) + opp(x) zx succ(y) = (zxy) +
suce(z) xy — y+ (x *y) (z+y)+z—=z+ (y+2)
opp(y) + (y +2) = 2 z + (opp(x) 4 2) = 2
pred(z) xy — opp(y) + (= *y)  x pred(y) — (zxy) + opp(x)
Fig. 2.1. BasicArithmetic: Basic arithmetic axioms.
An A-solution to a (F, X, A)-unification problem D = \/jeJP, where

all the P; are unification systems, is a homomorphism A from 7 (F,X) to A
such that h is solution of at least one of the P;.

We denote by Sol4(D) the set of solutions of D in the algebra A. Two
(F, X, A)-unification problems D and D’ are said to be A-equivalent if
Sol4(D) = Sol 4(D'), this is denoted D’ < 4 D.

Note that because equations are interpreted as equality, the equation sym-
bol is commutative. Therefore, except if explicitly mentioned, we make no
difference between s =" t and t =" s

Finding solutions to a unification problem in an arbitrary F-algebra A is
impossible in general and when it is possible it is often difficult. For exam-
ple, solving equations in the algebra 7 (F)/E, where E is the BasicArithmetic
theory given by the set of equational axioms described in Figure 2.1 is ac-
tually the problem of finding integer solutions to polynomial equations with
integer coefficients. This is known as Hilbert’s tenth problem, shown to be
undecidable by Matijasevi¢ [Mat70, DMR76].

Fortunately, we will see that the existence of solutions is decidable for
many algebras of practical interest. However, there are in general infinitely
many solutions to a unification system P. A first step towards the construc-
tion of a finite representation of these solutions is the notion of a unifier,
which is meant as describing sets of solutions:

Definition 3. A A-unifier of an (F, X, A)-unification system
P= HW /\ S; 234 t;
iel
is a substitution (i.e. an endomorphism of T(F, X)) o such that
AEVY3Iw /\ olx-w(si) = o|x—w(t:)

iel
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where VP denotes the universal closure of the formula P.

A A-unifier of a (F, X, A)-unification problem D = \/, ; P;, where all the
P; are (F, X, A)-unification systems, is a substitution ¢ such that ¢ unifies
at least one of the P;.

We denote by U4 (D) the set of unifiers of D. This is abbreviated U(D)
when A is clear from the context. Similarly when clear from the context,
A-unifiers are called unifiers and (F, X, A)-unification is called unification.

The above definition is important, since it allows to define unifiers for
equations whose solutions range over an arbitrary JF-algebra A. This schema-
tization is in particular due to the ability for the image of unifiers to contain
free variables. These free variables are understood as universally quantified.

The relationship between solutions and unifiers is not quite as strong as
we would like it to be. Of course, interpreting a unifier in the algebra A
by applying an arbitrary homomorphism yields an homomorphism that is
a solution. That all solutions are actually homomorphic images of unifiers
is not true in general, but happens to be true in term generated algebras
(allowing in particular free algebras generated by a given set of variables).

To illustrate the difference between solutions and unifiers, let us consider
the set of symbols F = {0, >, *} and the F-algebra R whose domain is the
set of real numbers. Then h(z) = /2 is a solution of the equation x * x :;>
(> (0)), although no R-unifier exists for this equation, since the square root
cannot be expressed in the syntax allowed by F.

Indeed there is a large class of algebras where unifiers could be used as
a complete representation of solutions since a unification system P has A-
solutions iff it admits A-unifiers, provided A is a term generated F-algebra.

Ezample 2. In the BasicArithmetic example, if we consider the equation
x ="> (y), then (z + 1,y + 2) is one of its N-solutions. Its corresponding
N-unifier is (z — succ(0),y — succ(succ(0))). The N-unifier (z — succ(y))
also represents the previous N-solution by simply valuating z to succ(0) and
y to succ(succ(0)).

In the following, we will restrict our attention to the special but fun-
damental case of the free algebras, initial algebras and their quotients. For
these algebras the above property is satisfied since they are term generated by
construction. As an important consequence of this property, two unification
problems are equivalent iff they have the same sets of unifiers, an alternative
definition that we are adopting in the remainder.

Definition 4. For a set of equational axioms F built on terms, for any terms
s,tin T(F,X), an equation to be solved in A = T(F,X)/E is denoted by
s :?E t. The equivalence of unification problems is denoted by < g and A-
unification is called E-unification.

Since a unification system is a term whose outermost symbol is the exi-
stential quantifier, its body part, i.e., the conjunction of equations occurring
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in the system, is actually a subterm. Rewriting this subterm to transform the
unification system into a simpler one hides the existential quantifier away. As
a consequence, one may simply forget about the existential quantifier for
most practical purposes. This is true for syntactic unification, where exi-
stential quantification is not needed as long as the transformation rules are
chosen among the set given in Section 2.3.6. This is not, however, true of all
algorithms for syntactic unification: Huet [Hue76] for example uses an ab-
straction rule introducing new variables in a way similar to the one used for
combination problems.

Ezample 3. The equation z+y :}5 x+a is equivalent to the equation y :7E a
since the value of = is not relevant: our definition allows dropping useless
variables. Note that this is not the case if unifiers are substitutions whose
domain is restricted to the variables in the problem, a definition sometimes
used in the literature, since {x — a,y — a} would be a unifier of the first
problem but not of the second.

Ezample 4. The equation z-+ (y*y) :?E x4+ is equivalent to P’ = 3z z+2 :7E
T+xAz =% y+y whereas it is not equivalent to P’ = x4z =5, x+xA2 =45 y*y.
In P”, z does not get an arbitrary value, whereas it may get any value in
P, and in P’ as well, since the substitution cannot be applied to the bound
variable z.

Exercice 1 — Assuming the symbol + commutative, prove that = 4+ f(a,y) =
9(y,b)+ f(a, f(a,b)) is equivalent to (z =" g(y,b) A f(a,y) =" f(a, f(a,b))) V (z =
fla, f(a,b)) A fla,y) =" g(y,b)).

2.3.2 Generating Sets

Unifiers schematize solutions; let us now consider schematizing sets of unifiers
using the notion of complete set of unifiers.

Complete sets of unifiers. Unifiers are representations of solutions but
are still infinitely many in general. We can take advantage of the fact that
any instance of a unifier is itself a unifier to keep a set of unifiers minimal
with respect to instantiation.

In order to express this in general, we need to introduce a slightly more
abstract concept of equality and subsumption as follows.

Definition 5. Let A be an F-algebra. We say that two terms s and t are
A-equal, written s =4 t if h(s) = h(t) for all homomorphisms h from 7 (F, X)
into A. A term t is an A-instance of a term s, or s is more general than ¢ in the
algebra A if t =4 o(s) for some substitution o; in that case we write s <4t
and o is called a A-match from s to t. The relation <4 is a quasi-ordering
on terms called A-subsumption.
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Subsumption is easily lifted to substitutions:

Definition 6. We say that two substitutions o and 7 are A-equal on the set
of variables V C X, written o =Y 7 if o(z) =4 7(z) for all variables z in V.
A substitution o is more general for the algebra A on the set of variable V
than a substitution 7, written o SX T, if there exists a substitution p such
that po =Y 7. The relation < is a quasi-ordering on substitutions called
A-subsumption. V is omitted when equal to X.

The definition of generating sets that we are now presenting is issued from
the definition given first by G. Plotkin [Plo72] followed by G. Huet [Hue76]
and J.-M. Hullot [Hul80b]. We denote the domain and the rank of a substi-
tution o respectively Dom(c) and Ran(o).

Definition 7. Given an equational problem P, CSU(P) is a complete set
of unifiers of P for the algebra A if:

(1) CSUA(P) CUA(P), (correctness)
(i1) VO € Ua(P), Jo € CSU4(P) such that o §ZGT(P) 0, (completeness)
(131) Yo € CSU4(P),Ran(c) N Dom(c) = . (idempotency)

CSU(P) is called a complete set of most general unifiers of P in A, and
written CSMGU 4(P), if:

(iv) Va, 3 € CSMGUA(P), & SZM(P) £ implies a = . (minimality)

Furthermore CSU4(P) is said outside the set of variables W such that
Var(P) C W when:

(v) Yo € CSU4(P),Dom(o) C Var(P) and Ran(c) NW = (. (protection)

Notice that unifiers are compared only on the problem variables (i.e.,
Var(P)), a fundamental restriction as pointed out in particular by F. Baader
in [Baa91]. The conditions (idempotency) as well as (protection) in the above
definition insure that the unifiers are idempotent.

Exercice 2 — Give a description of all the @-unifiers of the equation z =" y.
Then give a complete set of P-unifiers outside {z,y}. How does the elements of this
set compare to the unifier « = {z — y}? Is your complete set of unifiers minimal?

Minimal complete set of unifiers not always exist, as shown by [FHS86].
For example, in the theory FH defined by:

[ f0,2) ==
FH = {g(f(x,y)) — g(y).

the equation g(z) =f, ¢(0) has no minimal complete set of FH-unifiers. In-
deed, with

oo = {x+— 0} and

o = {zw flz;,0i-1(2)} (0<0)
Y = {0;|i € N} is a complete set of FH-unifiers for the equation g(z) =£, g(0)
and Vi € N, 0441 Séﬁ} ;.
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2.3.3 (Un)-Decidability of Unification

Equational unification and matching are in general undecidable since there
exist equational theories that have undecidable word problems. What is more
disturbing is that very simple theories have undecidable E-unification pro-
blem. Let us review some of them.

Proposition 1. Let DA be the theory built over the set of symbols F =
{a,*,+} and consisting of the axioms:

r+(y+z) = (@+y +2
zx(y+z) = (@xy)+ (y*2)
(x+y)xz = (zx2)+ (zx*2).

Unification is undecidable in DA as shown in [Sza82] using a reduction to
Hilbert’s tenth problem.

Another simple theory with undecidable unification problem is D;AU,.,
consisting in the associativity of +, the left distributivity of * with respect
to + and a right unit element 1 satisfying z x 1 = x [TA87].

In fact, decidability of unification is even quite sensitive to “new” con-
stants. H.-J. Biirckert shows it by encoding the previous DA theory using
new constants. This shows in particular that there exists equational theories
for which unification is decidable but matching is not [Biir89].

The decidability of unification for classes of theories is also a very challen-
ging problem. For example, variable permutative theories have an undecidable
unification problem, as shown in [NO90], refining a result of [SS90]. Even in
theories represented by a canonical term rewriting system (which is a strong
requirement) the unification problem is undecidable:

Proposition 2. [Boc87] In the equational theory BasicArithmetic presented
. o . % . .

by the canonical term rewriting system BasicArithmetic, the unification and

matching problems are undecidable.

2.3.4 A Classification of Theories with Respect to Unification

Since we have seen that minimal complete sets of E-unifiers are isomorphic
whenever they exist, a classification of theories based on their cardinality
makes sense, as pioneered by Szabé and Siekmann [SS84,Sza82,5S82]. But in
doing so, we should be careful with the fact that solving one single equation
is not general enough a question, as shown by the following result:

Proposition 3. [BHSS89] There exists equational theories F such that all
single equations have a minimal complete set of E-unifiers, but some systems
of equations are of type zero i.e. have no minimal complete set of F-unifiers.



56 H. Comon and C. Kirchner

Thus it makes sense to define the type of an equational theory based on
the cardinality of minimal complete sets of F-unifiers for equation systems,
when they exist.

Let P be a system of equations in an equational theory F, and let
CSMGUEg(P) be a complete set of most general E-unifiers of P, whenever
it exists. E-unification is said to be:

U-based if CSMGUE(P) exists for all problems P (the class of U-based
theories is denoted by U),

U-unitary if £ € Y and [CSMGUg(P)| <1 for all P,

U-finitary if E € U and |CSMGUg(P)| is finite for all P,

U-infinitary if F is U-based but not finitary,

U-nullary if E is not U-based,

U-undecidable if it is undecidable whether a given unification problem has
unifiers.

Syntactic unification is unitary as we have seen in Section 2.3.6 and
so is unification in boolean rings [MN89]. Commutative unification is fini-
tary, as we will see next in Section 2.3.7. So is also associative-commutative
unification. Associative unification is infinitary [Plo72], take for example
the equation = + a :?A(+) a + x of which incomparable A(+)-unifiers are
{z—a}l,{z—a+a},{r—a+(a+a)}, --. We have seen that the theory
FH is nullary.

One can wonder if this classification can be enhanced by allowing U-
finitary theories with only 2 most general elements and 3 and 4 ... , but this
is hopeless due to the result of [BS86] showing that in any given U-finitary
but non U-unitary theory, there exists an equation the complete set of unifiers
of which has more that n elements for any given natural number n.

Finally, given a finite presentation of a theory F, its position in the unifi-
cation hierarchy is undecidable, i.e. it is undecidable whether E is U-unitary,
U-finitary, U-infinitary or U-nullary [Nut89].

A summary of the current knowledge on equational unification can be
found in [KK99] or [BS99).

2.3.5 Transforming Equational Problems
Solved forms for Unification Problems. We now define the solved forms

needed for equational unification. We assume the conjunction symbol (A) to
be associative and commutative.

Definition 8. A tree solved form is any conjunction of equations:

37, Ilz?tl VAREEIRVAY JUn:?tn
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such that V1 <i < n,x; € X and:

(i) Vi<i<j<n i # xj,
(#71) V1<i,j5<n x; ¢ Var(t;),
(i) V1<i<mn T, ¢ 7,
(iv) Vz € 7,31 < j <nz € Var(t)).

Given a unification problem P, we say that 32", z1 ="t A -+ A Z,, = tn
is a tree solved form for P if it is a tree solved form equivalent to P and all
variables free in 37, @1 ="4 A --- A z, =’ t, are free variables of P.

In the above definition, the first condition checks that a variable is given
only one value, while the second checks that this value is a finite term. The
third and fourth conditions check that the existential variables are useful,
i.e., that they contribute to the value of the other variables.

Tree solved forms have the property to be solvable:

Lemma 1. Let A be an F-algebra. A unification problem P with tree solved
form:

P:37, 1’1:?t1 N Nxy, =" t,

has, up to A-subsumption equivalence, a unique most general idempotent
unifier {x1 — t1,---, 2z, — t,} in A which is denoted pp.

The notion of tree solved form could be extended to allow structure sha-
ring, leading to the so-called dag solved form:

Definition 9. A dag solved form is any set of equations
37 , L1 Z? tl VANEIIVAN Tn :? tn

such that V1 <7 < n,x; € X and:

(i) Vi<i<ji<nm x; # x5,

(71) V1<i<j<m x; & Var(t;),

(i) V1 <i<n LeX =, t, &7,

(iv) Vz € 7,31 < j <nz € Var(t)).
Given a unification problem P, we say that 37 ,xy =" t; A -+ A T, = ty
is a dag solved form for P if it is a dag solved form equivalent to P and all
variables free in 372,21 ="#1 A -+ A z, =' t, are free variables of P.

Of course, a tree solved form for P is a dag solved form for P. Dag solved
forms save space, since the value of the variable x; need not be duplicated
in the t; for i < j. Conversely, a dag solved form yields a tree solved form
by replacing x; by its value ¢; in all ¢; such that j < ¢ and removing the
remaining unnecessary existentially quantified variables. Formally the job is
done by the following transformation rule:
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Eliminate P N\ © ="s
b {z = s}P A o ="sif 2 ¢ Var(s),s ¢ X,z € Var(P)

Dag2Tree: Transformation of dag to tree solved forms

together with the simplification rules described in figure 2.2.
As a consequence we get solvability of dag solved forms:

Lemma 2. A unification problem P = 3% ,21 ="t A --- A 2, = t, in
dag solved form has, up to A-subsumption equivalence, a unique most general
idempotent unifier o = oy, - - - 0901, where o; = {z; — t;}.

Dag solved forms relate to the so-called occur-check ordering on X':

Definition 10. Given a unification problem P, let ~p be the equivalence
on X generated by the pairs (z,y) such that 2 =" y € P. The occur-check
relation <°¢ on X defined by P is the quasi-ordering generated by the pairs
(2',y') such that 2’ ~p z,2 =" f(s1,...,5,) € P,y € Var(f(s1,...,50)),y ~p
Y.

2

Ezample 5. For the system P = (z =" f(u,a) A u =" g(f(a,z)) A z =
y A x="2) wehavex ~py~pzandy < u < z.

In a dag solved form, any two variables are not in the equivalence of the
occur-check ordering. Conversely, a system of equations of the form z =" ¢
with € X and such that <°¢ is acyclic, can be ordered (using topological
sort) so as to meet the above condition. Accordingly, such a set of equations
will be considered in dag solved form.

In the following, we refer without further precision to the most general
unifier associated to a particular solved form by either one of the above
lemmas.

Equivalence. We now state some commonly used transformations preser-
ving the set of F-unifiers.

Proposition 4. Let F be a set of equational axioms built on terms of
T(F,X). Then, one can replace any subterm ¢ in an equational problem
P with an E-equal term without changing the set of F-unifiers of P.

In particular rewriting by some term rewriting system that is a sub-theory
of E preserves the set of F-unifiers.

One quite important set of rules preserve equivalence of equational pro-
blems; they are the rules that allow manipulating the connectors A and V.
The most commonly used such rules are described in Figure 2.2. This set of
rules can be checked to be confluent modulo associativity-commutativity of
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Associatwvity- A (Py A P2) AN Ps =Py A (P2 A Ps)
Associativity-V  (P1 V Po) V Ps =P, V (P2 V Ps)
Commutativity- N P1 A Py =P AP
Commutativity-V Py V P» =P VvV P
Trivial PA(s="s) —P
Andldemp P AN (eANe) —PAe
Orldemp PV (eVe —PVe
SimplifAnd1 P N T — P
SimplifAnd2 P N F — F
SimplifOr1 P v T — T
SimplifOr2 P VvV F — P
DistribCoD P AN (QV R) — (P ANQ)V (P AR)
Propag I3Z7:(PVv Q) —-37Z:P)Vv (37Z:Q)
EElimin0 3z : P — P
if z & Var(P)
EEliminl 3z:z="t AP —> P
if z¢& Var(P)UVar(t)
Fig. 2.2. RAUP: Rules and Axioms for Connectors Simplification in Unification
Problems

conjunction and disjunction (V and A ). Note that we choose to use distri-
butivity (the rule DistribCoD) in such a way that we get disjunctive normal
forms, a most convenient representation of unification problems. Remember
also that we assume the equation symbol =’ to be commutative.

Proposition 5. All the rules in RAUP preserve the set of A-unifiers, for any
F-algebra A.

2.3.6 Syntactic Unification

Syntactic unification or (-unification is the process of solving equations in the
free algebra T (F, X). In this section, unification problems are assumed to be
unquantified conjunctions of equations. This is so because there is no need
for new variables to express the (unique) most general unifier. The notions
of solved forms are also used without quantifiers and we can now define the
transformation rules.
Notation: Given a set of equations P, remember that {x — s}P denotes
the system obtained from P by replacing all the occurrences of the variable
z by the term s. The size of a term s is denoted |s].

Let SyntacticUnification be the set of transformation rules defined in Fi-
gure 2.3. The transformation rules Conflict and Decompose must be under-
stood as schemas, f and g being quantified over the signature. This is handled
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Delete PAs="s
w—» P
Decompose P A f(sl,... ySn) =" flt1,. .. tn)
b PAsi="1 A ... Asp=tn
Conflict P A f(s1y..., n) Tg(ts,. .., tp)
w» F if f#g

Coalesce P A xz="y

H—»{xHy}P ANx="y if z,y € Var(P) and x £y

Check* P Az ="si[z ] A .
N\ T =7 sn[$1]

w» F if s ¢ X for some i€ [1..n]
Merge PAz="sANz="¢

B PAz="sAs="¢t if 0<|s| <t
Check PAz="s

= F if x € Var(s) and s ¢ X
Eliminate P A z="s

w» {zs}PAx="5s if ¢ Var(s),s¢ X,

x € Var(P)

Fig. 2.3. SyntacticUnification: Rules for syntactic unification

in ELAN by using a specific construction called “For Each” and used in Fi-
gure 2.4. We avoid merging Coalesce and Eliminate into a single rule on
purpose, because they do not play the same role. Coalesce takes care of va-
riable renaming: this is the price to pay for alpha-conversion. Eliminate is
quite different from Coalesce because it makes terms growing, thus we will
see how to avoid applying it.

First, all these rules are sound i.e. preserve the set of unifiers:

Lemma 3. All the rules in Syntactic Unification are sound.

A strategy of application of the rules in Syntactic Unification determines
a unification procedure. Some are complete, some are not, but a brute force
fair strategy is complete:

Theorem 1. Starting with a unification problem P and using the above rules
repeatedly until none is applicable results in F iff P has no unifier, or else it
results in a tree solved form of P:

X1 :?tl Ao A xn:?tn-

Moreover
U:{xl l—)tl,... ,Lﬂnth}

is a most general unifier of P.
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Exercice 3 — In fact, the condition 0 < |s| < [¢] is fundamental in the Merge rule.
Give a unification problem P such that without that condition Merge does not
terminate.

Now that we have proved that the whole set of rules terminates, we can
envisage complete restrictions of it. Let us first define useful subsets of the
rules in Syntactic Unification. We introduce the set of rules:

TreeUnify = { Delete, Decompose, Conflict, Coalesce, Check, Eliminate}

and

DagUnify = {Delete, Decompose, Conflict, Coalesce, Check*, Merge}.

Corollary 1. Starting with a unification problem P and using the rules
TreeUnify repeatedly until none is applicable, results in F iff P has no unifier,
or else in a tree solved form:

T :?tl VAN Tn :? tn
such that o = {z1 — t1,... ,x, — t,} is a most general unifier of P.

Exercice 4 — Apply the set of rules Tree Unify to the following unification pro-
blems:

We can also forbid the application of the Eliminate rule, in which case we
get dag solved forms:

Corollary 2. Starting with a unification problem P and using the rules
DagUnify repeatedly until none is applicable, results in F iff P has no unifier,
or else in a dag solved form

X1 Z?tl VAN Tn :? tn
such that 0 = {z, — t,}... {1 — t1} is a most general unifier of P.

Exercice 5 — Apply the set of rules DagUnify to the following unification pro-
blem:

F(g(h(@),a),2,9(h(a),y)) =" fg(h(g(y,y)), a), x, 2)

Compare with what you get using the set of rules Tree Unify.

The previous results permit to implement complete solving strategies in
ELAN. The complete module performing syntactic unification is given in Fi-
gure 2.4 and is available with the standard library of ELAN [BCD*98]. Notice
that a unification problem is built over the binary operator A (the conjunc-
tion) which satisfies AC(A)-axioms. Therefore, the unification rules are ap-
plied modulo these axioms. The decomposition rule depends on the signature;
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module unification[Vars,Fss|

import global termV[Vars| termF[Fss] unifPb ;
local Fss int identifier bool pair[identifier,int]
list[pair[identifier,int]] eq[variable] eq[term] eq[Fsymbol]
occur|variable,term] occur|variable,unifPb] ;

end

stratop global
unify : <unifPb —> UnifPb> bs; end

rules for unifPb
P : unifPb; st : term; x,y : variable;
local
[delete] P~ x=y=>P
if eq-_variable(x,y) end
x=y => apply(x—>y,P) = x=y
if occurs x in P
and occurs y in P and neq_variable(x,y) end
s=t => false
if not(isvar(s)) and not(isvar(t))
and neq-Fsymbol(head(s),head(t)) end
[occ_check] P = x=s => false
if occurs x in s and not isvar(s) end
[occ_check] P ~ s=x => false
if occurs x in s and not isvar(s) end
[eliminate] P ~ x=s => apply(x—>s,P) ~ x=s
if not(occurs x in s)
and occurs x in P and not isvar(s) end
[eliminate] P ~ s=x => apply(x—>s,P) ~ x=s
if not(occurs x in s)
and occurs x in P and not isvar(s) end

)

[coalesce] P

T
)

[conflict]

[trueadd] P => true ~ P end
[trueelim] true = P=> P end
[identity] P => P end
end

FOR EACH SS:pair[identifier,int]; F:identifier; N:int

SUCH THAT SS:=(listExtract) elem(Fss) AND F:=()first(SS)

AND N:=()second(SS) :{
rules for unifPb
s_1,...,s_N:term; t_1,...,t_N:term;
local
[decompose] P ~ F(s_1,...,s_N)=F(t_1,...,t_N)

=>
P { " s.I=t_l }_I=1..N
end end }

strategies for unifPb

implicit

[] unify => dc one(trueadd) ;

repeatx*(dc(dc one(delete), dc one(decompose),
dc one(conflict), dc one(coalesce),

dc one(occ_check), dc one(eliminate))) ;

dc one(trueelim, identity)

end end end

Fig. 2.4. Syntactic Unification in ELAN
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20
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40

a nice feature allowed in ELAN is to allow a natural expression of such ru-
les by the use of a very general pre-processor. Note also the way strategies
are described: dc expresses a “dont care” choice, repeat* applies as much as



2 Constraint Solving on Terms 63

Decompose P A f(s1,...,52) =" f(t1,... ,tn)

H=»
PAsi="ti A...\Nsp="t,
if f#+
ComMutate P A s1 4+ s2 :?c t1 + to
H=»

S1 :Z: t1 N\ Ss2 :?C ta
P A \%
2 ?
s1=cl2 N s2 =ct

Fig. 2.5. Commutative Unification: The main rules for commutative unification

possible its argument and one allows to keep only one result out of all the
possible ones.

Let us finally mention that syntactic unification has been proved to be
linear in the size of the equation to be solved [PW78], provided that equality
between two variable occurrences can be tested in constant time. But quasi-
linear algorithms using dag-solved forms are often more useful in practice.

One may also ask whether syntactic unification can be speeded up by
using massive parallelism. It is somewhat surprising that this is not the case,
due to the non-linearity of terms. Dwork et al. [DKM84] show that unification
of terms is logspace complete for P: unless P C NC|, no parallel algorithm for
unifying s and ¢ will run in a time bounded by a polynomial in the logarithm
of |s| + |¢| with a number of processors bounded by a polynomial in P.

2.3.7 Unification Modulo Commutativity

As in the free case, unification rules for unification modulo commutativity
transform a unification problem into a set of equivalent unification pro-
blems in solved form. These rules are the same as for syntactic unifica-
tion but should now embed the fact that some symbols are commutative.
We give the modified rules for a commutative theory where we assume that
F=A{ab,...,f,9,...,+} and + is commutative, the others function sym-
bols being free. Then a set of rules for unification in this theory can be easily
obtained by adding a mutation rule to the set Dag-Unify, which describes
the effect of the commutativity axiom. We call the resulting set of rules
Commutative Unification: the modified rules are described in Figure 2.5. It is
very important to notice that a more modular and clever way to get a uni-
fication algorithm for this theory is indeed to combine unification algorithm
for free symbols and for individual commutative symbols. This is detailed in
the lecture by [Baader and Schultz].
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Delete P As=4s W P
Decompose P N f(7) =% f(?) b P Asi=gti A ... A Sp=gtn
Coalesce P A x=%4y w» {z—ytP AN x =Ly

if 2,y € Var(P) and z # y
Eliminate P N z =4 s W {z—s}P A =0 s

if & Var(s), s ¢ X and z € Var(P)
LazyPara P A s=%4t B P A slp=nl A s[rlp=kt

if s|p € X and s|p(a) =1(4)
where | =r e E

Fig. 2.6. GS-Unify: Gallier and Snyder’s rules for E-unification

We see how easy it is here to obtain a set of rules for unification modulo
commutativity from the set of rules for syntactic unification. Note that again,
there is no need of using existential quantifiers here.

Theorem 2. Starting with a unification problem P and using repeatedly the
rules CommutativeUnification, given in figure 2.5, until none is applicable
results in ¥ iff P has no C'-unifier, or else it results in a finite disjunction of
tree solved form:

\/‘rl_C ”/\sz:?Ct;z

jeJ

having the same set of C'-unifiers than P. Moreover:
Y={oljeJand o/ ={a —t), ... 2l = t]}}
is a complete set of C-unifiers of P.

As for syntactic unification, specific complete strategies can be designed.
Note also that by removing Eliminate, we get a set of rules for solving equa-
tions over infinite trees, exactly as in the free case.

2.3.8 General E-Unification

As we have seen, equational unification is undecidable since unification of
ground terms boils down to the word problem. It is indeed semi-decidable by
interleaving production of substitutions with generation of equational proofs.
Gallier and Snyder gave a complete set of rules for enumerating a complete
set of unifiers to a unification problem P in an arbitrary theory E [GS87,
(GS89, Sny88|. This set of rules is given is Figure 2.6.

The rule LazyPara (for lazy paramodulation) implements a lazy (since the
induced unification problem is not solved right-away) use of the equations in
E. Every time such an equation is used in the rule set, the assumption is
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tacitly made that the variables of the equation are renamed to avoid possible
captures.

Gallier and Snyder prove that for any F-unifier v of a problem P, there
exists a sequence of rules (where Eliminate and Coalesce are always applied
immediately after LazyPara) whose result is a tree solved form yielding an
idempotent unifier ¢ < «. In this sense, the set of rules is complete. This
result is improved in [DJ90b] where a restrictive version of LazyPara is proved
to be complete. General E-unification transformations have also been given
in [H6189].

2.3.9 Narrowing

Narrowing is a relation on terms that generalizes rewriting in using unifica-
tion instead of matching in order to apply a rewrite rule. This relation has
been first introduced by M. Fay to perform unification in equational theories
presented by a confluent and terminating term rewriting system, and this is
our motivation for introducing it now. Another important application is its
use as an operational semantics of logic and functional programming langua-
ges like BABEL [MNRA92], EQLOG [GMS86] SLOG [Fri85], and this will be
used in the chapter [[TOY]].

Narrowing a term t is finding an instantiation of ¢ such that one rewrite
step becomes applicable, and to apply it. This is achieved by replacing a non-
variable subterm which unifies with a left-hand side of a rewrite rule by the
right-hand side, and by instantiating the result with the computed unifier.
In this process, is it enough to take the most general unifier. If this process
is applied to an equation seen as a term with top symbol =’, and is iterated
until finding an equation whose both terms are syntactically unifiable, then
the composition of the most general unifier with all the substitutions com-
puted during the narrowing sequence yields a unifier of the initial equation
in the equational theory. The narrowing process that builds all the possible
narrowing derivations starting from the equation to be solved, is a general uni-
fication method that yields complete sets of unifiers, provided that the theory
is presented by a terminating and confluent rewrite system [Fay79, Hul80a].
Furthermore, this method is incremental since it allows building, from a uni-
fication algorithm in a theory A, a unification procedure for a theory RU A,
provided the class rewrite system defined by R and A is Church-Rosser and
terminating modulo A [JKK83].

However, the drawback of such a general method is that it very often
diverges and several attempts have been made to restrict the size of the
narrowing derivation tree [Hul80a, NRS89, WBK94]. A successful method to
solve this problem has been first proposed by J.-M. Hullot in restricting
narrowing to basic narrowing. It has the main advantage to separate the
solving of the syntactic unification constraint from the narrowing process
itself. It is in fact a particular case of deduction with constraints, and the
terminology “basic,” indeed comes from this seminal work [Hul80a].
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In this section we present the two relations of narrowing and basic (or
constraint) narrowing and their application to the unification problem in
equational theories presented by a terminating and confluent term rewrite
system.

Narrowing relations.

Definition 11. (Narrowing) A term ¢ is narrowed into t’, at the non variable
position p € Dom(t), using the rewrite rule I — r and the substitution o,
when o is a most general unifier of ¢|, and [ and ¢’ = o(¢[r],). This is denoted
t 0] t’ and it is always assumed that there is no variable conflict
between the rule and the term, i.e. that Var(l,r) N Var(t) = 0.

For a given term rewriting system R, this generates a binary relation on
terms called narrowing relation and denoted ~»%.

Note that narrowing is a natural extension of rewriting since unification is
used instead of matching. As a consequence the rewriting relation is always
included in the narrowing one: — R LR since, for terms with disjoint sets
of variables, a match is always a unifier.

Ezample 6. If we consider the rule f(f(z)) — « then the term f(y) narrows
at position A:

FW) 2151 @) e (@) o s}
On this example, we can notice that narrowing may introduce new varia-
bles, due to the unification step. Now, if we narrow the term g¢(y, f(y)), we
get the following derivation:

9@ LD~ sr@n—ad@oaworen IV E)2)
LA @) o) (e pe 9 T(E)

which shows that even if the term rewriting system terminates, the narrowing
derivation may not be so.

Exercice 6 — Use the system BasicArithmetic on page 51 to narrow the terms
succ(suce(0)) + pred(0), succ(suce(z)) + pred(0), succ(suce(x)) + pred(y).

Definition 12. A constrained term (3W,t || ¢) is a couple made of a term ¢
and a system of constraints ¢ together with a set of existentially quantified
variables W. It schematizes the set of all instances of ¢ by a solution of ¢ with
no assumption on W i.e.

(3W,0(t) | o € Sol(3W, c)}.

The set of free variables of a constrained term (W, ¢ || ¢) is the union of the set
of free variables of t and the free variables set of ¢ minus W: Var((IW,t || ¢)) =
Var(t) U Var(c) \ W.
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We consider in this section only constraint consisting of system of syntac-
tic equations. This can be extended to more general constraint languages and
domains as proposed for example in [KK89, KKR90, Cha94].

Ezample 7. The formula
7= (f(z, fla,2)) | 32, f(2,2) =" f(g(a,y), fla,y)) A y="g(u,b))

is a constrained term. It schematizes the terms:

f(g(a,g(u,b)), f(a,g(a, g(u,b)))),
f(g(a,g(a,b)), f(a,g(a, g(a,b)))),
f(g(a,g(b,b)), f(a,g(a,g(b,b)))),

and Var(t) = {z,y,u}.

Definition 13. (Constrained narrowing) A constrained term (IW,t[u], || ¢)
c-narrows (narrows with constraints) into the constrained term

@AW UVar(l),trl, | ¢ A u=41)

at the non-variable position p € Grd(t), using the rewrite rule I — r of the
rewrite system R, if the system ¢ A u :5 l is satisfiable and provided that
the variables of the rule and the constrained terms are disjoint: Var(l,r) N
Var((t || ¢)) = 0. This is denoted:

AW, tfulp | ) S fh 1y GW UVar(),tlrl, | e A u=41).

Ezample 8. If we consider as previously the rule f(f(z)) — z, then the term
(f(y) || T) c-marrows at position a:

(3 f(y) | T) C“”[A,f(f(w))—m] (Hat oz | f(y) :5 f(f(@))),

and similarly:

9. fW) | T) s —a) Gl gly.2) || Fly) =7 F(F(2))).

The relation between rewriting and narrowing can be made more precise
than just the trivial relationship — C~o1:
Lemma 4. For any term ¢ and term rewriting system R, if ¢ «»[Iz%g_)dﬁ] t'

then o (t) _>ffn,g—>d] t.

This can be pictured as follows: o(t)

4
g,
v
< [m,g—d,o]

RN
t ~rne o (td]n)
The dual of this property, i.e. the rewriting to narrowing correspondence
schema is more subtle and has been exhibited first by J.-M. Hullot [Hul80a,

Hul80b].

A ~ [m,g—d]
N
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Proposition 6. Let ty be a term and p be a R-normalized substitution such
that p(to) —>[Ifn7g_>d] t}. Then there exist substitutions o et p such that:

R d
L. to /\’)[m,g—)d,a] tl’ p(to) L tll
2. M(tl) = t/la A
3. p —Var(to) Uo, p B
4. p is R-normalized. fo ~ [m.g—d,o] »é

This result can be easily extended by induction on the number of steps
to any rewriting derivation.

In order to apply narrowing to equational unification, it is convenient to
introduce, for any rewrite system R on 7 (F,X), a new rule z :?R x— T in
which the symbols =% and T are considered as new symbols of the signature
(i.e. T,=% ¢& F). This rule matches the equation s =% t if and only if s and
t are identical; it narrows s :7R t iff s and t are syntactically unifiable. Note
that this could be also viewed as rewriting propositions instead of terms, an
approach developed in [DHK98|. This leads to an easy characterization of
R-unifiers:

Lemma 5. Let o be a substitution, s and ¢ be terms and R be any confluent
rewrite system. Let R = RU{z =}  — T}. o is a R-unifier of s and ¢ if

« R
and only if o(s =% t) — T.

Since we also consider constrained equation systems, let us now define
what a solution of such an entity is.

Definition 14. Let R be a term rewriting system on T (F, X). A constrained
system is a constrained term (IW, P | ¢) where P = A\,_;  si =Lt isa
system of R-equations, i.e. a term in 7(FU{A,=%},X) and c is a system
of equations in the empty theory: ¢ = W’ /\izl,... nSi :é ti. A R-unifier of
a constrained system (W, P || c) is a substitution ¢ which is a (-unifier of
(3W, ¢) and an R-unifier of (W, P).

For example (z =% y || F) has no R-unifier and the R-solutions of (s =5
t || T) are the same as the R-unifiers of s =5 ¢.

Proposition 7. (Correctness) Let R be a term rewriting system. Let
G=@E@W,s=pt]o)
G = (@AW UVar(l),s[rl, =gt || ¢ A slp =4 1)

If G~ G’ then Ur(G") CUR(G).

[1.p,l—7]

Proving completeness could be achieved using generalizations of Lemma 4
and Property 6:
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Narrow (AW, s =5 t || ¢)
H—
(AW UVar(l),s[rly =gt | ¢ A slp =4 1)
if (¢ A (s, =g 1)) is satisfiable and s|, is not a variable

Block (AW,s =%t c)
i d
(W, T | c A s=4t)
if (c A (s=pt)) is satisfiable

Fig. 2.7. Narrowing: Unification via constrained narrowing

Theorem 3. Let R be a terminating and confluent term rewriting system
and R = RU{x =" 2 — T}. If the substitution o is a R-unifier of the terms
s and t, then there exists a constrained narrowing derivation:

(A, s =Ht || T) B ... B @AW, T | cn),
such that o € Uy(cy,).

Let us consider now the constrained narrowing tree whose root is labeled
with the constrained term (30, s =% t || T) and whose edges are all possible
constrained narrowing derivations issued from a given node. In this tree,
which is in general infinite, a successful leave is by definition a node labeled
by a constrained term of the form: (3W, T || ¢) with ¢ satisfiable. For a given
equation s =% ¢, we denote SN'T (s =}, t) the set of all successful nodes of
the constrained narrowing tree issued from (30, s =% ¢ || T).

Thanks to Theorem 3, we have:

Ur(s =R t) C U Up(c),
BW,T || 0)ESNT (s=5t)

and since constrained narrowing is correct (by Property 7) we get the equality:
Ur(s =p t) = U Up(c).
BW,T || 0)eSNT(s=5t)
This justifies the following main result about constrained narrowing;:

Corollary 3. The transformation rules described in Figure 2.7, applied in a
non deterministic and fair way to the constrained equation (30,s =% ¢ || T),
yield constrained equations of the form (3W, T || ¢) such that the most general
-unifiers of the ¢’s form altogether a complete set of R-unifiers of s :r';{ t.

Note that in the set of rules Narrowing, the Block rule mimics exactly the
application of the rule z =% z — T.
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Ezample 9. 1f we consider the rewrite system R reduced to the rule f(f(y)) —
y, then the constrained equation (30, f(x) =% = || T) is rewritten, using the
rules Narrowing as follows:

@, f() <he | T)
+5 Narrow by =g | F(/(y) = /(2))
> Block GHyh, T lly =gz A f(f(Y) =5 f(2))
H9>SyntacticUniﬁcatiom (H{y}aT H F)

See exercise 8 to conclude about the solution set of this equation.

Exercice 7 — Use the system BasicArithmetic on page 51 to solve the equation
zrr="z+ax using constrained narrowing.

Exercice 8 — Let R = {f(f(x)) — z}. Show that the standard narrowing is not
terminating on the equation f(y) =% ¥, as on the contrary basic or constrained
narrowing does. What is the complete set of R-unifiers of this equation?

Notice that the previous proof of completeness of constrained narrowing
can be extended to equational unification. This allows dealing in particular
with narrowing modulo associativity and commutativity. Using normalization
during the narrowing process could be achieved in a complete way. The latest
paper on the subject, linking the problematic to the redundancy notions used
in automated theorem proving, is [Nie95].

2.4 Dis-Unification Problems

As the name suggests, dis-unification is concerned with the generalization of
unification to formulas where negation and arbitrary quantification are allo-
wed. Many problems can be formalized in this setting and dis-unification has
many useful applications from logic to computer science and theorem proving.
Solving arbitrary first-order formulas whose only symbol is equality in an al-
gebra A shows the decidability of the theory of A and provides a complete
axiomatization of A [Mah88]. Dealing with negation in logic programming
or when automating inductive theorem proving leads to solve dis-unification
problems.

For a detailed motivation and presentation of dis-unification, see the sur-
veys [CL89, Com91].

2.4.1 Equational Formulas, Semantics and Solved Forms

We call equational formula any first-order formula built on the logical connec-
tives V, A, =, the quantifiers V and 9 and which atomic formulas are equations
or the constant predicate T.

The set of A-solutions is defined as previously for constraint systems.
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The most common domains that have been considered in the literature
are the following:

A=T(F) or T(F,X) This is the interpretation used when interested for
example in complement problems (see for example [Com86]). The main
point when dealing with such interpretation is the finiteness of F as we
will see later. The case of T(F,X) will be considered as a special case
of T(F) where the (infinite many) variables are considered as (infinitely
many) constants.

A = RF(F) the algebra of rational terms is considered for example in con-
strained logic programming [Mah88]. When dealing with IT(F), the al-
gebra of infinite terms (not necessarily rational), [Mah88] has proved that
a formula holds in IT(F) if and only if it holds in RT(F).

A = NFg(F) the subset of terms in 7(F) that are in normal form with
respect to the term rewrite system R. Such interpretation are considered
in particular in [Com89].

A=T(F)/E where E is a finite set of equational axioms. This has been
studied for specific set of axioms (with associativity-commutativity as an
important theory from the application point of view) as well as in the
general case using narrowing based techniques.

2.4.2 Solving Equational Formulas in 7 (F)

Following the approach proposed in the section 2.2, we now define the solved
forms under consideration when dealing with equational formulas when the
interpretation domain is A = T (F).

Definition 15. A basic formula is either F, T or

7z =t A ATy =ty A2y FULA A 2y F U

where
® 11,...,x, are free variables which occur only once
® z1,...,2y, are variables s.t. Vi, z; € Var(u;)

Lemma 6. [Independence of dis-equations] If 7(F) is infinite, and if E is a
finite conjunction of equations and D is a finite conjunction of dis-equations
then E'A D has a solution in 7(F) iff for each s #t € D, EAs #t hasa
solution in T (F).

Lemma 7. The basic formulas which are distinct from F are solvable.

And indeed the solved forms are finite disjunction of basic formulas:

Theorem 4. [Com91] If A is either T(F), IT(F) or RT(F) then any equa-
tional formula is equivalent to a finite disjunction of basic formulas.

Let us now show how to compute the solved form of any equational for-
mula in T(F).
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SUP — DistribDoC

@]

Dis-equation —(s =" t) —s#"t
TrivialDis s #° s — F

NegT -T — F

NegF -F — T
NegNeg ——e — e
NegDis —(eVe) — —e A —e’
NegConj —(eAe) — —e V —e’

DistribDoC e V (¢ Ae") = (e VvV e) A (eVe)

Fig. 2.8. SEF: Rules for connectors Simplification in Equational Formulas

2.4.3 Solving Dis-Equation on Finite Terms

Our goal is here to transform any equational problem into its solved form
assuming that the solving domain is A = T (F). Indeed it is enough to trans-
form the so called elementary formulas into basic formulas since, by succes-
sive application of the transformation rules and the appropriate use of double
negation, this will allow to solve any equational formula. This is explained
in [CL89][Section 6.1], presented by transformation rules is [Com91].

Definition 16. We call elementary formulas any disjunction of formulas of
the form

37 VY P
where P is a quantifier-free equational formula.

The rules for connectors simplification (SUP) described in Figure 2.2 are
extended and modified in order to cope with dis-equations. In particular,
we orient this time distributivity (DistribCoD) in order to get conjunctive
normal forms.

We give now some of the rules reducing elementary formulas to basic ones.
A full description of the rules could be find in [Com91].

The replacement rule of unification should be extended to deal with dis-
equations. In particular we get:

Replacement2 z #° tV P[z] w» 2z £° t V {z — t} P[z]
if z is a free variable,
t does not contain any occurrence of a
universally quantified variable,
z & Var(t) and,
if t is a variable, then it occurs in P.
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We have to deal directly with quantifiers that should be eliminated as far as
possible either universal;

ElimUQ1 VYy: P w» P
if y does not occur free in P
ElimUQ2 Yy: y# uAPw»F

if y & Var(u)
EimUQ3 Yy: y# uVvd w» {y+— u}d
if y & Var(u)
or existential:
ElimEQ1 Jx: P w—» P

if x does not occur free in P
ElimEQ2 3z: z="tAPw» P
if z¢& Var(t,P)

With respect to unification, a new clash rule appears:

Clash  f(t1,... ,tm) £ glu1, ... ,uy) #» T
if f#g

and the decomposition rule should take care of dis-equalities:

Decomp2  f(t1,... ,tm) #° f(us,... ,um)
H=
t17$?u1\/...\/tm7é7um
Decomp3  (f(t1,... tm) =" f(u1,... ,uy)Vd) AP

H—=
(t1="uy VA)A ... Aty =" Up Vd) AP
if one of the terms ty,...,tm,u1,..., Uy, contains a

universally quantified variable, or else d does not con-
tain any universally quantified variable

Of course the occur check may now also generate positive information:

OccurC2 s #7 uls] w» T
if s and u[s] are not syntactically equal

When we assume that the domain consists in finite trees over a finite set
of symbols, more quantifier eliminations can be performed like in:

EWmEQ3 3w : (dyVz 27 u)) Ao A(dp V2 £ up) AP
H=
Juw : P
if there exists a variable w € W N Var(zi,u) N...N
Var(zp, u,) which does not occur in P.

and finite search could be used, when everything else have failed:
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Explosion 3wt : P

H=

\/ 3w It : PAz=" f(W)

feF

if W NVar(P) =10,
no other rule can be applied and
there exists in P an equation or a dis-equation z = u
where u contains an occurrence of a universally quanti-
fied variable.

All these rules are correct and are consequences of the axiom system for
finite trees over a finite alphabet. The full set of rules as given in [Com91] is
terminating for any reduction strategy and the solved forms that are reached
are basic formulas. As a consequence:

Theorem 5. [Com88, Mah88] The first-order theory of finite trees is deci-
dable.

The above rules provide a way to reduce elementary formulas to basic
ones. Of course obtaining solved form consisting only of equalities, and the-
refore giving a basis of the dis-unifiers set under the form of a complete set
of substitutions is more appealing and as been addressed in [LM87, LMMS8],
[MS90, CF92], also in some equational cases [Fer98].

The complexity of dis-unification, even in the syntactic case where no
equational theory is involved, can be high. In particular deciding satisfiability
of elementary formulas is NP-complete [Pic99].

When extending dis-unification to equational theories, narrowing-based
procedures could be designed [Fer92]. Unfortunately, even for theories as
simple as associativity and commutativity, dis-unifiability becomes undeci-
dable for general problems [Tre92] but is still decidable when considering
the existential fragment i.e. elementary formulas without universal quanti-
fiers [Com93]. It is also interesting to note that when restricting to shallow
theories (where the equational axioms involve only variable at depth less than
one), dis-unification is still decidable [CHJ94].

2.5 Ordering Constraints

We now consider the case where the symbolic constraints under consideration
are based on an ordering predicate interpreted as a recursive path ordering
on terms. We are presenting only the basic results and main references on the
literature. A more detailed account of results could be found in the survey
paper [CT94].

As this will be detailed in other lectures of this school, this kind of ordering
constraints is extremely useful in theorem proving [KKR90, HR91, NR95],
[BGLS95] as well as in programming language design since they allow to prune
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the search space by keeping into account simplification as well as deletion
strategies.

This section is devoted to ordering constraints where the ordering pre-
dicate is interpreted as a path ordering, but several other possibilities have
been already explored:

Subterm ordering are studied in [Ven87].

Encompassment ordering [CCD93] play a central role in the ground re-
ducibility problem [CJ94].

Matching ordering is surveyed in Section 2.6.

A reduction ordering > on T(F,X) is a well-founded ordering closed
under context and substitution, that is such that for any context C[] and
any substitution o, if t > s then C[t] > C[s] and o(t) > o(s).

Reduction orderings are exactly what is needed when dealing with termi-
nation of term rewrite systems since a rewrite system R over the set of terms
T(F, X) is terminating iff there exists a reduction ordering > such that each
rule | — r € R satisfies [ > r.

Two most commonly used methods for building reduction orderings are
polynomial interpretations and path orderings. Even if a very general no-
tion of general path ordering can be defined [DH95], we restrict here to the
recursive path ordering possibly with status.

Definition 17. Let us assume that each symbol f in the signature has a
status, Stat(f) which can be either lexicographic (lex) or multiset (mult).
The equality up to multisets, =" is defined on terms as equality up to
permutation of direct arguments of function symbols with multiset status.
Let > be a precedence on F. The recursive path ordering with status
>,pos 18 defined on terms by s = f(s1,..,8n) >rpos t = g(t1, ... ,tm) if one at
least of the following conditions holds:

1. 8; >ppos t OF 55 =mult ¢ for some i with 1 < i <n, or

2. f>rgand Vje{l,... ,m}, s >ppos tj, OF

3. f =g, Stat(f) =lex, (s1,...,5) >ff;“j,s (t1,... ,tm) and
Vie{l,...,n},s >ppos ti, OF

4. f=g, Stat(f) = mult and {s1,... ,sp} > {ty,. ..t}

where >L’;Zit and l;;gs are the multiset and lexicographic extensions of >, 05
respectively (the reader is referred to [KK99,BS99] for a definition of these
extensions).

When all symbols have the lexicographic status, we speak of lexicographic
path ordering (LPO for short). When conversely they all have the multiset
status, we speak of the multiset or recursive path ordering (RPO for short).

Such orderings are called generically path orderings.

A term ordering constraint is a quantifier-free formula built over the
binary predicate symbols > and = which are interpreted respectively as a
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given path ordering > and a congruence on terms. We denote an inequation
by s =" t. A solution to an ordering constraint c is a substitution ¢ such that
o(c) evaluates to true.

When solving such ordering constraints, a first main concern is about
the introduction of new constants in order to express the solutions. This
rises the distinction between fixed signature semantics and extended sig-
nature ones [NR95]. The satisfiability problem for ordering constraints has
been shown to be decidable for fixed signature either when > is a total
LPO [Com90], or when it is a recursive path ordering with status [JO91].
In the case of extended signature, the decidability has been shown for RPO
by [Nie93] and for LPO in [NR95]. Concerning complexity, NP algorithms
have been given for LPO (in both fixed and extended signatures), RPO (for
extended signatures) [Nie93] and for RPO with fixed signatures [NRV98]. NP-
hardness is known, in all the cases and even for a single inequation [CT94].

Following the latest results of [Nie99] to which we refer for the full details,
the satisfiability of a path ordering constraint can be achieved by first redu-
cing it to a solved form which is then mainly checked to be occur-check free.
The reduction to solved form follows the principle we have already seen for
other constraint systems. The set of rules are of course using the definition
of RPOS in order to decompose problem in simpler ones. For example, right
decomposition is achieved via the rule:

decompR S Ns =" f(ty,... . ty)#» SAs ="t A...As>="1,
if top(s) ># f

Left decomposition is achieved with some nondeterminism handled here by
a disjunction:

decompL S A f(s1,...,85) ="t #» \/1§i<n5 As; ="tV \/195” S
N\S; = t
if top(t) ># f

where the introduced equations are solved modulo multiset equality.

2.6 Matching Constraints

The matching process is a symbolic computation of main interest for pro-
gramming languages and in automated deduction. For applying a rewrite
rule I — 7 to a (ground) term s, we have to decide if the left hand-side I
of the rule “matches” a ground subterm t of s. This matching problem, de-
noted by I <7 t consists to unify [ with a ground term t. According to this
definition, matching is a very specific case of unification (unification with a
ground term) and can be solved by reusing a unification algorithm (or stra-
tegy) if such an algorithm exists like in the empty theory. But there exist
also equational theories where matching is decidable but unification is not,
and in many situations, matching is much less complex than unification.
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2.6.1 Syntactic Matching

The matching substitution from ¢ to ¢/, when it exists, is unique and can be
computed by a simple recursive algorithm given for example by G. Huet [Hue76]
and that we are describing now.

Definition 18. A match-equation is any formula of the form ¢t <’ ¢/, where
t and ¢’ are terms. A substitution o is solution of the match-equation t <’
t' if ot = t'. A matching system is a conjunction of match-equations. A
substitution is solution of a matching system P if it is solution of all the
match-equations in P. We denote by F a matching system without solution.

We are now ready to describe the computation of matches by the following
set of transformation rules Match where the symbol A is assumed to satisfy
the rules and axioms of figure 2.2.

Delete t<'t AP = P
Decomposition f(ty,... tn) < f(t),...,t1) A Pws Ny

ti <l ti AP
SymbolClash  f(t1,... ,tn) <  g(th,... ,t},) A Pws F

iff#g
MergingClash = <"t Nz <’ t' AN P = F

it
SymbVarClash f(ty,... ,t,) < © A P » F

ifreX

Match: Rules for syntactic matching

Theorem 6. [KK99] The normal form by the rules in Match, of any mat-
ching problem t <" t' such that Var(t) N Var(t') = 0, exists and is unique.

1. If it is F, then there is no match from t to t'.

2. If it is of the form \;c; x; <"ty with I # 0, the substitution o = {x;
t:}icr 1s the unique match from t to t'.

3. If it is T then t and t' are identical: t =t'.

Exercice 9 — Write a program, in the language of your choice, implementing a
matching algorithm derived from the Match set of rules.

Exercice 10 — Compute the match from the term f(g(z), f(y, z)) to the term
flg(f(a,x)), f(g(c), f(a,z))).

It should be noted that the rule Delete in the previous set of rules is not
correct when the two members of the match equation t <’ ¢’ share variables.
This can be seen on the following example. The matching problem f(z,z) <"
f(x,a) has no solution but the unrestricted use of the transformations leads
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to: f(x,2) <" f(x,a) " Decomposition{? <’ 7,7 <’ a} +»pelete(r <’ a}
which has an obvious solution.

The above transformation rules could be easily generalized to deal with
commutative matching. But the extension to associative and commutative
matching is not straitforward and needs either to use semantical arguments
like solving systems of linear Diophantine equations [Hul79,Mza86, Eke95] or
to use the concept of syntactic theories [Kir85, KK90] to find the appropriate
transformation rules [AK92, KR98].

2.7 Principles of Automata Based Constraint Solving

In the syntactic methods which have been presented previously, the aim of the
constraint solving procedure is to reach a solved form which is an equivalent
(yet simpler) representation of the set of solutions of the original constraint.
Here, we consider another representation of the set of solutions: an automa-
ton.

The relationship between logic and automata goes back to Biichi, Elgot
and Church in the early sixties [Biic60, Elg61, Chu62]. The basic idea is to
associate with each atomic formula a device (an automaton) which accepts all
the models of the formula. Then, using the closure properties of the recognized
languages, we can build an automaton accepting all the models of an arbitrary
given formula. This is also the basis of optimal decision techniques (resp.
model-checking techniques) for propositional temporal logic (see e.g. [Var96,
BVW94]).

In this lecture, we illustrate the method with three main examples, using
three different notions of automata:

Classical word automata. They allow to represent the set of solutions for
arbitrary Presburger formulas, yielding a decision procedure for Pres-
burger arithmetic. This technique is known since Biichi, but has been
re-discovered recently with applications in constraint solving. This con-
straint solving method has been implemented in several places and com-
petes with other arithmetic solvers as shown in [BC96, SKR98, K1a99).
We survey this very simple method in section 2.8.

Automata on finite trees. They allow to represent sets of terms, hence
solutions of typing (membership) constraints on terms. We introduce such
constraints as well as tree automata in section 2.9. There are several other
applications of tree automata in constraint solving. For instance we will
sketch applications in unification theory (sections 2.11.1, 2.11.2). They
are also used e.g. in type reconstruction, in which case the interpretation
domain is a set of trees representing types themselves (see e.g. [TW93]).

Tree set automata. They recognize sets of sets of terms. We define such
a device in section 2.10 and show how it can be used in solving the so-
called set constraints which were already surveyed at the CCL conference
in 1994 [Koz94].
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A significant part of these lecture notes is developed in [CDG197]. There
was already a survey of these techniques at the CCL conference in 1994
[Dau94].

2.8 Presburger Arithmetic and Classical Word
Automata

We recall briefly the standard definitions in sections 2.8.1 and 2.8.2. Then we
show how automata recognize sets of integers and we give a construction for
the decision of arithmetic constraints.

2.8.1 Presburger Arithmetic

The basic terms in Presburger arithmetic consist of first-order variables,
which we write z,z1,y,2’..., the constants 0 and 1 and sums of basic terms.
For instance z + x4+ 1 4+ 1 + 1 is a basic term, which we also write 2x + 3.

The atomic formulas are equalities and inequalities between basic terms.
For instance = + 2y = 3z + 1 is an atomic formula.

The formulas of the logic are first-order formulas built on the atomic for-
mulas. We use the connectives A (conjunction), V (disjunction), = (negation),
Jz (existential quantification), Va (universal quantification). For instance,
Va,dy.(x =2y Ve =2y + 1) is a formula. T is the empty conjunction (valid
formula) and L is the empty disjunction (unsatisfiable formula).

The free variables of a formula ¢ are defined as usual: for instance F'V (¢1V
62) = FV(61) U FV(62) and FV (32.9) = FV(6) \ {a}.

The interpretation domain of formulas is the set of natural numbers N,
in which 0,1,4,=,< have their usual meaning. A solution of a formula
¢(x1,...,xy,) is an assignment of z1,...,x, in N which satisfies the for-
mula. For instance {z — 0;y +— 2;z — 1} is a solution of z + 2y = 3z + 1
and every assignment {z — n} is a solution of Jy.(x = 2y Vo =2y + 1).

2.8.2 Finite Automata

For every word w € A*, if ¢ is a natural number which is smaller or equal to
the length of w, we write w(i) the ith letter of w.

A finite automaton on the alphabet A is a tuple (Q, Qy, qo,d) where @ is
a finite set of states, @y C @ is the set of final states, o € Q is the initial
state and § C @@ X @ x Q is the transition relation.

Given a word w € A* a run of the automaton (@, @, go,d) on w is a word
p € Q" such that p(1) = qo and, if p(i) = ¢, p(i+1) = ¢, then (¢, w(i), ¢’) € 0.
A successful run p on w is a run such that p(n+1) € Q5 where n is the length
of w. w is accepted by the automaton if there is a successful run on w. The
language accepted (or recognized) by an automaton is the set of words on
which there is a successful run.
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The class of languages which are accepted by some finite automaton is
closed by union, intersection and complement. Such constructions can be
found in most textbooks. (See e.g. [Per90] for references).

2.8.3 Sets of Integers Recognized by a Finite Automaton

Every natural number can be seen as a word written in base k (k > 1) over the
alphabet A = {0, ..., k — 1}. For convenience, we write here its representation
in a somehow unusual way from right to left. For instance thirteen can be
written in base two as: 1011. There are more than one representation for
each number, since we may complete the word with any number of 0’s on the
right: 101100 is another representation of thirteen in base two. Conversely,
there is a mapping denoted ~* from {0,...,k — 1}* into N which associates
with each word a natural number: 101102 is thirteen.

n-uples of natural numbers can be represented in base k as a single word
over the alphabet {0, ...,k — 1}" by stacking the representations of each indi-
vidual numbers. For instance the pair (13,6) (in base 10) can be represented
in base 2 as a word over the alphabet {0,1}? as: [911. Again there are more
than one representation since the word can be completed by any number of

O’s on the right.

2.8.4 A Translation from Presburger Formulas to Finite
Automata

In the logic versus automata spirit we start by associating an automaton with
each atomic formula.

Automata associated with equalities. For every basic formula
a1y + ...+ apxy, = b (where ay, ... ,an,b € Z)

we construct the automaton by saturating the set of rules and the set of
states, originally set to {gy} using the inference rule:

g € Q a1+ ...+ a0, = c
: _ c—a161...—anbn
if {d=cnb—auby
74 €Q, (¢,0,q4) €0 0 € {0,1}"encodes (01,...,0,)
in other words: for every state g. € @), compute the solutions (61,... ,6,) of

a1x1 + ...+ apr, = ¢ modulo 2 and add the state ¢4 and the rule g, LN qd

where d = ¢=101.—an0s

The initial state is g, and, if gy € @, then this is the only final state.
Otherwise there is no final state.
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Ezxample 10. Consider the equation = + 2y = 3z 4+ 1.

Since b = 1, we have ¢ € Q. We compute the solutions modulo 2 of
r+2y=3z+1: we get {(0,0, 1) (O 1 1) (1,0,0) (1,1,0)}. Then we compute
the new states: 1=05043 — g 1=0-243 — 7 1=1-0+ +0 =0, =520 = 7
yielding g2, qo, ¢—1 € @, and the new transitions:

) C

1 1
0 1 0 1
1 1 0, 0

91 — 492,91 — 41,91 — qo,q1 — G-1-

Going on with states g2, o, g—1, we get the automaton of figure 2.9; we use
circles for the states and double circles for final states.

For instance, consider the path from the initial state ¢q; to the final state
. . 111100 ,
qo going successively through g_1¢_2g0q192. The word 110001 is accepted by
001110
the automaton, which corresponds to the triple (in base ten): x = 15,y =
35,z = 28 and one can verify 15+ 2 x 35 =3 x 28 + 1.
? o
0 0

@

1
1 0
1 1

m

i/\

U 1

1 0
0 1

Fig. 2.9. The automaton accepting the solutions of +2y=3z+1
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e
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e

Proposition 8. The saturation terminates yielding an (deterministic) au-
tomaton whose number of states is bounded by max(|b|, |a1| + ...+ |an|) and
which accepts the solutions of a1z + ...+ apxy, = b.

Indeed, it is not difficult to check that the absolute values of the states
are bounded by max(|bl, |ai|+ ...+ |an|) (this is an invariant of the inference
rule, the proof is left to the reader). The correctness and completeness are
also easy: it suffices to show by induction on the length of the word (resp. on
the length of the transition sequence) that, any word accepted starting from
any state ¢, is a solution of a1z + ... + a,z, = C.
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The algorithm can be optimized in several respects, for instance pre-
computing the solutions modulo 2 or using Binary Decision Diagrams (BDDs)
to represent the transitions of the automaton.

Ezercise 1. If we fix aq,...a,, what is the size of the automaton, w.r.t. b7

Automata associated with inequalities. Next, we compute an automa-
ton for inequalities a1x1 + ... + anx, < b. The computation is similar: we
start with ¢, and, from a state gq. we compute the transitions and states as

follows. For every bit vector (01, ...60,), g. SRS qq with
C — Zn_ aiGi
d= i=1
P LY
Qs ={qc|c=0}.

Ezxample 11. Consider the inequality 2z —y < —1. The automaton which we
get using the algorithm is displayed on figure 2.10.

01

b C@/gsf/@

0
1

) e

11
01

Fig.2.10. The automaton accepting the solutions of 2x —y < —1

Exercise 2. What is the largest number of reachable states in the automaton
for a1x1 + ...+ apxy, < b?

Closure properties and automata for arbitrary formulas.

Let Ag(z1,...,2,) be an automaton over the alphabet {0,1}" which
accepts the solutions of the formula ¢ whose free variables are contained in
{z1,...,2,}. If a variable z; does not occur free in ¢, then accepting/not
accepting a word will not depend on what we have on the ith track.

FEzxercise 3. Show how to compute Ag(z1,... ,%n,y), given Ag(z1,...,2n).

Given two automata Ay, (@) and Ag, (@) we can compute Ag, e, (7))
and Ay, ve, (@) by the classical constructions for intersection and union of
finite automata. We only have to be sure that 7 contains the free variables
of both ¢; and ¢2, which can be easily be satisfied, thanks to the above
exercise.
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Then negation corresponds to the complement, a classical construction
which is linear when the automaton is deterministic (and may be exponential
otherwise). Since the automata which were constructed for atomic formulas
are deterministic, computing the automaton for a1x1 +. ..+ a,z, # b is easy.

Now, it remains to handle the quantifiers. Since Vx.¢ is logically equi-
valent to —3z.~¢, we only have to consider existential quantification. Az, 4
is computed from Ay by projection: the states, final states, initial state and
transitions of A3, ¢ are identical to those of Ay, except that we forget the
track corresponding to x in the labels of the transitions.

Example 12. Consider the formula 3z.x + 2y = 3z + 1. The automaton is
obtained from the automaton of figure 2.9, forgetting about z. This yields
the automaton of figure 2.11. By chance, this automaton is still deterministic.

0 01 1
1 01 0

) : ) ; @

©, ©

\

8©®<—

Fig. 2.11. The automaton accepting the solutions of J3z.x + 2y =3z + 1

But this is not the case in general.

Finally, by induction on the Presburger formula ¢, we can compute an
automaton which accepts the set of solutions of ¢.

Deciding the satisfiability of a formula ¢ then reduces to decide the emp-
tiness of Ay, which can be done in linear time w.r.t. the number of states.

Consider however that A4 could have, in principle, a number of states
which is a tower of exponentials whose height is the number of quantifier
alternations in ¢. This is because each quantifier alternation may require a
projection followed by a complement and the projection may yield a non-
deterministic automaton, requiring an exponential blow-up for the comple-
ment. Whether this multi-exponential blow-up may occur in the above con-
struction is an open question. (Though the complexity of Presburger arith-
metic is known and elementary, using other methods. See [FR79].)
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2.9 Typing Constraints and Tree Automata

If we want to solve constraints on terms, we need another device, which
accepts not only words, but also trees. We introduce tree automata on a very
simple constraint system. Some other applications are sketched in sections
2.11.1, 2.11.2, 2.11.4. We refer the interested reader to [CDG'97], a book
freely available on the web, which contains much more material, both on
theory and on applications to tree automata to constraint solving.

2.9.1 Tree Automata

Recognizing a tree is not very different from recognizing a word: a tree ¢
is accepted if there is a successful run of the automaton on ¢. The main
difference is that transitions send some (possibly different) states to all the
successors of a node instead of sending a single state to the next position.

Here, we will only consider automata on finite trees, though there are
very interesting developments and applications in the case of infinite trees
(see e.g. [Tho90]).

We assume that F is a finite ranked alphabet (each symbol has a fixed
arity) and 7 (F) is the set of (ground) terms built on F. A finite (bottom-up)
tree automaton is a triple (Q,Qy,0) where @ is a finite set of states, @ is
a subset of final states and d is a set of rules of the form f(q1,...,q,) — ¢

where q1,...,Gn,9 € Q and f € F has arity n. A run p of A on a term
(or tree) t € T(F) is a tree which has the same set of positions as ¢, whose
labels are in @ and such that, for every position p of ¢, if ¢(p) = f has arity
n, p(p) = q and p(p-1) = q1,...p(p - n) = qn, then there is a transition
flg1,-.. ,qn) — qin d. A run is successful if its root is labeled with a finite

state. A term ¢ is recognized by a tree automaton A if there is a successful
run of A on t.

Example 13. Using a notation which is more common in algebraic specifica-
tions, we define below an order-sorted signature:

SORTS:nat, int
SUBSORTS : nat < int
FUNCTION DECLARATIONS:

0 — nat
+ nat X nat — nat
S nat — nat
p: nat — int
+ int X int — int
abs : int — nat

fact : nat — nat
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This can be seen as a finite tree automaton whose states are the sorts
{nat, int}. Function declarations can easily be translated into automata rules,
e.g. +(nat,nat) — nat. The subsort ordering corresponds to e-transitions

which can easily be eliminated, yielding

0 — nat 0 —int
+(nat,nat) — nat  +(nat,nat) — int
s(nat) — nat s(nat) — int
p(nat) — int +(int, int) — int
abs(int) — nat abs(int) — int
fact(nat) — nat fact(nat) — int

The set of terms accepted by the automaton in state nat (resp int) is the
set of terms of sort nat.

Basically, recognizable tree languages have the same properties as reco-
gnizable word languages: closure by Boolean operations, decidability of emp-
tiness, finiteness etc... See [CDGT97] for more details.

2.9.2 Membership Constraints
The set of sort expressions SE is the least set such that

e SE& contains a finite set of sort symbols S, including the two particular
symbols Tg and Lg.

o If 51,80 € S&, then s1 V 89, 81 A 89, 81 are in SE

o If 51,...,s, are in S and f is a function symbol of arity n, then

f(s1,...,8,) € SE.

The atomic formulas are expressions t € s where t € T(F,X) and s €
S&. The formulas are arbitrary first-order formulas built on these atomic
formulas.

These formulas are interpreted as follows: we are giving an order-sorted
signature (or a tree automaton) whose set of sorts is S. We define the
interpretation[-] s of sort expressions as follows:

o if s €5, [s]s is the set of terms in 7 (F) that are accepted in state s.

(] [[Ts]]s = T(]:) and [[Lsﬂs = (Z)

o [s1Vso]s = [s1]sU[sels, [s1As2]s = [si]sN[s2]s, [-sls = T(F)\[s]s
. [[f(sl, . ,Sn)]]g = {f(tl, . ,tn) | t1 € [[81]]5', ooty € [[Sn]]S}

Example 1. Consider the specification:

0 — even s(odd) — even

s(even) — odd even + odd — odd

odd + even — odd even + even — even
odd 4 odd — even
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Jodd A even] is empty: this can be shown by constructing the intersection
automaton whose rules only yielding odd A even consist of

s(odd A even) — odd Aeven  odd A even + even — odd A even
odd A even + odd — odd A even odd + odd A even — odd A even
even + odd A even — odd A even

which shows that odd A even is unreachable.

2.9.3 From the Constraints to the Automata

It is easy to associate with each membership constraint x € ( a tree au-
tomaton which accepts the solutions of the constraint: simply consider an
automaton for [(]. Now, for arbitrary constraints, we need a decomposition
lemma showing how f(t1,...,t,) € ¢ can be decomposed into a finite dis-
junction of constraints t; € (1 A ... Aty € (. This is not difficult (though
a bit long, see [CD94, Com98] for more details and extensions). Then every
atomic constraint is a membership constraint z € (. And we use the closure
properties of tree automata to get an automaton which accepts the solutions
of an arbitrary constraint.

Note that, in this very simple example of application, we do not need to
stack (or, more realistically, to overlap) the different tracks, since variables
are “independent”. In other words, the resulting automaton, which accepts
tuples of terms, is actually a product of tree automata (each working on a
single track). This is not the case for more complicated constraints such as
rewriting constraints (see [CDG'97, DT90]). For instance the solutions of
x = y are recognized by a finite automaton on pairs (simply check that all
labels are pairs of identical symbols) but is not recognized by a product of
two automata.

2.9.4 The Monadic Second Order Logics

The constraint system of the previous section can be embedded in a well-
known more powerful system: the weak monadic second-order logic. It is
beyond the scope of these notes to study these logics. Let us simply briefly
recall the constraint systems and the main results.

Atomic formulas are z = y -4 where ¢ € {1,..n}, x = y, © = € or
membership constraints x € X where x,y, X are variables. Upper case letters
are used here for monadic second order variables, while lower case letters are
first-order variables. The formulas are built over these atomic constraints
using Boolean connectives and quantifications, both over the first-order and
the second-order variables.

The formulas are interpreted as follows: first-order variables range over
words in {1,...,n}* (e is the empty word) and second-order variables range
over finite (resp. finite or infinite) subsets of {1,...,n}*. In the finite (resp.
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finite or infinite) case, the constraint system is called weak monadic second
order logic with n successors (resp. monadic second order logic with n suc-
cessors), WSnS for short (resp. SnS).

The main results state on one hand that the solutions of atomic formulas
are recognized by appropriate tree automata and on the other hand that the
class of automata is closed under Boolean operations and projections and
emptiness is decidable. This yields the decidability of the constraint system.

More precisely, we use an encoding similar to the encoding which was
presented in section 2.8: with each k-uple of subsets of {1, ..., n}*, we associate
an infinite tree of degree n labeled with vectors in {0, 1}*. Assume for instance
that there are three sets S1, Ss, Ss. If a path w € {1,...,n}* of the tree yields

a node labeled with e.g. (1J, this means that w € S1, w ¢ Sz and w € Ss.
1

Hence solutions can be seen as trees labeled with {0, 1}*. Then

Theorem 7 ( [TWG68]). The set of solutions of a constraint in WSnS is
accepted by a finite tree automaton.

Theorem 8 ( [Rab69]). The set of solution of a constraint in SnS is ac-
cepted by a Rabin tree automaton.

Both results are shown by first proving that the solutions of atomic con-
straints are recognized by an appropriate automaton and then proving the
closure properties of the class of automata.

Such closure properties are easy, except in one case which is really non
trivial: the complement for Rabin automata. We did not define so far Ra-
bin automata (see e.g. [Tho97, Rab77] for surveys). They work on infinite
trees, hence top-down. On the other hand, it is not possible to determinize
top-down tree automata (this is left as an exercise). Hence the classical com-
plementation construction does not work for automata on infinite trees.

Such general results can be applied to several constraint systems which
can be translated into monadic second-order logics. A typical example is
rewriting constraints (see [DHLT88]). A more detailed description of appli-
cations can be found in [CDG97].

2.9.5 Extensions of the Constraint System and Further Results

The simple constraint system of section 2.9.2 can be extended in several
directions. For instance, it is possible to add equations between first-order
terms [CD94] or to consider (in some restricted way) second-order terms
[Com98].

Solving constraints which combine equations and membership predicates
is also known as order-sorted unification and deserved several works which
use syntactic constraint solving methods [MGS90, HKK98].

The membership constraints have also been extended to other models
with applications to automated deduction (see e.g. [GMW97, IMW98]). The
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device (finite tree automata) has however to be extended, along the lines
described in section 2.11.4.

Parametric specifications can also be handled, but we need then the set
constraints of the next section, since we have also to find which values of the
parametric types are solutions of the constraint.

Tree automata (on infinite trees) are used in [TW93] in the context of type
reconstruction. Here constraints are interpreted over the type structures, not
over the term structure.

2.10 Set Constraints and Tree Set Automata

There has been recently a lot of work on set constraints and, in particular
on applications of automata techniques. Let us cite among others [BGW93,
GTT93b, GTTI93a, GTTI4, Tom94].

We do not intend to survey the results. Our purpose is to show how
automata may help to understand and solve such constraints.

2.10.1 Set Constraints

We consider only the simplest version of set constraints. The set expressions
are built from set variables, intersection, union, complement and application
of a function symbol (out of a finite ranked alphabet) to set expressions. Then
the constraints are conjunctions of inclusion constraints e C ¢’ where e, e’ are
set expressions.

Set expressions are interpreted as subsets of 7 (F): intersection, union
and complement are interpreted as expected. If f is a function symbol, then
f(e1,... ,ey) is interpreted as the set of terms f(¢y,... ,t,) where, for every
i, t; is in the interpretation of e;.

Ezxample 15. In this example, we define the lists Lg of elements in S as a
solution of the classical fixed point equations. Since S is arbitrary, we consider
another instance of the definition, where S is replaced with Lg itself. Then
we are looking for the sets of trees S such that the lists over S are also lists
of lists of elements in S.

Lg = nil Ucons(S, Lg)
Ly, =nilUcons(Lg, L)

N =0Us(N)

Ls=Ly,

A solution of this constraint is the set S = {nil} since Lg then consists of
lists of any number of nil’s which are also lists of lists of nil’s. What are all
the solutions?
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2.10.2 Tree Set Automata

We follow here the definitions of [Tom94]. Extensions can be found in e.g.
[CDGT97].
A tree set automaton (on the ranked alphabet F) is a tuple (@, A4, 2, 0)

where (@ is a finite set of states, A is a tuple (A, ..., 4,,) of final states, 2 C
2@ is a set of accepting sets of states and ¢ is a set of rules f(qi,... ,qn) — ¢
where f € F has arity n and q1, ... ,qn, q are states.

A run of a tree set automaton is a mapping from T (F) into @ such
that, if f(t1,...,t,) € T(F), then there is a rule f(p(t1),...,p(tn)) —
p(f(t1,... ,ty)) in d. A run is successful if p(T (F)) € £2.

The language recognized by a tree set automaton is the set of tuples of
sets (Lq,. .., Ly) such that there is a successful run p such that, for every 4,
Li={te T(F)| plt) € Fi}.

We will see an example below.

2.10.3 From Constraints to Automata

We consider a single constraint e = ¢’ (the case e C €’ is similar). Let Q
be the set of mappings from the set of subexpressions (with top symbol
in F or X) occurring in ¢ into {0,1}. Such mappings are extended to all
subexpressions using the usual Boolean rules. They are represented as bit-
vectors. For convenience (in the BDD style) we use an x instead of 0,1 when
the value is not relevant (i.e. both rules are present, for each Boolean value).
If there are n free variables X,..., X, then A = (Ay,...,A,) with A; =
{$p € Q| d(X;) =1}. 0 consists of the rules f(¢1,...,¢r) — ¢ such that, for
every subexpression e which is not a variable, ¢(e) = 1 iff (e = f(e1,... ,ex)
and Vi, ¢;(e;) = 1). £2 is the set of w C @ such that, for every ¢ € w, ¢(e) =1
if and only if ¢(e’) = 1.

Ezample 16. Consider first the equation Lg = nil U cons(S, Lg). We have
Q = 2{S:Ls,cons(S,Ls),nil}  The transitions are

nil = (x,x,0,1)
cons((1,x,%,x), (x,1,%x,x)) = (x,x,1,0)
f(...) = (x,%,0,0) for any f ¢ {cons,nil}

{2 consists of the subsets of

U {(1'1,070, O)a (1‘27 1707 1)a (.’Eg, la 1) 0)7 (.134, 17 1a 1)}

z1,T2,23,04€{0,1}

Consider for instance the following mappings from T (F) to Q:

p1(t) = (0,0,0,0) for all ¢
p2(t) = (0,0,0,0) for all ¢ # nil and pa(nil) = (0,0,0,1)
p3(t) = (0,0,0,0) for all ¢ # nil and pa(nil) = (0,1,0,1)
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p1 is not a run since it is not compatible with the first transition rule. ps is
a run which is not successful since (0,0,0,1) € po(T(F)) and (0,0,0,1) ¢ w
for any w € £2. p3 is a successful run.

Let Ay = {(1,x,x,x)}, As = {(x,1,x,x)}. For instance (@, {nil}) is accep-
ted by the automaton, as well as (T'({cons,nil}), T'({cons, nil})).

Ezercise 4. In the previous example, what are all the successful runs such
that p(7(F)) is minimal (w.r.t. inclusion)?

Note that we may simplify the construction: we may only consider states
which belong to some w € (2: otherwise, we will not get a successful run. For
instance in our example, the set of rules may be restricted to

nil — (x,1,0,1)
cons((1,x,%,x), (x,1,x,x)) = (x,1,1,0)
f(...) = (x,0,0,0) for every f ¢ {cons,nil}

Another remark is that {2 is subset closed, when it is derived from a
(positive) set constraint: if w € 2 and w’ C w, then w’ € £2. Tree set automata
which have this property are called simple. There is yet another particular
property of tree set automata which can be derived from the construction:
once we fix the components of the state which correspond to set variables,
the rules becomes deterministic. In other words, if two rules applied to ¢ yield
states qi,¢qo, then ¢i,qo differ only in the components corresponding to set
variables. Such automata belong to a restricted class called deterministic tree
set automata. The above construction shows that:

Proposition 9. The solutions of an atomic set constraints are recognized by
a deterministic simple tree set automaton.

Now we may take advantage of closure of tree set automata:

Theorem 9 ( [Tom94,GTTI4]). The class of languages recognized by tree
set automata is closed by intersection, union, projection, inverse projection.

The class of languages recognized by simple deterministic tree set auto-
mata 1s closed under all Boolean operations.

as well as decision properties:

Theorem 10 ( [Tom94,GTT94]). Emptiness decision is NP-complete for
the class of (simple) tree set automata.

Finally, if there is a solution (tuples of sets of terms) to a set constraint,
then there is one which consists of regular sets only.

Ezxample 17. Let us come back to example 15.
Q _ 2{S,L5~7LLS,nil,cons(S,LS),cons(Ls7LLS)} and

) = 2{(X,0,0,0,0,0),(X,1,1,0,1,1),(X,1,1,1,0,0)}
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Since we may only consider rules which belong to some member of (2, there
are actually few rules:

nil — (x,1,1,1,0,0)
cons((1,1,x,x,%x,%), (x,1,1,x,x,%x)) = (x,1,1,0,1,1)
cons((0,0,0,0,0,0), (x,x,x,%,%,%)) = (x,0,0,0,0,0)
cons((x,x, x,%,%,x), (x,0,0,0,0,0)) — (x,0,0,0,0,0)
F(.) = (x,0,0,0,0,0)

Let p be the mapping such that p(¢t) = (1,1,1,0,1,1) if t € T'({nil, cons}),
p(nil) = (0,1,1,1,0,0) and p(t) = (0,0,0,0,0,0) otherwise. p is a successful
run.

Ezercise 5. What is the solution corresponding to the run p? Are there any
other successful runs?

2.11 Examples of Other Constraint Systems Using
Tree Automata

2.11.1 Rigid E-Unification

A unification problem is a conjunction of equations between terms (as pre-
viously seen). Given a set of equations E, a solution of the rigid E-unification
problem P is a (ground) substitution o such that Eo F Po. Note that, in
contrast with F-unification, only one instance of each equation in E can be
used in the proof. Such problems play crucial roles in automated deduction
(see e.g. [GRS87,DMVY6]).

The crucial lemma in [Vea97] is that the set of solutions of a single rigid
FE-unification problem with one variable is recognized by a finite tree auto-
maton. The following result is then a consequence (at least the EXPTIME
membership), computing the intersection of n tree automata:

Theorem 11 ( [Vea97]). The simultaneous rigid E-unification problem
with one variable is EXPTIME-complete.

There are other applications of tree automata and tree grammars to unifi-
cation problems, see for instance [LR97] and there are also other applications
of tree automata to related problems (e.g. [CGJV99])

2.11.2 Higher-Order Matching Problems

We consider here simply typed A\ terms. A higher-order matching problem
is a (conjunction of) equation(s) s = ¢t where s,t are simply-typed A-terms
built over an alphabet of typed constants and variables, such that ¢ does not
contain any free variables. A solution consists in an assignment o to the free
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variables of s such that so and t are S-equivalent. This decidability of higher-
order matching is still an open question. It has been shown decidable at order
3 [Dow93] and at order 4 [Pad96]; the order of a type is defined by o(a) = 1 if
a is an atomic type and o(71, ... , 7, = 7) = max(o(7), 1+o(11), ..., 1+o(1y)).
The order of a problem is the maximal order of the type of a free variable
occurring in it.

An interpolation equation is a higher-order matching problem of the form
x(t1,... ,t,) = u where t1,...,t,,u do not contain any free variables. As
shown in [Pad96], a matching problem of order n is equivalent to a Boolean
combination of interpolation equations of order n.

The crucial property in [CJ97b], as before, is that the set of solutions of
an interpolation equation x(t1,... ,t,) = u where x is the only free variable,
is recognized by a (slight variant of a) finite tree automaton, provided that
the order of x is at most 4. It follows, thanks to the closure properties of tree
automata that:

Theorem 12 ( [CJ97b]). The set of solutions of a 4th order matching
problem is recognized by a (effectively computable) finite tree automaton.

This implies of course the decidability of 4th order matching.

2.11.3 Feature Constraints

We mention here an application to feature constraints [MN98]. Since feature
constraints are interpreted over infinite trees, we need a device which works
on infinite trees. It is beyond the scope of this course to introduce automata
on infinite objects (see e.g. [Tho90]).

The constraints consist of conjunctions of atomic constraints which are of
the form z < 2/, x[f]z’ or a(z).

A feature tree is a finite or infinite tree in which the order of the sons is
irrelevant, but each son of a node is labeled with a feature and each feature
labels at most one son of each node (see e.g. [Tre97] for more details). Feature
trees have been introduced as a record-like data structure in constraint logic
programming (see e.g. [ST94]) and are also used as models in computational
linguistics. The reader is referred to [Tre97] for more references of the subject.

The semantics of the constraints is given by an interpretation over feature
trees, inequalities mean roughly that a tree is “more defined” than another
tree. For instance it may include new features. z[f]a’ is satisfied by a pair of
trees (t,t) if ¢ is a son of ¢, at feature f. a(x) is satisfied by a tree ¢ if the
root of ¢ is labeled with a.

The crucial part of the result in [MN98] is the following:

Theorem 13 ( [MIN98]). The set of solutions of an constraint over suffi-
ciently labeled feature trees is recognized by a finite tree automaton.
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Actually, the authors show a translation into some monadic second order
logic; this is an equivalent formulation thanks to Rabin’s theorem [Rab69] (see
also [Tho97] for a comprehensive proof), or Thatcher and Wright’s theorem
if one considers finite trees only [TW68] (see also [CDG97]).

It follows for instance from this theorem that the entailment of existenti-
ally quantified feature constraints is decidable.

2.11.4 Encompassment Constraints

Encompassment constraints are built on arbitrarily many atomic predicates
of the form encomp;(xz). Where ¢ is a term. Such a predicate is interpreted
as the set of terms which encompass t. A term u encompasses v when an
instance of v is a subterm of w.

It is known for a long time that, when ¢ is a linear term (i.e. each variable
occurs at most once in t), then the solutions encomp(x) are recognized by
a finite tree automaton, hence the first-order theory of such predicates is
decidable, thanks to closure properties of tree automata.

When ¢ is not linear, we need an extension of tree automata. Such an
extension is defined and studied in [DCC95]: a reduction automaton is defined
as a finite tree automaton, except that each transition may check equalities
and/or disequalities between subtrees at fixed positions. For instance a rule

12=21A11£22
fla, ) ———

only if ¢; can reach ¢, t2 can reach ¢o and, moreover, the subterm of ¢; at
position 2 equals the subterm of to at position 1 and the subterm of ¢; at
position 1 is distinct from the subterm of ¢5 at position 2. Such a computation
model is, in general, too expressive. Hence reduction automata also impose
an ordering on the states such that, if there is at least one equality checked
by the transition, then the state is decreasing. For instance in the above rule,
we must have ¢; > ¢ and ¢ > gq.

We follow our leitmotiv: first it is possible to associate each atomic con-
straint with a reduction automaton which accepts all its solutions, then we
have the closure and decision properties for these automata:

q states that the transition can be applied to f(t1,t2)

Theorem 14 ( [DCC95]).

1. There is a (effectively computable) deterministic and complete reduction
automaton which accepts the solutions of encompy(x).

2. The class of languages accepted by deterministic reduction automata is
effectively closed under Boolean operations.

3. The emptiness problem for reduction automata is decidable.

It follows in particular that the first-order theory of encompassment predi-
cates is decidable. This implies in particular the decidability of a well-known
problem in rewriting theory: the ground reducibility, which can be expressed
as a formula in this theory.
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There are a lot of further works on automata with equality and disequality
tests, e.g. [BT92,LM94,CCCT94,CJ97a, IMWIS]. See [CDG197] for a survey
of the main results and applications.
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