A Superposition Decision Procedure for the Guarded Fragment with Equality

Harald Ganzinger
Hans de Nivell&*
Max-Planck-Institutifir Informatik, D-66123 Saarliicken

{hg | nivelle  }@mpi-sb.mpg.de

Abstract proving refutational completeness. In this paper we de-
We give a new decision procedure for the guarded fragmentscribe in detail a decision procedure for the guarded frag-
with equality. The procedure is based on resolution with su- ment with equality which is based on resolution and super-
perposition. We argue that this method will be more useful position. Despite the fact that it applies to a larger fragment
in practice than methods based on the enumeration of cer-of first-order logic, our new procedure is simpler than the
tain finite structures. It is surprising to see that one does one in (de Nivelle 1998) in that we employ a liftable or-
not need any sophisticated simplification and redundancydering (plus selection) so that we are able to re-use stan-
elimination method to make superposition terminate on the dard results about refutational completeness. Our method
class of clauses that is obtained from the clausification of iS also interesting as there are not so many saturation-based
guarded formulas. Yet the decision procedure obtained isdecision procedures for fragments with equality described
optimal with regard to time complexity. We also show that in the literature. Notable exceptions include (Fatier'&
the method can be extended to the loosely guarded fragmen$alzer 1993), where a resolution decision procedure is given

with equality. for the Ackermann class with equality, and (Bachmair,
Ganzinger & Waldmann 1993), where it is shown that a cer-
1 Introduction tain superposition strategy decides the monadic class with

equality. Nieuwenhuis (1996) proves the decidability of

The loosely guarded fragment was introduced in certain shallow equational theories by basic paramodula-

(Andréka, van Benthem & Bimeti 1996) as 'the modal frag-

ment of classical logic’. Itis obtained essentially by restrict- tion. ) N -
ing quantification to the following forms: The advantage of resolution or superposition decision
procedures over theoretical procedures based on collapsing
VY[R(X, y) — A(X, y)] and3y[R(x, y) A AX, y)]. models is that the former use syntactic, unification-based in-

ferences to enumerate candidate witnesses of inconsistency.
These forms naturally arise when modal formulae are trans-There is experimental evidence (Hustadt & Schmidt 1997)
lated into classical logic using the standard translation basedhat such procedures perform well in practice, in particu-
on the Kripke frames. The authors showed there that thelar they often will not exhibit the usually exponential or
guarded fragment has many of the nice properties of modaldouble-exponential worst-case complexity of the respective
logics. In particular it is decidable. Any decision proce- fragments. Also, when having a flexible saturation theo-
dure for this fragment, hence, is a decision procedure forrem prover at hand, such as SPASS (Weidenbach 1997), it
those modal logics that can be embedded into it, for exam-suffices to appropriately adjust its parameters in order to ef-
ple K, D, S3, andB. It has been shown by @del (1997) ficiently implement the procedure.

that equality can be admitted in the guarded fragment with-  The results of this paper can be summarized as follows.
out affecting decidability. In the fragment with equality ad- (i) Ordered paramodulation with selection is a decision pro-
ditional logics such as difference logic can be expressedcedure for theGF with equality. No sophisticated redun-
(where &A meansA holds in a world different from the  dancy elimination methods are required, and a straightfor-
present). ward (liftable) ordering and selection strategy suffice. (ii)
De Nivelle (1998) has given a resolution decision pro- The procedure decides the class of guarded clauses which
cedure for the guarded fragment without equality. In his js a proper superclass of tf@F with equality. (iii) The
procedure, a non-liftable ordering is employed, and, hence,worst-case time complexity of the decision procedure is
some additional and non-trivial argument is required for doubly-exponential, which is optimal, given that the logic is
*Work supported in part by the ESPRIT Basic Research Working ZEXPTIME—compIete (Gadel 199.7)' (iv). Guarded clau'ses
Group 22457 (CCL Il). with deep terms, although decidable in the case without

“Work done at ILLC, U. Amsterdam, Plantage Muidergracht 24, equality, beco_me UndeCidabl? _in the equational case. (v)
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to the loosely guarded fragment with equality, but is much ~ The calculus is parameterized by admissible orderings
more involved there. For the extension, hyper-inferences> and selection functionk for negative literals. For each
which simultaneously resolve a set of guards are neededsetting of the two parameters it is refutationally complete.
Some non-trivial results are required about the existence offFor dealing with the orderings it is useful to view non-

suitable partial inferences to avoid the generation of clausesequational atoms of the form(ty, .. ., tx), with p a pred-
which are not loosely guarded, together with meta-theoremsicate symbol different from equality, as a shorthand nota-
about the refutational completeness of these partial infer-tion for an equatiorp(ty, . . ., tx) ~tt. In this encoding, the
ences. atom is considered a term (in a two-sorted signature with
sortsi ando), with tt a distinguished constant of saot
2 The Guarded Fragment and where predicates are viewed as functions ofcsdetk-
Definition 2.1 The formulas of thegguarded fragmenGF ing arguments of soiit. An admissible ordering- is any
of function-freefirst order logic are inductively defined as total reduction ordering on ground terms (including non-
follows: equational ground atoms) in whi¢his minimal. The mul-
1. T and.l are inGF. tiset extension of-, again denoted-, is used to compare
2. If Ais an atom therA is in GF. literals by identifying any positive equati@rt (including
3. GFis closed under boolean combinations. the equational encodings of non-equational atoms) with the
4. If F € GF andG is an atom, for which every free vari- multiset{s, t}, and any negative equatiss¢ t with the mul-
able of F is among the arguments &, thenvx(G — tiset{s, t, tt}, respectively. The ordering is extended to non-
F) € GF (or, equivalentlyyx(—-G v F) € GF) and ground expressions by definirig = E’ iff, for all ground
IX(G A F) € GF, for every sequence of variables. substitutions, Eoc > E’c. Although admissible orderings

are total and well-founded on ground terms and literals, they
are only partial on non-ground expressions. Whenever a lit-
eralL contains a unique maximal term we will denote it by
max(L). A selection functiork selects, in each clause, at
most one (occurrence of a) negative literal. This occurrence
is calledselected

The atomsG which appear as constraints for quantified
variables are calleguards Equations can also be used as
guards. These are examples of guarded formulae:

VX (X~ X — p(x)), IX(P(X) AQq(x))

vyz(r(y.y.z) — 1), ¥Vxyr(x,y) = r(y,x)) Inferences involve eligible literals. A literal is called
Xy (r(x,y) = 3zr(y, 2)) igible in a clauseC if either it is selected irC (by %), or
AX [R(w, X) AVY (R(X, y) = p(Y)) A q(X)] else nothing is selected @, and it is a maximal literal in

) ) C with respect to-. In particular, a positive literal, since it
The last formula is the translation of the modal formula cannot be selected, is eligible only if the respective clause
&(Bp A ) with respect to a worldy. These are formu-  contains no selected (negative) literal. The inference rules

lae which are not guarded: are as follows:
vXy p(X, y) Ordered Factoring. FromA; v Az v RderiveAio v Ro
VX1X2X3 [ p(X1, X2) — P(X2, X3) — P(X1, X3)]. providedA; is eligible ands is the mgu ofA; and A.

The last formula states the transitivity pf As this is not Equality Factoring. Fromt;~u v t,~v v R derive
guarded, for modal logics such & which are based on Uo #vo V tio ~vo vV Ro providedt; &~ u is eligi-
transitive frames the standard embedding methods lead out-  ble ando is the mgu ot; andts.
side the guarded fragment.

Reflexivity Resolution. Fromt; %#t; v R derive Ro pro-
3 The Superposition Calculus vided thatt; %t is eligible ands is the mgu oft; and

For the decision procedure to be described below we to.

only need a rather weak form of the superposition calculus
of Bachmair & Ganzinger (1990), called ordered paramod-
ulation, for which Hsiang & Rusinowitch (1991) have also
given a completeness proof. Here (ordered) paramodulation

into the larger side of an equation is permitted. We use the orgered Paramodulation. Fromt; ~u v Ry andL[ta] v

Resolution. From A1 Vv Ry and—Az Vv Ry deriveRyo vV Roo
provided that bottA; and—A; are eligible and is the
mgu of A; and Ay.

symbol~ to denote formal equality and do not distinguish Ry, wheret; is not a variable, derive[u]o v Rio v
between equations~t andt ~s. Disequations-(s~t) Roo provided that botty ~ u and the literal_[t2] are
will also be written as#t. The calculus is clausal, where eligible, o is the mgu oft; andt,, andu ¥ t;.
clauses are multisets of literals, . .., Lk, k > 0, which

we write as disjunctiont; v ...V Lk. A clause is called  The way in which the order restrictions are applied heee is
positiveif it does not contain any negative literals. A clause priori, i.e. before the unifier is computed. Superposition is
is calledgroundor propositionalif it contains no variables.  complete also if the order restrictions are checked after the



substitution is applied to the premisesfosterioricheck- universally quantified sub-formulae to reduce the number
ing), or even if they are attached to the clauses and inheritedbf quantifier alternations. Lef = {F4, ..., Fn} be a set of
throughout inferences. A priori checking has the advantageformulae in negation normal form. Ths¢ructural transfor-
that the eligible literals in a clause can be precomputed, be-mationof GF is obtained by iterating the following trans-
fore any inference is attempted. On the other hand, a posteformations: IfF is a formula inF containing a proper sub-
riori application is generally more restrictive. For obtaining formula of the formvx(—=G v H), with G the guard, then
the theoretical results in the present paper a priori ordering(i) add adefinitionyXy(—G v — «(y) v H) to F, and (ii)
constraints turn out to be sufficiently powerful. replace the indicated sub-formulakhby «(y). Hereby it
The calculus is refutationally complete for any choice is assumed th&¥ is the set of variables that occur @,
of admissible ordering and selection function. Moreover, but not inX, and thatx is a new predicate name that does
the calculus is compatible with a rather powerful notion of not occur inF. Observe that the structural transformation,
redundancy by which don’t-care non-deterministic simplifi- when applied to a set of guarded formulas also yields a set
cation and redundancy elimination can be justified. In par- of guarded formulas as result. Moreover, all remaining uni-
ticular, tautologies can be eliminated and multiple occur- versal quantifiers are outermost, so that any inner existen-
rences of literals in clauses can be deleted. The notion oftial quantifier occurs in the scope of all universally quanti-
redundancy allows for much more sophisticated simplifica- fied variables. This method of eliminating embedded quan-
tion methods which, however, will not be required here, al- tifiers is standard and has also been used in the context of
though for achieving good practical performance they havethe guarded fragment by &dél (1997).
to be implemented. The fact that non-naive implementa-  For the purposes of this paper, the standard skolemiza-
tions of superposition, such as in the SPASS system, spendion technique is the one which is appropriate. One re-
most of their execution time on simplification rather than pjlaces any applied occurrence of an existentially quantified
search is what makes them useful in the end. We call a seariabley by a termf (X, ..., X,), with f a newSkolem
of clausesN saturated up to redundangwith respecttoor-  function symbol, ifxs, ..., X, are the universally quanti-
dered paramodulation) if any inference from non-redundantfied variables, in the scope of whighoccurs. After that
premises inN is redundant irN. The definition of redun-  replacement, all existential quantifiers have been removed,
dancy, in particular, implies that an inference is redundantand Skolem function applications contain all the variables
in N if the conclusion of the inference is containedNmor  of a formula. Finally, to obtain a set of clauses, distribute
else is redundantil. disjunctions over conjunctions, omit the universal quanti-
fiers (which are all outermost) and consider any conjunction
Theorem 3.1 (Bachmair & Ganzinger, 1990)Let N bea  of disjunctions as a set (of clauses).
set of clauses that is saturated up to redundancy with respect
to the above derivation rules. Théhis unsatisfiable if and

only if N contains the empty clause. Example 4.1 Consider the guarded formula
. . ax (n(x) A Vy [—-a(x, y) v
4 The Decision Procedure Vz {=p(x, 2) v Ix (a(x, 2) A (=b(z, 2) v =c(X, X)N}D.

_ We will now describe the decision procedure. We de- The stryctural transformation gives the set of formulas
fine a notion of guarded clauses, and show that guarded for- 3IX [N(X) A 2(X)]

mulae can be translated into guarded clause sets. We will
V | -
obtain a resolution decision procedure by defining a reduc- vi’ g[[_. z& g))\\//_‘g((:)) \\// AOOL,
tion order> and a selection functiol that force an upper ’ Ix (a(;< 2) A (=b(z, 2) v =c(x, X)))]
bound on the complexity of the derivable clauses. o ’ ’ '
Skolemization yields

4.1 Clausal Normal Form Translation n(c) A a(c),
We rely on a specific clausal normal-form transforma-  vx, y [—a(x, y) vV —a(X) Vv B(X)],
tion for the guarded fragment. We may assume that the Vx, z[-p(X, 2) v =8(X) V
given formula is in negation normal form, that is, negation (a(fxz,z) A (—b(z, 2) v =c(fxz, fx2)))].
is only applied to atoms. We also assume that implications Clausification, finally, produces this set of clauses:
and equivalences have been eliminated by replacing them n(c)
by equivalent formulas involving conjunction, disjunction, ()
and negation. These standard transformations do not take a —a(x, y) v —a(x) v B(X)
formula outside the guarded fragment. —p(x,2) v —B(x) va(f(x, 2),2)
The next step is to replace certain sub-formulae by fresh  _| (X, 2) vV —B(X) v —=b(z, 2) v ~c(f xz, fx2).
names, together with a definition of the nafdle abstract ’ ' '

1Such transformations are called structural and are, for instance, since more of the structure of a formula is preserved when the formula
studied in (Baaz, Ferailer & Leitsch 1994). They are called structural s factored.



4.2 Guarded Clauses . _ .

The result of the transformation are sets of guarded@ the maximalarity of function symbols
clauses which, in particular, consist of a specific kind of lit- @  the maximal arity of predicate symbols
erals. Atermis calleghallowif either itis a variableorelse @  the maximum oy anda,

a functional termf (us, ..., Um), m > 0, in which eachu; n; ap + the number of_constant and function symbols
is a variable or a constant. A literhlis calledsimpleifeach N2  the number of predicate symbols
term inL is shallow. Hencep(x, ¢, f(x)) and f (x, c) &y n  the maximum ofy andny.

are simple while-p(s(f (0), x)) andf (x, s(x)) ~g(x) are  The maximal sizes of a simple atom isa? + a + 1.

not. A clause is calledimpleif all literals are simple. A lit- Therefore, the number of simple atoms (modulo variable
eral is calleccoveringif each non-ground and non-variable renaming) that may appear in a guarded clause over the
subterm in the literal contains all the variables of the literal. given signature is bounded by

An expression is calletunctionalif it contains a constant

or a function symbol, andon-functional otherwise. ns — na’tatl,
Definition 4.2 A simple clause is calledguardedf it sat- Then the number of simple literals (modulo variable renam-
isfies the following conditions: ing) is at most
(i) Cis a positive, non-functional, single-variable clause; | — opa’tatl
or

(i) every functional subterm i€ contains all the variables 1 NiS IS also an upper bound for the maximal number of lit-
of C, and, ifC is non-groundC contains a non-functional erals in a clause, since a clause contains at most all possi-

negative literal, called guard, which contains all the vari-  Dl€ literals over at most, variables. Then the number of

ables ofC. guarded clauses that can be constructed from non-repeated
Clauses of the form (ii) are callgatoperly guardegdwhile literals is bounded by

the concept of guards is void for the other types of guarded | opa2tarl

clauses. A set of clauses is callgdardedif all its clauses c=2 =27 .

are guarded.
m|

Note that if a guarded clause contains a constant it must be a .
ground clause in which terms are shallow. Also, any literal 4.3 Preservation of Guardedness

in a guarded clause is covering. We now show that guarded clauses are closed under the
These are some examples of guarded clauses where suiparamodulation inferences so that, using the theorem 4.3,
able guards have been underlined. saturating a given set of clauses under these inferences,
p(0, s(0)) v c#d v q(s(0), (0, 0)) combined with eager elimination of duplicate literals in
p(x, X) Vv q(x) clauses, yields a decision procedure for satisfiability. To
—pY,X) VqX,Y,Y) VIX+Y,X—Y,X) that end we need to define an appropriate ordering and se-
=p(y, X) vV =q(X, Y, Y) lection function. For the ordering we may use any lexi-
XZEY VXXX +Y) cographic path ordering on terms and non-equational atoms
The following clauses are not guarded: based on a precedensesuch thatf >~ ¢ >~ p > tt for
—e(X) V e(s(s(x))) (not simple) any non-constant function symbé| constant, and pred-
—=p(x) V =q(y) V r(X,y) (no guard) icate symbolp, respectively. For the selection functiah
=p(f(X,y)) VvV p(X,y) (no guard) we assume that (i) if a clause is non-functional and con-
=px,y) v p(f(x),y) (not covering) tains a guard then one of its guards is selectedbyji) if
—p(x,y) v p0,g(x,y)) (constant, but non-ground) a clause contains a functional negative literal, one of these

Definition 4.2 is more restrictive than the corresponding is selected; and (i) if a clause contains a positive func-
definition in (de Nivelle 1998). The last two clauses in the tional literal, but no negative functional literal, no literal is
previous example are guarded in the sense of (de Nivelleselected, so that the maximality principle applies for a lit-
1998). In the section 5 we will discuss this issue in more eral to be eligible for an inference.
detail.

Lemma 4.4 Let L1, Lo be two literals of a guarded clause.
Theorem 4.3 The number of different (up to variable re- Assume thatL, contains a non-ground functional term,
naming) guarded clauses (without duplicate occurrences ofwhile L; does not. Ther., > L.

literals) over a finite signature has a double exponential up- . ) ) )
per bound in the size of the signature. Proof First observe that with the given assumptions the

clause does not contain any constants. ILgbe a literal,
Proof Let a finite signature be given. Define the following and lett be a functional term ih.o. First suppose thdt; is
parameters: a non-equational literal of the form] p(uy, ..., un) with



variablesu;. Then, any of they; also occurs irt. With re-
gard to the ordering, non-equational literals suclt.agre
identified with equationsf](p(uy, ..., uy) ~tt). Let f be
the leading function symbol in Thenf has a precedence
greater that any of the symbols irp, and ag contains all
variables ofL,, we conclude thap(uy,...,uy) < t <
max(L2) which implies that_1 < L.

If L1 is an equational atom~ v, by a similar reasoning
we infer thatt > u andt > v, from which againL; < L»
is inferred.O

Lemma 4.5 With >~ and T as defined above, a literal in a
clause is eligible for an inference only if it contains all the
variables of the clause.

Lemma 4.6 Let o be the most general unifier of two sim-
ple non-equational atomg(ty, ..., ty) and p(uy, ..., Up).
Thenp(ty, ..., th)o is also simple.

Lemma 4.7 Let A andB be simple atoms such that (i) ev-
ery variable occurring ifB also occurs in; (ii) every vari-
able that occurs in a functional term Bfalso occurs in a
functional term ofA; and (iii) every functional term oB
contains all the variables &. Then for any substitutios,

(i) if Ao is simple, therBo is simple,

(ii) every variable ofBo occurs inAo,
(i) every variable occurring in a functional term @&o
occurs in a functional term ofo.
(iv) Every functional term oBo contains all the variables
of Ao.

As a consequence of the lemma 4.4, if a clause is non-
ground, any eligible literal either contains a (non-ground)
functional term or else there is no functional term in the en-

Lemma 4.11 A resolvent of two guarded clauses is
guarded.

Proof LetCy = A1 v D1 andCy; = —A v D» be the
clauses resolved upon, withthe mgu ofA; and Az. Then
the conclusion is the claud®2 = Dio v Dyo. Notice that
with A = A; and B any literal in D;, the premises of the
lemma 4.7 are satisfied, both foe= 1 andi = 2. As both
A1 andA; are simple, the literal\1 0 is also simple. Apply-
ing the lemma 4.7, part (i), we may infer that all literals in
D are simple. If there are functional termsinthen these
contain the same set of variables, and all the variabl &, of
cf. Theorem 4.7, parts (iii) and (iv). In order to show that
there is a guard i when one is needed, we distinguish as
to whether or not the clauses are ground.

Suppose that one of thg; is ground. In that cas®
is ground since literals which are eligible for an inference
contain all the variables of a clause.

Let us now assume that bofy andC, are non-ground.
Suppose tha€ is not a positive clause over one variable.
ThenCy; must have a guarehG, and—Go occurs inD.
Moreover, A; must have a functional term containing all
the variables o€C1. (Otherwise—~G or some other guard of
C;1 would be selected and the inference would not be possi-
ble). AsAjo is simpleo assigns a variable to each variable
in C1. Therefore, the literakGo has only variables as ar-
guments. Since-Go contains all the variables d&;o, it
contains all variables oD, and, hence, is a guard. In case
thatCs is a positive, single-variable clause, thercontains
at most one variable. If there is no guardbnthen the re-
solvent must be a single-variable, positive, possibly empty
clause.

Finally, the resolvent does not contain a constant unless
one of the premises does. In that case both the premise and
the resolvent are groundl

tire clause. The preceding lemma can therefore be applied

to any eligible literalA and any other literaB in a guarded
clause.

Lemma 4.8 A factor of a guarded clause is guarded.

Lemma 4.9 An equality factor of a guarded clause is
guarded.

Lemma 4.10 A clause obtained by reflexivity resolution
from a guarded clause, is guarded.

Proof The propositional case the lemma is trivial. For re-
flexivity resolution to be applicable to a non-propositional
clause, the clause must be of the fobn= x%vy v C,
with guardx 5¢y and with C not containing a functional
term. Clearly, the resolvent has only simple literals and is

Lemma 4.12 Any clause obtained by a superposition infer-
ence from two guarded clauses is guarded.

Proof LetC1 = L[u] v Dj be the main premise;; =
t1~ty v Dy the side premise, and = L[to]Jo v Dio Vv
D20 be the conclusion, respectively, of the inference, with
o the mgu oft; andu.

We first consider the case whe@a is ground. Ifty is
not a constant then aldg is not a constant, as otherwise
the ordering constraints would block the inference. Su-
perposition inferences into variables are excluded so that
u must be a functional term containing all the variables of
the clause. Hence, all variablesurnbecome grounded by
o, D is ground, and contains simple literals only.

If Co is non-ground, theity ~t, has to contain all its
variables, and at least one of theort, is a functional term.
(Otherwise the guard i€, would be selected and the clause

either the empty clause or has just one variable. In the lattercannot appear as the side premise of the inference.) The
case the resolvent either has a guard or is a positive clauseordering restrictions, therefore, imply thatis functional,

a

containing all the variables of the clause, wherzasn be



a variable, or a functional term. The possible formsa afe For the time complexity, observe that suitable abstractions
also restrictedu cannot be a variablel can be a functional  of the ordering and selection constraints for the inferences
term containing all the variables @, or a ground term.  can be checked in polynomial time, cf. the proof of Theo-
Suppose thatl is ground and unifiable witky. Thenu is rem 4.14. Then one may show that the time needed to do a
not a constantCs is ground, andi occurs as an argument  subsumption check is i®(13s). In fact, one first matches
to a predicate itC,. Then,D is a ground clause and is sim- the guard with at modtliterals. After that one has to try
ple sincetyo is either a constant or a functional term with to match each of the remaining literals with one of the
constant arguments. if is not grounds is a variable re- literals of the other clause. This gives a total‘battempted
naming and, in particular, bothi10 andD2o are guarded.  matches. Since each matching can take up time, this
Moreover, L[t2]o is simple. It is easily checked that the number has to be multiplied by Knowing the time com-
guards ofC;0 andCyo can both serve as guardsbf O plexity for subsumption for guarded clauses, we can esti-
mate the time complexity of our method as a whole. The
Theorem 4.13Let ¥ and > be as specified. For all the algorithm has to try all pairs of literals, and in the case that
inferences of the ordered paramodulation calculus, if the @ resolvent is possible, it has to check that the resolvent is
premises are guarded, so is the conclusion. not subsumed by one of the existing clauses. This takes time
in O((cl)2c(13s)). This iteration has to be repeated at most
Theorem 4.14 The fragment of guarded clauses is decid- C times, resulting in a bound i®((cl)?c?%s). This num-
able by ordered paramodulation. ber is roughly equal te* which gives the desired double
exponential time complexity.
Proof By the theorem 4.13 all derivable clauses are Finally we should also consider the time and space com-
guarded, and the number of such clauses is finite, cf. The-plexity of the clausal normal form translation. It is well-
orem 4.3. As each inference rule is a decidable relation onknown that the transformation to normal form can take at
guarded clauses, the theorem follot. most single exponential time, which is negligible compared
to the double exponential time obtained above. The (struc-
The theorem can also be extended to guarded clausegural) elimination of equivalences is slightly more tricky
combined with unrestricted ground clauses. There one re-here as the result has to be a guarded forninla.
places in the initial clause set any ground (sub-) term
which is not shallow by a new constaag, together with 5 Weakly Guarded Clauses
the defining equatiomas~s. This preserves satisfiability The notion of guarded clause as given in the Defini-
and produces a clause set which is guarded. tion 4.2 is more restrictive than the one given in (de Nivelle
1998). There, terms of arbitrary depth are allowed provided

4.4 CompIeX|_ty o ) that they are either ground, or contain all variables of the
The complexity of our decision procedure is double ex- |ause. We repeat the formal definition:

ponential. Gadel (1997) has shown that the decision prob-

lem for the guarded fragment with equality is 2EXPTIME-  pefinition 5.1 A clauseC is calledweakly guardegif (i)
complete, hence our procedure is theoretically optimal. We every non-ground functional term @ contains all the vari-
use the fact, cf. Theorem 4.3, t'hat the number of guardedgp|eg ofC: and (i) if C is non-ground it contains a negative
clauses has a doubly exponential bound and show that thgjiera all of which arguments are constants or variables,
saturation process has no primitive operation that has more; 4 which contains all the variables of the clause.
than exponential complexity.

This notion was inspired by th&*-class. Every clause
Theorem 4.15 The superposition decision procedure can Which is guarded is also weakly guarded, but the converse
be implemented in 2EXPTIME (in the size of the signa- is nottrue in general.
ture).

) Theorem 5.2 Satisfiability is undecidable for finite sets of
Proof We reuse the notation defined in the proof of the the- weakly guarded clauses if equational atoms are admitted.
orem 4.3. It is clear that the space complexity of the pro- The fragment remains undecidable if all ground terms are
cedure is dominated by the space that is needed to store theonstants.

clauses. Hence, we obtain a space complexity of * c. :
P plexity The Post Correspondence Problem can be reduced to this

2The inferences are equipped with constraints which specify which decision problem. This is essentially due to the fact
literals are eligible for an inference. Depending on the signature, the that projection functions defined by equations of the form
term ordering, and the selection function such constraints are in gen- f(x,y)~x can make a non-shallow term equa| to a

eral undecidable and have to be approximated. This is not the cas . . L
here. But even if the constraints were undecidable, by Theorem 4.13 :term that violates the covering condition. For example

safe approximation would be to consider any unrestricted inference theffom the guarded clausesp(x,y) v p(s(f(x,y))) and
conclusion of which is a guarded clause. —px,y) v f(X,y)~x we may deduce the non-guarded




clause—p(x, y) v p(s(x))}, wheresis not applied to all the ~ Ordered Hyper-Resolution with Selection
variables of the clause. This shows that variables in nested AVRL ... AR,

. . . - —Bi1v...v=B,VvR
functional terms cannot be combined with equality.

Riov...VvRwo V Ro

6 The Loosely Guarded Fragment where (i) either the-B; are the literals selected 1%
Our method can be generalized to the so caltedely in themain premiseor elsen = 1, nothing is selected

guarded fragment This fragment obtained by weakening in =B VR, and—By is maximalin—B; VR, (ii) the A;

the condition (4) in the Definition 2.1 as follows: F is are eligible in theside premise#\ v R;, and (jii) o is

loosely guarded an, . .., G, are atoms, with variables the mgu of the tuplegAy, ..., Ap) and(By, ..., Bn).

as arguments, then the formule®(Gy A --- A Gn — F) Given a hyper-resolution inference of this form, we speak of

and3X(Gy A --- A Gn A F) are loosely guarded, provided 4 partial inferenceproducing apartial conclusionD when-
that (i) every free variable df occursin&Gi, and (i) every  gyer there exists a non-empty subsgt. . . , jk of the in-
pair of variablesys, y2, which are free inF, and of which  gjces 1< j < nand

at least one is among tixe occur together in one of th; .

We call the entire conjunctioBy A - - - A G the guard of D=\ Rjrv \/ -BirVRr
the formula, and any conjunctguard atom 1<i<k Pz, Ji}

Inthe loosely guarded fragment the until operator can be with ¢ the mgu of(Aj,, ..., Aj,) and(Bj,, ..., Bj,).
expressed, which cannot be expressed in the guarded frag- The extended calculus is refutationally complete and
ment. P until Q can be translated as: compatible with a notion of redundancy by which the usual

simplification mechanisms (tautology elimination, con-
3y (Rxy A Qy AVzZ(Rxz A Rzy — P2)). densement, subsumption) can be justified. There is no pub-

lished result that exactly covers this calculus, but it is easy
to generalize the results in (Bachmair & Ganzinger 1990)
appropriately.

The orderings which we may use for the decision proce-
dure are the same as for the non-loose case. The selection

there is no atom in the guard in which the variabtemndz functions should satisfy these restrictions:
co-occur. In fact, Ganzinger, Meyer & Veanes (1999) have () If a clauseC is non—f_uncuonal and contains a guard
shown that allowing for a single transitive relation makes L1V .-V Lk thenall the literals of one of the guards Of
the LGF undecidable in general. are selected by.; , o

A CNF transformation similar to the one describedin the (il) if @ clause contains a functional negative liter@eof

section 4.1 leads to what we call loosely guarded clauses: these is selected; and . , _
(iii) if a clause contains a positive functional literal but no

negative functional literal, then no literal is selected, so that
the maximality principle applies for a literal to be eligible
for an inference.

In order to prove that with this ordering and selection
strategy, ordered paramodulation becomes a decision pro-
cedure for thd.GF, two problems have to be solved. The
first problem is that conclusions of inferences might become
too deep.

Transitivity of R, though, cannot be expressed in the loosely
guarded fragment. In the formula

VX, VY, Z (RXy A Ryz — RXx2z)

Definition 6.1 A simple clauseC is calledloosely guarded
if it satisfies the following conditions:

(i) Cis a positive, non-functional, single-variable clause;
or

(i) C contains no constants, every functional subter@ in
contains all the variables &, andC contains a set of neg-
ative, non-functional literals-A4, ..., =An, n > 0, called
a (loose) guardof C, such that every pair of variables that

oceurs InC occurs together in one of the atomg Example 6.2 (de Nivelle & de Rijke, 1999)The follow-

Propositional simple clauses are admitted. They have anNd clauseD is loosely guarded:
emptyguard. o _ —ay(X, y) vV —a(y, 2) vV —ag(z, X)
The main modification of the decision procedure is that v bi(X, y) Vv ba(y, 2) v bs(z, X)

in cases where previously a guard atom needed to be se- . )
lected in a clause now a set of literals may constitute a There are no functional terms, therefore the three guard lit-

guard, and some of these have to be resolved simultane&rals are selected. The following three clauses are candi-
ously. Therefore, resolution needs to be generalized to (or-dates for a hyperresolution inference:

dered) hyper-resolution. The basis for this are more gen- Ci = —puu) vafu, fuy,

eral selection functionE which now may select an entire, Co = —po(v) v a(v. gu)

possibly empty set of occurrences of negative literals in a 2 = 7R 2(V, Qv),
clause. Now a literal is calleselectedf it occurs in the set Cs = —ps(w)Vvas(guw,w),
of selected literals of a clause.



From these one may derive the hyper-resolvent

—p1(u) v —p2(fu) v —pa(fu) v
bi(fu, fu) vba(fu, gfu) v bs(gfu, fu),

with an mguo = [X,y,v,w = fu, z := gfu]. This
resolvent has a non-shallow term which is not admitted for
a loosely guarded clause.

A remedy to this problem is to resol2 only with a suit-
able subset of the side premiggs In the example, if we
only resolve the second and third guard literaDoWwith Cy
andCs, respectively, we obtain the partial conclusion

—ag(w, w) V —p2(w) vV —~p3(w)
Vv b1 (w, w) Vv ba(w, gw) Vv bs(gw, w).
The mgu of the partial inference iy v, X (= w, z =
gw]. This clause is loosely guarded, in particular, not too
deep. It turns out that if an inference is possible then one of
its partial conclusions will be a guarded clause. The proof

inVar(By, ..., Bp), eitherxo is of maximal deptld among
all theyo, foryin Var(By, ..., Bp), or elsexo is a subterm
of someyo, with y in Var(By, ..., By). Picking for the
ji those atoms in which a variablewith xo of depthd
appears, solves the problem. Any other variable in one of
the Bj; will be instantiated either by a term of the same
depth and containing the same variables, or else by a direct
subterm of a term of deptth

The lemma covers exactly those unification problems
which arise from hyper-resolution inferences with guard
atomsB; and corresponding positive ators. For the lat-
ter to be eligible for an inference they all have to contain
a functional term. In other words, with the class of order-
ings> and selection functions which we consider for the
LGF, we obtain this theorem:

Theorem 6.4 Suppose there is an inference by hyperreso-
lution with respect to- andX. Then one of the partial in-
ferences produces a (partial) conclusion which is a guarded
clause.

makes use of the subsequent lemma which is a special case

of a theorem in (de Nivelle & de Rijke 1999).

Lemma 6.3 Let Ag,..., Ay and By, ..
simple literals such that

(i) the B; are non-functional;

(i) forall x,yin Var(By,..., By) there is aB; such that
X, yisin Var(Bj);
(i) the Aj are covering and functional;
(iv) Ai andAj, fori # j, have no common variables;
(v) the Aj and theB; have no common variables;
(vi) the tuples(As,..., An) and(Bg, ..., By) are unifi-
able.
Then there exists a non-empty subggt. . ., jk of the in-
dices 1< j < n such that the tupleéAj,, ..., Aj,) and
(Bj,, ..., Bj,) are unifiable with an mgua and

(i) any of theAj;r ( = Bj; 1) is simple and covering;

(i) if x is a variable in any of th&; or Aj; and ify is a
variable inyr theny also occurs imAj; 7.

.,Bhbeh > 2

The proof which is given in full detail for the more general
theorem in (de Nivelle & de Rijke 1999) is based on this
observation: Let us assume, for simplicity, that #yeare
non-ground and that all nhon-constant symbols are binary.
Then any of the4; is of the formp(u, fuv), p(fuv, v), or

p( fuv, guv), with more variants arising from exchanging
andv in one of the arguments @, f, andg. If we disregard

The existence of suitable partial inferences solves our prob-
lem as the calculus remains complete if, for any potential
hyper-inference from side premisé€s, ..., Cx and main
premise D, rather than deriving the full conclusion, we
derive any don't-care non-deterministically chosen partial
conclusion. A proof of this fact in the non-equational case
has been given in (Bachmair & Ganzinger 1997), and the
proof does not dependent on any properties that are critical
when adding equality. The criterion for which partial con-
clusion to choose is simply that the conclusion should be a
guarded clause. With this modification of the calculus, the
class of guarded clauses is closed under its inferences.

A second, simpler problem arises from the fact that
loosely guarded clauses over any given finite signature may
be arbitrarily long. Fortunately it is not difficult to see that
the set of guarded clauses that can be derived with our in-
ference system from an initially given finite set of guarded
clauses is finite. This is an immediate consequence of the
fact that the number of variables does not increase during
an inference: The point here is that the loose guard of any
generated clause is an instantiation of the loose guard of one
of the parent clauses. Therefore, the number of variables in
any derived clause is bound by the number of variables in
one of the parent clauses.

the trivial one-variable case, any of the guard atoms is of theLemma 6.5 If D is the [partial] conclusion of an inference

form p(x, y), with different variablex andy. The problem

of unifying all the A; with the correspondin®;, therefore,
induces at least one unification problem of the fotm=
fxy, y fxy, x = vy, fxy = fxy, or fxy = fyx

on any pairx, y of variables in Va¢Bs, ..., By). Thisis a
consequence of the co-occurrence requirement (ii). If the
unification problem is solvable with an mguthen if x is

from premise<C; then|Var(D)| < max(|Var(C;)|).

Altogether we obtain:

Theorem 6.6 Ordered Paramodulation with hyperresolu-
tion based on selection is a decision procedure foLBE.



7 Conclusions

We have shown that it is possible to effectively decide the
[loosely] guarded fragment with equality by superposition-
based saturation provers. There is hope that usable deci-
sion procedures can be obtained from these results with
existing standard theorem provers. This hope is supported

Fermuiller, C. G. & Salzer, G. (1993), Ordered paramodulation

and resolution as decision procedureA. Voronkov, ed.,
‘Proceedings of the 4th International Conference on Logic
Programming and Automated Reasoning (LPAR’'93)’, Vol.
698 of LNAI, Springer Verlag, St. Petersburg, Russia,
pp. 122-133.

by our theoretical optimality result (in the non-loose case) Ganzinger, H., Meyer, C. & Veanes, M. (1999), The two-variable

and by experimental evidence that has been obtained in
using these theorem proving techniques in related appli-
cation domains (Hustadt & Schmidt 1997). T&4& has

guarded fragment with transitive relatioris, ‘Proc. 14th
IEEE Symposium on Logic in Computer Science’, IEEE
Computer Society Press, this volume.

turned out to be a fragment of first-order logic with equal- Gradel, E. (1997), On the restraining power of guards,

ity for which it is especially easy to configure superposition

Manuscript. To appear in the Journal of Symbolic Logic.

into an optimal decision procedure. Although the complex- Hsiang, J. & Rusinowitch, M. (1991), ‘Proving refutational com-

ity issue has been neglected by and large in the literature
on resolution-based decision procedures, we believe that in
most cases of fragments which are complete for a particular
time complexity class, the resolution-based methods can b
implemented it this time bound. (Things are different for

space complexity classes such as PSPACE and local theo-
rem proving methods based on resolution and superposition
where the reuse of space, as is standard with tableau meth-
ods, is not so straightforward.) The loosely guarded case is
more tricky. However this paper also demonstrates that the
theory of saturation-based theorem proving is sufficiently

developed to be able to solve the problems without having
to deal with technically difficult proof-theoretic arguments.
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