Context Trees*

Harald Ganzinger', Robert Nieuwenhuis?, and Pilar Nivela?

! Max-Planck-Institut fir Informatik, 66123 Saarbriicken, Germany.
hg@mpi-sb.mpg.de
2 Technical University of Catalonia, Jordi Girona 1, 08034 Barcelona, Spain.
roberto@lsi.upc.es nivela@lsi.upc.es

Abstract. Indexing data structures have a crucial impact on the per-
formance of automated theorem provers. Examples are discrimination
trees, which are like tries where terms are seen as strings and common
prefixes are shared, and substitution trees, where terms keep their tree
structure and all common contexts can be shared. Here we describe a
new indexing data structure, called context trees, where, by means of a
limited kind of context variables, also common subterms can be shared,
even if they occur below different function symbols. Apart from intro-
ducing the concept, we also provide evidence for its practical value. We
describe an implementation of context trees based on Curry terms and
on an extension of substitution trees with equality constraints, where
one also does not distinguish between internal and external variables.
Experiments with matching benchmarks show that our preliminary im-
plementation is already competitive with tightly coded current state-
of-the-art implementations of the other main techniques. In particular
space consumption of context trees is significantly less than for other
index structures.

1 Introduction

Indexing data structures have a crucial impact on the performance of theorem
provers. The indexes have to store a large number of terms and to support the
fast retrieval, for any given query term ¢, of all terms in the index satisfying
a certain relation with ¢, such as matching, unifiability, or syntactic equality.
Indexing for matching, where, to check for forward redundancy, one searches
in the index for a generalization of the query term, is well-known to be the
most limiting bottleneck in practice. Another aspect which is becoming more
and more crucial is memory consumption. During the last years processor speed
has been growing much faster than memory capacity and one may assume that
this gap will become even wider in the coming years. At the same time memory
access bandwidth is also becoming an important bottleneck. Excessive memory
consumption leads to more cache faults, which become the dominant factor for

* The second and third author are partially supported by the Spanish CICYT project
HEMOSS ref. TIC98-0949-C02-01. All test programs, implementations and bench-
marks mentioned in this paper are available at www.1lsi.upc.es/~roberto.

time, instead of processor speed. Therefore, in what follows we will mainly focus
on matching retrieval operations and on memory consumption.

One important aspect makes indexing techniques in theorem proving essen-
tially different from indexing in other contexts like functional or logic program-
ming: the index is subject to insertions and deletions. Therefore, during the last
two decades a significant number of results on new specific indexing techniques
for theorem proving have been published and applied in different provers. The
currently best-known and most frequently used indexing techniques for match-
ing are discrimination trees [1,4], the compiled variant of discrimination trees,
called code trees [9], and substitution trees [2].

Discrimination trees are like tries where terms are viewed as strings and
where common prefixes are shared. A substitution tree has, in each node, a
substitution, a list of pairs x; +— t where each x; is an internal variable and t
is a term that may contain other internal variables as well as external variables
which are the variables in the terms to be stored.

Ezample 1. The two terms f(a, g(x),h(y)) and f(h(b), g(y), h(y)) will be stored
in a substitution tree and discrimination tree, respectively, as shown:

f
substitution tree: discrimination tree: N\
a h
20 = f(21, g(x2), h(y)) b
% N g0
ry=a,zp=x 1 ="h(), 2=y b

In a substitution tree all terms zgo are stored such that ¢ is the composition
of the substitutions on some path from the root to a leaf of the tree. In the
example, after inserting the first term in an empty substitution tree we obtain
the single node xg = f(a, g(x), h(y)). When inserting the second term, internal
variables are placed at the points of disagreement, and children are created with
the “remaining” substitutions of both. Therefore all common contexts can be
shared. a

Ezample 2. 1t clear that the additional sharing in substitution trees avoids re-
peated work (which is the main goal of all indexing techniques). Assume one has
two terms f(c, z,t) and f(z,c,t) in the index, and a query f(c, ¢, s), where s and
t are terms such that s is not an instance of t. Then two attempts to match s
against ¢ will be made in a discrimination tree, and only one in a substitution
tree. But, on the other hand, in substitution trees the basic traversal algorithms
are significantly more costly. a

Here we describe a new indexing data structure, called context trees, where,
by means of a limited kind of context variables, certain common subterms can
be shared, even if they occur below different function symbols. Roughly, the
idea is that f(s) and g(s,t) can be represented as F(s,t), with children F' = f

and F' = g. Function variables such as F' stand for single function symbols only
(although extensions to allow for more complex forms of second-order terms are
possible).

Ezample 3. Assume one has three terms h(x, f(t)), h(z, g(t)), and h(b, f(t)) in
the index. Then, in a discrimination tree, ¢ will occur three times. In a substi-
tution tree, we will have:

20 = h(zl, z2)

2= f(t) 2= g(t)

and with a query h(b, f(s)), the terms s and ¢ will be matched twice against
each other (at the leftmost and rightmost leaves). In a context tree, the term ¢
occurs only once:

20 = h(zl, F(t))

7

/N

F=f F=g

and if s does not match ¢, the failure with the query h(b, f(s)) will be found at
the root. a

In addition to proposing the concept of context trees, in this paper we will
also provide some evidence for its practical value. First, we show how they can
be adequately implemented. In order to be able to reuse some of the main ideas
for efficient implementation of substitution trees, we will consider terms built
from a single pairing constructor and constants. These terms will also be called
Curry terms. We describe an implementation based on these Curry terms and
an extension of substitution trees by equality constraints and by not distinguish-
ing internal and external variables. The second evidence for its practical value
is empirical. Experiments with matching show that our preliminary implemen-
tation (which does not yet include several important enhancements) is already
competitive with tightly coded state-of-the-art implementations, namely the im-
plementation of discrimination trees of the Waldmeister prover [3] and the code
trees of the Vampire prover [9)].

For the experiments, we adopted the methods for evaluation of indexing tech-
niques described in [5]: (i) we use 30 very large benchmarks containing the exact
sequence of (update and retrieval) operations on the matching index that take
place when running three well-known state-of-the-art provers on a selected set of
10 problems; (ii) comparisons are made with the discrimination tree implemen-
tation of the Waldmeister prover [3], and the code trees of the Vampire prover
[9], as provided by their own implementors using the test driver of [5].

This paper is structured as follows. Section 2 introduces some basic con-
cepts of indexing, discrimination trees and substitution trees. In Section 3 we
outline some problems with direct implementations of context trees and explain
how one can use Curry terms to solve theses problems. We also show that the
use of Curry terms has several additional advantages. In Section 4 we describe
our implementation in a certain detail. Finally, Sections 5 and 6 describe the
experimental results and some promising directions for future work.

2 Discrimination trees and substitution trees

Discrimination trees can be made very efficient if query terms are linear (as the
terms in the trees are). Usually, queries are the so-called flatterms of [1], which
are linked lists with additional pointers to jump over subterms ¢ when a variable
of the index gets instantiated by t.

In standard discrimination trees, all variables are represented by a single
variable symbol x, so that different terms such as f(x,y) and f(z,x) are both
represented by f(x, %), and the corresponding path in the tree is common to both.
This increases the amount of sharing, and also the retrieval speed, because the
low-level operations (basically symbol comparison and variable instantiation)
are very simple. But it is only a prefilter: once a possible match has been found,
additional equality tests have to be performed between the query subterms by
which the variables of terms like f(x, x) have been instantiated. Nodes are usually
arrays of pointers indexed by the function symbols, plus one additional pointer
for *. If, during matching, the query symbol currently treated is f, then one can
directly jump to the child for f, if it exists, or to the one of *. Especially for
larger signatures, this kind of nodes lead to high memory consumption. Note
that the case where children for both f and * exist is the only situation where
backtracking points are created.

In perfect discrimination trees, variables are not collapsed into a single sym-
bol. Instead, nodes of different sizes exist: apart form the function symbols, each
node can have a child for any of the variables that already occurred along the
path in the tree, plus an additional child for a possible new variable. Hence even
more memory is needed in this approach. Also there is less sharing in the index.
On the other hand, the equality tests are not delayed (which is good according
to the first-fail principle; see also below), all matches found are correct and no
later equality tests are needed. The Waldmeister prover [3] uses these perfect
discrimination trees for matching.

2.1 Implementation techniques for substitution trees

Let us now consider substitution trees in more detail. They were introduced by
Peter Graf [2], who also developed an implementation that is still used in the
Spass prover [10]. (A more efficient implementation was given in the context of
the Dedam (Deduction abstract machine) kernel of data structures [6], and has
served as a basis for our implementation of context trees as well.)

As for discrimination trees, it is important to deal with an adequate rep-
resentation of query terms. In Dedam, Prolog-like terms are used: each term
f(t1,...,t,) is represented by n + 1 contiguous heap cells with a tag and an
address field:

al f

a+ 1| ref ai

a+n| ref an

where each address field a; points to the subterm ¢;, and (uninstantiated) vari-
ables are ref’s pointing to themselves. In this setting, contiguous heap cell blocks
of different sizes co-exist, and traversal of terms requires controlling arities. Term-
to-term operations like matching or unification only instantiate self-referencing
ref positions. If these instantiated positions are pushed on a stack, called the
refstack, then undoing the operation amounts to restoring the positions in the
refstack to self-references again.

Substitutions in substitution trees are always pairs of heap addresses; each
right hand side points to a term; each left hand side points to an internal variable
(i.e., a self-ref position) occurring exactly once in some term at the right hand
side of a substitution along the path to the root.

The basic idea for all retrieval operations (finding a term, matching, unifica-
tion) in substitution trees is the same: one instantiates the internal variable z
at the root with the query term, and traverses the tree, where at each visited
node with a substitution z; = t1,...,x, = t,, one performs the basic term-to-
term operation (syntactic equality, matching, unification) between each (already
instantiated) x; and its corresponding ¢;. The term-to-term operations only dif-
fer in which variables are allowed to be instantiated, and which variables are
considered as constants: for finding terms (syntactic equality), only the internal
ref’s (called intref) can be instantiated; for matching, also the external ref’s
of the index (but not of the query); for unification, all ref’s can be instantiated.

Upon failure, backtracking occurs. After successfully visiting a node, before
continuing with its first child, its next sibling is stored in the backtracking stack,
together with the current height of the refstack. Therefore, for backtracking,
one pops the next node to visit from the backtracking stack, together with its
corresponding refstack height, and restores all ref positions above this height.
A failure occurs when trying to backtrack on an empty backtracking stack.

Due to space limitations, we cannot go into details here about the update op-
erations for substitution trees. Let us only mention that several insertion strate-
gies are possible (first-fit, best-fit), and that the basic operation for insertion is
the computation of the common part and remainders of two substitutions. For
deletions, one sometimes needs to apply the reverse operation, namely to merge
two substitutions into a single one.

Ezample J. Let o1 be the substitution {1 = g(a,h(b)), 22 = a} and let o9
be {z1 = g(b, h(c)), z2 = b}. Their common part is {z1 = g(z3, h(z4))}. The

remainders of both substitutions are {2 = a, x5 = a, x4 = b} and {2 = b, 23 =
b, x4 = c} respectively. |

2.2 Substitution trees for matching

In Dedam a special version of substitution trees for matching has been developed,
which is about three times faster than the general-purpose implementation in
Spass and Dedam.

Ezample 5. Suppose the query is of the form f(s,t) and consider a substitution
tree with the two terms f(z,x) and f(a,z): the root is g = f(x1,x), with
children ;7 = =z and z; = a. When matching, at the root x; gets instantiated
with s, and = with ¢; then, at the leftmost child, the terms s and ¢ are matched
against each other. Note that one has to keep track of whether or not x has
already been instantiated, i.e., one has to keep a refstack.]

The idea for improving this procedure is similar to the one of the standard
variant of discrimination trees: external variables are all considered to be dif-
ferent. But in substitution trees the advantages are more effective: the refstack
becomes unnecessary (and hence also the information about its height in the
backtracking stack), because one can always override the values of the internal
and external variables and restauration becomes unnecessary. Matching opera-
tions between query subterms, like s and ¢ in the previous example, are replaced
by a cheaper syntactic equality test of the equality constraints at the leaves.

3 Context trees

We start by illustrating the increased amount of sharing in context trees as
intuitively described in Section 1 compared with substitution trees.

Ezxample 6. Assume in a context tree we have a subtree T below a node z; =
f(z;,t) (depicted below at the left) where we have to insert ; = g(s, ¢, u). Then
the common part is z; = F(z;,t,u), the remaining parts are {F = f} and
{F =g, xj; = s}, respectively, and we obtain:

/

xi = f(xj,t) wi = F(xj,t,u)
| /N
T F=f FF=g,x;=s5
T

During retrieval on the new tree, the term-to-term operations have to be guided
by the arities of the query: if x; is instantiated with a query term headed with
f, when arriving at the node x; = F(x;,t,u), then, since the arity of f is 2, one
can simply ignore the term w of this common part. O

It is not difficult to see that, with the restricted kind of function variables F
that stand for single function symbols, the common part of two terms s and ¢, as
in substitution trees, will contain the entire common context, and additionally
also those subterms u that occur at the same position p in both terms, that is,
for which u = s|, = tp.

Ezample 7. The common part of the two terms f(g(b,b),a,c) and h(h(b,c),d)
is F(G(b,z1),x2,23). Indeed, the subterm b at position 1.1 is the only term
occurring at the same position in both terms. ad

To implement context trees for matching by an extension of the specialized
substitution trees for matching requires to deal with the specific properties of
the context variables.

Example 8. Consider again Example 6. The term f(z;,t) consists of three con-
tiguous heap cells. The first contains f, the second is an intref corresponding
to x;, and the third is a ref pointing to the subterm ¢. Initially, in the subtree T'
below that node, along each path to a leaf x; appears once as a left hand side in a
substitution. After inserting z; = ¢(s,t,u), the common part is z; = F(z;,t,u),
and the new term F(z;,t, u) needs four contiguous heap cells instead of three.
A serious implementation problem now is that, if we allocate a new block of
size four, all left hand sides pointing to x; in the subtree T" have to be changed
to point to the new address of x;. a

3.1 Context trees through Curry terms

A simple solution to the previous problem would be to always use blocks corre-
sponding to the maximal arity of symbols, but this is too expensive in memory
consumption. Here we propose a different solution, which is conceptually ap-
pealing and at the same time turns out to be very efficient since it completely
avoids the need for checking arities. We suggest to represent all terms in Curry
form. Curry terms are formed with a single binary apply symbol @, and all other
function symbols are considered (second-order) constants to be treated much like
their first-order counterparts. This idea is standard in the context of functional
programming, but, surprisingly, does not seem to have been considered for term
indexing data structures for automated deduction before.

Example 9. Consider again the terms of Example 6, where we saw that one
can share the term ¢ in f(x;,t) and g(s,t,u) by having F(z;,t,u). In Curry
form, these terms become @(Q(f,x;),t) and Q(Q(Q(g, s),t), u) and the ¢ cannot
be shared. But in the Curry form the same amount of sharing exists: still all
arguments that are in the same position are shared, assuming that positions
are counted from right to left. Consider the arguments of the same terms in
reverse order. The we have f(¢,z;) and g(u,t,s), which in Curry form become
Q(Q(f,t),z;) and Q(Q(Q(g,u),t),s). The common part, which was F(u,t,z;),
can be computed on the Curry terms exactly as it was done for common contexts

of first-order terms in substitution trees. In the example we get Q(Q(xy,t), z;),
where the remaining parts are {zy = f} and {z = Q(g,u), z; = s}.

It is not difficult to see that in this way one obtains exactly the same amount
of sharing as with context variables: all common contexts and all subterms u
that occur at the same position in both terms (but remember: if positions are
computed from right to left; for instance, the shared ¢ in f(¢,z;) and g(u, t, s) is
at position 2 in both terms). O

An important additional advantage is that the basic algorithms do not de-
pend on the arities of the symbols anymore. Moreover, since it is obviously not
necessary to store any apply symbols, all memory blocks contain exactly two
heap cells.

Ezample 10. The term f(b, g(x)) becomes @(Q(f,b), Q(g, x)), which can be writ-
ten in pair notation simply as ((f,b), (g, x)). Compare the Prolog format with
how the Curry term can be stored:

Prolog term: Curry Term:
10 £ 100 ref --> 120 ref -----—---—--- > 1560 £
11 ref --=> 40 b 121 ref --> 140 g 151 b
12 ref -———--—- > 60 g 141 var

61 ref --> 80 ref

Note that in the Prolog term, constants are a block of heap cells on their own
such as the b at address 40. Alternatively, constants can also be placed directly
at pointer position for minimizing space. But with Prolog terms this makes the
algorithms slower as a uniform treatment for all function symbols (constants or
not) becomes impossible. But in Curry terms, since all function symbols are
constants, this space optimization can be used without any cost. O

In Curry terms each cell is either a constant, a variable var or a ref to a
subterm. Curry terms are always headed by a single heap cell, and all other
blocks comnsist of two contiguous heap cells. This makes the basic algorithms
very efficient, as exemplified by the following recursive algorithm for testing the
equality of two (ground) Curry terms:

int TermEqual(_HeapAddr s, _HeapAddr t){
if (HeapTag(s)!=HeapTag(t)) return(0);
if (HeapIsRef(s)){
if (!TermEqual (HeapAddr(s), HeapAddr(t))) return(0);
if (!TermEqual (HeapAddr (s)+1,HeapAddr(t)+1)) return(0);}
return(1);}

4 Implementation

4.1 Equality constraints

In order to exploit the idea of equality constraints in its full power, it is important
to perform the equality tests not only at the leaves, but as high up as possible
in the tree without decreasing the amount of sharing (see [6]). For example, if
we have f(a,z,x,z,a), f(b,x,z,z,a), and f(c,y,y,x,a), then the tree can be:

o :f(xl7x7y7z7a’>7 r=Y

/N

xr =z r1 =2¢C
Ir1 =a

Note that placing the equality tests * = y and z = 2z in the leaves would
frequently lead to repeated work during retrieval time. Also, according to the
first-fail principle (which is strongly recommended in indexing techniques), it is
important to impose strong restrictions like the equality of two whole subterms
as soon as possible. Below we outline some details about our implementation
of equality constraints, their evaluation during retrieval time and their creation
during insertions by means of MF-sets (merge-find sets).

4.2 Internal vs external variables

We have seen that in our Curry terms we only consider heap cells that are a
constant, a ref, or a variable var. Indeed, it turns out that the usual distinction
between internal and external variables can also be dropped. (A variable that
is not instantiated represents an external variable.) This leads to even more
sharing in the index and increases matching retrieval speed, however, at the
price of significantly more complex update operations (see below).

Ezample 11. If the tree contains the two terms f(a,a) and f(x,b), we have:

distinguishing internal

no distinctions:
and external vars.:

xo = f(x1,22) ro = f(w1,22)
T =a,To=a r1=x,3=2>0 Tl =a,T2 =a To=0b

Note that in the second tree the variable x; plays the role of an internal variable
in the leftmost branch and of an external variable in the other one. O

In this setting, the term-to-term matching operation can be implemented as
follows:

int TermMatch(_HeapAddr query, _HeapAddr set){
if (HeapIsVar(set)) { HeapSetAddr(set,query); return(l); }
if (HeapTag(query) !=HeapTag(set)) return(0);
if (HeapIsRef (set)){
if (!TermMatch(HeapAddr(query), HeapAddr(set))) return(0);
if (!TermMatch(HeapAddr (query)+1,HeapAddr(set)+1)) return(0);}
return(1);}

~N 3 U W N
—_ DO —

Fig. 1. Context tree for the terms 1)-7)

4.3 Matching retrieval

In Fig. 1 we show a tree as it would have been generated in our implementation
after inserting the seven terms given both in standard representation and Curry
form, respectively. Variables are written as numbers. Note that the equality
constraints 3 = 4 and 3 = 5 are shared among several branches. Given the
term-to-term operations for equality and matching from above, the remaining
code needed for matching retrieval on a context tree is very simple. One needs
a function for checking the substitution of a context tree node during matching:

int SubstMatch(_Subst subst){
while (subst){
if (subst->IsEqualityConstraint)
{ if (!TermEqual (subst->lhs,subst->rhs)) return(0); }
else
{ if (1TermMatch(subst->lhs,subst->rhs)) return(0); }
subst = subst->next;}
return(1);}

Finally, the general traversal algorithm of the tree is the one presented below (as-
suming that the root variable zy has already been instantiated with the query):

int CTreeMatch(_CTree tree){
if (!SubstMatch(tree->subst))
if (tree->nextSibling) return(CTreeMatch(tree->nextSibling));
else return(0);
if (!tree->firstChild) return(1);
if (!tree->nextSibling) return(CTreeMatch(tree->firstChild));
return(CTreeMatch(tree->nextSibling) | |CTreeMatch(tree->firstChild));}

This is the only retrieval algorithm that is not coded in our implementation as
shown here. In the implementation, it is iterative and uses a backtracking stack.
The other recursive algorithms for term-to-term equality and matching are also
recursive in our current implementation, in the form we have given them above.

4.4 Updates

Updates are significantly more complex in context trees than in the standard
substitution trees.

For insertion, one starts with a linearized term, together with several MF-
sets for keeping the information about the equivalence classes of the variables.
For instance, the term f(x,y,x,y,y) is inserted as f(z1,x2,xs, x4, x5) with the
associated information that x; and x3 are in the same class, and that xs, x4,
and x5 are in the same class. Hence if this term is inserted in an empty tree, we
obtain a tree with one node containing the substitution:

o = f($1,33‘2,$3,$4,33‘5), 1 = T3, T2 = T4, T2 = Ts
(or with other, equivalent but always non-redundant, equality constraints).

The insertion process in a non-empty tree first searches for the node where
insertion will take place. This search process is like matching, except for two
aspects. Firstly, the external variables of the index are only allowed to be in-
stantiated with variables of the inserted term. But since a variable x in the tree
sometimes plays the role of an internal and external variable at the same time
(see Example 11), one cannot know in advance which situation applies until a
leaf is reached: if has no occurrence as the left hand side of a substitution (not
an equality constraint) along the path to the leaf, then it plays the role of an
external variable for this leaf. Secondly, during insertion the equality constraints
are checked on the associated information about the variables classes, instead of
checking the syntactic equality of subterms.

If a siblings list is reached where no sibling has a total agreement with the
inserted term then two different situations can occur. If there is a sibling with
a partial agreement with the inserted term, then one takes the first such sibling
(first-fit, this is what we do) or the sibling with the maximal (in some sense)
agreement (best-fit). The substitution of this node is replaced with the common
part (including the common equality constraints), and two new nodes are created
with the remaining substitutions. If a point is reached where all sibling nodes
have an empty common part with the inserted substitution, then the inserted
substitution is added to the siblings list. In both situations, the remaining sub-
stitution of the inserted term is built including the equality relations that have
not been covered by the equality constraints encountered along the path from
the root.

Deletion is also tricky, mainly because finding the term to be deleted requires
again to control the equality constraints and the instantiation of external vari-
ables only with variables of the term to be found. Moreover, unlike what happens
in insertion, backtracking is needed for finding.

It is important to be aware of the fact that updates cost little time in practice,
because updates are relatively infrequent compared with retrieval operations.

Experiments seem to confirm that there are only one or two updates per thou-
sand retrievals. On the benchmarks of [5] (see below) in none of the benchmarks
updates took more than 5 percent of the time.

5 Experiments

In our experiments we have adopted the methodology described in [5]. (In that
paper one can find a detailed discussion of how to design experiments for the
evaluation of indexing techniques so that they can be repeated and validated
by others without difficulty.) For the purposes of the present paper, we ran
30 very large benchmarks, each containing the exact sequence of (thousands
of update and millions of retrieval) operations on the matching index as they
are executed when running one of three well-known state-of-the-art provers on
certain problems drawn from various subsets of the TPTP problem date base
[8]. Comparisons are made between our preliminary implementation (column
“Cont.” in Figure 5 below) with the discrimination tree implementation (column
“Disc.”) of the Waldmeister prover [3], and the code trees (column “Code”) of
the Vampire prover [9], as provided and run by their own implementors.

The figure 5 shows that, in spite of the fact that our implementation can
be much further improved (see Section 6), it is already quite competitive in
time. Moreover, context trees are, as expected, best in space, except for the very
small indexes (mostly coming from the Waldmeister prover). (A substantial fur-
ther space improvement can be expected from a compiled implementation as
sketched in section 6.2.) Code trees are, conceptually, a refined form of standard
discrimination trees. In their latest version [7], code trees apply a similar treat-
ment of the equality tests as the one of [6] we use here. The faster speed of code
trees is, in our opinion, by and large due to the compilation of the index (see
Section 6). We do not include here the results of the aforementioned Spass and
Dedam implementations of substitution trees, because, with a similar degree of
refinement of coding as our current implementation of context trees, they are at
least a factor three slower and need much more space.

6 Conclusions and future work

The concept of context trees has been introduced and we have shown (and ex-
perimentally verified) that large space savings can be possible compared with
substitution trees and discrimination trees. We have described in detail how
these trees can be efficiently implemented. By representing terms in Curry form,
an implementation can be based on a simplified variant of substitution trees.
Already from the performance of our first (unfinished) implementation it can be
seen that context trees have a great potential for applications in automated theo-
rem proving. Due to the high degree of sharing, they allow for efficient matching,
they require much less memory, and yet the time needed for the somewhat more
complex updates remains negligible.

TPTP benchmark time in seconds space in KB
problem | from prover | Code | Disc. | Cont. | Code [Disc. | Cont.

COL002-5 Fiesta 1.30f 1.55(2.61 925| 6090 922
COL004-3 Fiesta 0.96| 1.22| 2.39 80| 727 86
LAT023-1 Fiesta 1.10| 1.49| 1.92 198| 1646 210
LAT026-1 Fiesta 1.11] 1.49| 1.79 373| 2813 371
LCL109-2 Fiesta 0.47| 0.65| 0.80 508| 2285 466
RNG020-6 Fiesta 2.26] 3.19] 5.33 544| 2435 517
ROB022-1 Fiesta 0.92| 1.20] 223 119| 1086 101
GRP164-1 Fiesta 17.60| 24.25] 32.40{ 5823| 28682| 5352
GRP179-2 Fiesta 18.34| 24.25] 32.40{ 5597| 29181 5207
GRP196-1 Fiesta 6.96| 11.92| 15.45 1| 543 1

BOOO015-4 | Waldmeister 0.25| 0.31| 0.46 11{ 575 11
GRP024-5 | Waldmeister 3.54| 4.82| T7.44 191 591 22
GRP187-1 | Waldmeister | 10.44| 11.68| 17.64 96| 903 97
LATO009-1 | Waldmeister 3.78| 4.97] 597 19| 591 20
LATO020-1 | Waldmeister | 17.74| 24.97| 29.87 30] 631 31
LCL109-2 | Waldmeister 0.49| 0.66] 0.82 16| 591 15
RNGO028-5 | Waldmeister 4.19| 6.66| 9.08 28| 607 29
RNGO035-7 | Waldmeister 8.20| 12.10| 18.55 36| 647 37
ROB006-2 | Waldmeister 9.88| 14.31| 21.60 128| 1142 116
ROB026-1 | Waldmeister 8.52| 13.55| 17.34 69| 807 68

COLO079-2 Vampire 5.46| 8.41| 7.24] 2769 9158| 2138
LAT002-1 Vampire 5.83| T7.72| 9.48| 3164| 14603| 2554
LCL109-4 Vampire 5.62| 7.65] 13.02| 6703| 24403| 4986
CIV003-1 Vampire 757 7.3 15.57| 3754| 22664| 3081
RNGO034-1 Vampire 3.27| 495 6.86| 2545| 8330 2125
SET015-4 Vampire 2.54| 2.69| 4.53 314 1373 258
HENO011-2 Vampire 3.36| 3.39| 5.18 221 2069 211
CATO001-4 Vampire 3.28| 5.74| 7.11| 3859| 13786 3109
CAT002-3 Vampire 2.90] 5.51] 6.67| 2483 9281 2021
CAT003-4 Vampire 3.21| 5.82| 6.90| 3826| 13595 3086

Fig. 2. Experimental results

With respect to our implementation, more work remains to be done regarding
a tighter coding of the four (two of them recursive) algorithms used for retrieval
— those we have seen in this paper. Experience with other implementations of
term indexes has shown that this can give substantial factors of speedup.

Apart from these low-level aspects we also believe that there are at least two
other directions for further work from which further substantial improvements
will be obtained. We are going to describe them briefly now.

6.1 Exact computation of backtracking nodes

Far more information than we have discussed so far can be precomputed at
update time on the index. We describe one of the more promising ideas that

should help to considerably reduce the amount of nodes visited at retrieval time
and to eliminate the need of a backtracking stack.

Consider an occurrence p of a substitution pair x; = t in a substitution of the
tree. Denote by accum(p) the term that is, roughly speaking, the accumulated
substitution from the root to the pair p, including p itself. If, during matching,
a failure occurs just after the pair p, then the query term is an instance of
accum(p) (and this is the most general statement one can make at that point
for all possible queries). This knowledge can be exploited to exactly determine
the node to which one should backtrack. Let p’ be first pair after p in preorder
traversal of the tree whose associated term accum(p’) is unifiable with accum(p).
Then accum(p’) is the “next” term in the tree that can have a common instance
with accum(p). Therefore, accum(p’) is precisely the next term in the tree of
which the query can be an instance as well! Hence the backtracking node to
which one should jump in this situation is the one just after p’.

It seems possible to recompute locally, upon each update of the tree, the back-
tracking pointers associated to each substitution pair, and store these pointers
at the pair itself, thus actually minimizing (in the strictest sense of the word) the
search during matching. We are currently working out this idea in more detail.

6.2 Compiled context trees

One of the conclusions that can be drawn from the experiments of [5] is that
it does in fact pay off to compile an index into a form of interpreted ab-
stract instructions as suggested by the code trees method of [9] (similar find-
ings have also been obtained in the field of logic programming). For context
trees, consider for example again the SubstMatch loop we saw before. Instead
of such a loop, one can simply use a linked list of abstract code instructions like
TermEqual (adressl,addres2,FailureAddress) where FailureAddress is the
address to jump to in case of failure. The main advantage of this approach is that
no control (like the outermost if statement of SubstMatch) has to be looked
up, and, since the correct address arguments are already part of the abstract
code, no instructions like subst = subst->next are needed and many indirect
accesses like subst->1hs can be avoided.

In addition, one can use instructions decomposing operations like TermMatch
into sequences of instructions for the concrete second argument, which is known
at compile (i.e., index update) time. Assume we specialized the TermMatch func-
tion for matching with the index term (f(gz)), that is,

10 ref --> 20 £
21 ref -->30 g
31 var

This would give code such as the following sequence of 7 one-argument instruc-
tions:

if (!HeapIsRef (query)) goto fail;
query = HeapAddr(query);
if (HeapTag(query)!=’f’) goto fail;

if (!HeapIsRef(query+1)) goto fail;
query = HeapAddr(query+1);

if (HeapTag(query)!=’g’) goto fail;
HeapSetAddr (31,query+1)

By simple instruction counting, this code is easily shown to be far more efficient

on an average query term than the general-purpose two-argument TermMatch

function with (f(gx)) as second argument. All these advantages give more speedup
than what has to be paid for in overhead arising from the need for interpret-

ing the operation code of the abstract instructions. The latter is just a switch

statement that, in all modern compilers, produces constant time code.

References

[1]
2]

3]

[4]

[5]

[6]

(7]

8]

[9]

[10]

Jim Christian. Flatterms, Discrimination Nets, and Fast Term rewriting. Journal
of Automated Reasoning, 10:95-113, 1993.

Peter Graf. Substitution Tree Indexing. In J. Hsiang, editor, 6th RTA, LNCS 914,
pages 117-131, Kaiserslautern, Germany, April 4-7, 1995. Springer-Verlag.
Thomas Hillenbrand, Arnim Buch, Roland Vogt, and Bernd Ldchner.
WALDMEISTER—high-performance equational deduction. Journal of Auto-
mated Reasoning, 18(2):265-270, April 1997.

William McCune. Experiments with discrimination tree indexing and path index-
ing for term retrieval. Journal of Automated Reasoning, 9(2):147-167, October
1992.

Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre Riazanov, and Andrei
Voronkov. On the evaluation of indexing data structures. 2001. This proceedings.
Robert Nieuwenhuis, José Miguel Rivero, and Miguel Angel Vallejo. A kernel of
data structures and algorithms for automated deduction with equality clauses (sys-
tem description). In William McCune, editor, 14th International Conference on
Automated Deduction (CADE), LNAI 1249, pages 49-53, Jamestown, Australia,
1997. Springer-Verlag. Long version at www.lsi.upc.es/ roberto.

Alexandre Riazanov and Andrei Voronkov. Partially adaptive code trees. In
Proceedings of JELIA 2000, Malaga, Spain, 2000.

Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The TPTP problem
library. In Alan Bundy, editor, Proceedings of the 12th International Conference
on Automated Deduction, volume 814 of LNAI pages 252-266, Berlin, June/July
1994. Springer.

Andrei Voronkov. The anatomy of vampire implementing bottom-up procedures
with code trees. Journal of Automated Reasoning, 15(2):237-265, October 1995.
Christoph Weidenbach. SPASS—version 0.49. Journal of Automated Reasoning,
18(2):247-252, April 1997.

