
A New Meta-Complexity Theorem for

Bottom-up Logic Programs

Harald Ganzinger1 and David McAllester2

1 MPI Informatik, D-66123 Saarbrücken, Germany, hg@mpi-sb.mpg.de
2 AT&T Labs-Research, Florham Park NJ 07932, USA, dmac@research.att.com

Abstract. Nontrivial meta-complexity theorems, proved once for a pro-
gramming language as a whole, facilitate the presentation and analysis of
particular algorithms. This paper gives a new meta-complexity theorem
for bottom-up logic programs that is both more general and more accu-
rate than previous such theorems. The new theorem applies to algorithms
not handled by previous meta-complexity theorems, greatly facilitating
their analysis.

1 Introduction

McAllester has recently shown that the running time of a bottom-up logic pro-
gram can be bounded by the number of “prefix firings” of its inference rules [10].
A prefix firing of a rule is a derivable instantiation of a prefix of the antecedents
of that rule. This single nontrivial meta-complexity theorem simplifies the pre-
sentation and complexity analysis of a variety of parsing and static analysis algo-
rithms. Many other algorithms, however, seem to fall outside of the range of this
theorem. In particular, algorithms based on union-find or congruence closure can
not be analyzed. A second meta-complexity theorem for the analysis of union-
find based algorithms is also given in [10]. While this second theorem applies to
a broader class of algorithms, it yields running time bounds that are often worse
by logarithmic factors than algorithm-specific bounds — bounds proved without
the use of a meta-complexity theorem. Here we prove a more accurate and more
general meta-complexity theorem. The increased generality is achieved by prov-
ing the theorem for logic programs with priorities and deletions. Priorities and
deletions allow the simulation of arbitrary classical control structures. So the
new meta-complexity theorem has, in some sense, universal coverage. The new
theorem yields improvements in meta-complexity-derived bounds for a variety
of algorithms including union-find and congruence closure. As an example, sec-
tion 5 presents an algorithm for determining the satisfiability of a ground set of
Horn clauses with equality. The new meta-complexity theorem allows the simple
derivation of a very tight running time bound for this algorithm. Proving the
same bound for this problem without the the use of our new theorem appears
to be significantly more difficult.

2 Inference Rules with Priorities and Deletions

We use the term inference rule to mean a first-order Horn clause, i.e., a formula
of the form A1 ∧ . . . ∧ An → C where C and each Ai is a first-order atom. We
will use assertion to mean a ground atom and use the term data base to mean
a set of assertions. If R is a set of rules and D is a data base, then we let R(D)
denote the set of ground atoms derivable from the ground set D using the rules
in R.

Here we are interested in expressing algorithms with prioritized inference
rules with deletion. An inference rule with deletion is an expression of the form
A1 ∧ . . . ∧ An → C where C is an atom and each Ai is either an atom or an
expression of the form [A] where A is an atom. Intuitively, the marking [. . .]
means that the premise is to be deleted as soon as the rule is run. Deletion
makes the behavior of the algorithm nondeterministic. For example, consider
the following rules with deletion.

P ⇒ Q [Q] ⇒ S [Q] ⇒ W

Suppose the initial data base contains only P . The first rule fires adding
the assertion Q. Now either the second or third rule can fire. Since each of
these rules deletes Q, once one of them fires the other is blocked. Hence the
final data base is nondeterministically either {P, S} or {P, W}. When viewing
rules with deletions as algorithms this nondeterminism is viewed as “don’t care”
nondeterminism — the choices are made arbitrarily and not backtracked. (In
many cases this kind of don’t-care nondeterminism can be justified by a suitable
notion of redundancy, cf. Section 8.) Suppose now that we have additional rules
through which W entails a large number of additional facts whereas the absence
of W does not. Then, in order to obtain a more efficient run of the rules, we
should prefer to fire the second rule rather than the third rule, which we could
achieve by giving higher priority to the second rule. In summary, allowing for
deletion makes deduction nondeterministic, and hence priorities are needed for
indicating which choices are to be made in order to increase efficiency, or to
avoid unwanted results.

The proof of the meta-complexity theorem requires that deletion be perma-
nent — once an assertion is deleted further attempts to reassert it have no effect.
(If deletion is based on a notion of redundancy such as the one proposed in [2],
once an assertion has become redundant it remains so for the remainder of the
computation.) To see the problem with deletion consider the simple pair of rules
[P] → Q and [Q] → P . If deletion is can be revoked by subsequent assertion, the
rules can oscillate between a database containing P and a database containing Q

and fail to terminate. To formalize this notion of permanent deletion we take a
state of the computation to be a set S of literals (atoms and negations of atoms).
The presence of a negated atom ¬A in a state indicates that A should be consid-
ered deleted. Hence, we say that an atom A is visible in a state S if A ∈ S and
¬A 6∈ S, while a negative literal ¬A is called visible in S whenever ¬A ∈ S. If σ

is a ground substitution and [A] is a deleted antecedent then we define σ([A]) to

2

be the ground atom σ(A). Now let S be a state, and let r be an inference rule

with deletions. We write S
r
→ S′ if S 6= S′ and r is a rule A1 ∧ . . . ∧ An → C

such that there exists a ground substitution σ defined on all the variables in
r such that σ(Ai) is visible in S, and S′ is S ∪ {σ(C),¬σ(Ai1), . . . ,¬σ(Aik

)}
where Ai1 , . . . , Aik

are the deleted antecedents of the rule. We say that a rule
r is applicable at the state S if there exists a state S ′ (which must be different

from S) such that S
r
→ S′.

Now let R be a set of rules with deletions where each rule in R is associated
with a positive rational number called its priority. We call R a rule set with
priorities and deletions . For technical simplicity we may assume that priorities
are unique in that no two rules have the same priority. We say that a state S is
visible to a rule r ∈ R if no higher priority rule in R is applicable at S. We write

S
R
→ S′ if there exists a rule r ∈ R such that S is visible to r and S

r
→ S′. We

will say that a state S is saturated under R if it is a normal form, i.e., there is

no S′ such that S
R
→ S′. An R-computation from a database D is a sequence S0,

S1, . . . , ST such that S0 = D, St
R
→ St+1. An R-computation is called complete

if the final state ST is saturated. If there is a complete R-computation from D

ending in ST then we say that ST is an R-saturation of D. A rule set R is said
to terminate on input database D if there is no infinite R-computation from D.

A prefix firing in an R-computation C is a triple 〈r, σ, i〉, where r ∈ R is a
rule A1 ∧ . . .∧An ⇒ C such that the computation C contains a state S visible to
r and σ is a ground substitution defined on the variables in the antecedent prefix
A1, . . . , Ai such that the σ(Aj), for 1 ≤ j ≤ i, are visible in S. Note that the set
of prefix firings of a given rule is determined by the set of states visible to that
rule. For any R-computation C we let p(C) be the number of prefix firings in C.
We will call a rule range-restricted if every variable in the conclusion appears in
some antecedent. Bottom-up logic programs are generally range-restricted and
for simplicity we only consider range-restricted rules. In the following, by |D| we
denote the size of a database which is the number of nodes in its fully shared
graphical representation by a dag.

Theorem 1. For any given set R of range-restricted rules with priorities and
deletions there exists an algorithm mapping an input database D to an R-saturat-
ion R(D) of D whose running time is O(|D|+maxC p(C)) where the maximization
is over all R-computations C from D.1

The theorem extends the one in [10] to inference rules with priorities and deletion
showing essentially that no penalty has to be paid for these extensions. The
complexity can again be linearly bounded by the number of prefix firings.

Before giving a proof of this theorem, in the next sections we will present a
variety of applications. Before discussing those, the following example is given
in order to clarify one of the more subtle issues behind our definitions. Consider

1 Note that if there is no bound on the length of computations then the algorithm
need not terminate.

3

the rules r1 and r2, where

r1 : r(x, y), [p(x)] ⇒ s(x) r2 : p(x), q(x, y) ⇒ r(x, y)

with priorities from left to right, on a database D consisting of facts p(i), for
1 ≤ i ≤ n, and q(i, j), for 1 ≤ i, j ≤ n. In any computation from D, whenever
rule r2 produces an r-fact r(i, j), in the next step r1 takes priority over r2, and
the p(i) is deleted so that no other fact r(i, j ′) can by produced thereafter. Hence
any computation takes at most 2n steps. However, the number of prefix firings of
rule r2 is n+n2, and that is the upper bound on the time complexity provided by
the meta-complexity theorem above. A more refined meta-complexity theorem,
based on refined notions of prefix firings, could be stated. However in this paper
we deliberately confine ourselves to the simpler version. The additional technical
complexity does not appear to be required for the examples that we are interested
in at present.

3 A Union-Find Algorithm

This section presents an O(n log n) union-find algorithm given as a rule set with
priorities and deletions. This union-find algorithm both gives an example of
a use of theorem 1 and serves as a foundation for other algorithms given in
later sections of this paper. The union-find algorithm in itself is perhaps not
significantly simpler than classical presentations using pointers and recursive
procedures. However its direct relation to the usual inference rules for Knuth-
Bendix completion makes correctness arguments more straightforward.

The union-find algorithm is used to represent equivalence relations. In the
inference rule union-find algorithm U in Figure 1 we assume a binary predicate
union such that the assertion union(x, y) means that x and y are to be made
equivalent — the procedure is to compute the least equivalence relation such
that if the data base contains union(x, y) then x and y are equivalent. The find
function is defined in terms of a more basic rewrite relation which we represent
here as a set of assertions of the form x f

→ y. We define the “find” of x to be the
normal form of x under the rewrite relation f

→. Storing this relation explicitly
as assertions in the data base defines in a more logical manner what is usually
implemented with pointer structures.

The union-find inference system implements Knuth-Bendix completion for
the simple case of equations between constants. The equations are represented
by the union facts. The rules (F1) and (F2) compute the normal forms of terms.
(U2)–(U4) orient equations into rewrite rules using an ordering that is dynami-
cally determined by the weight computation in rules (U3) and (U4). If f

→∗ is the
reflexive-transitive closure of f

→, the weight of y is the number of nodes x such
that x f

→∗ y. An assertion x f

→ y is to be added only for irreducible y for which
y f

→! y. The rule (F1)–(F2) are to run at a higher priority than any other rules
mentioning the predicates find, f

→ or f

→!. This ensures that, at any state visible
to other rules mentioning these relations, the relation f

→! is the fixed “normal
form relation” determined by the f

→ relation.

4

find(x)
(F1)

x
f
→! x,

weight(x, 1)

[x f
→! y]

y f
→ z

(F2)

x f
→! z

union(x, y)
(U1)

find(x),
find(y)

[union(x, y)]

x f
→! z

y
f
→! z

(U2)

T

[union(x, y)]

x
f
→! z1

y
f
→! z2

weight(z1, w1)
[weight(z2, w2)]
w1 < w2

(U3)

z1

f
→ z2,

weight(z2, w1 + w2)

[union(x, y)]

x
f
→! z1

y
f
→! z2

[weight(z1, w1)]
weight(z2, w2)
w1 ≥ w2

(U4)

z2

f
→ z1,

weight(z1, w1 + w2)

Fig. 1. Module U for union-find. We write rules vertically as the antecedents followed
by a horizontal line followed by the conclusions. The rules are listed in decreasing pri-
ority. Multiple conclusions A1, . . . , Ak should be viewed as a single atom a(A1 . . . , Ak)
with auxiliary rules (of highest priority) generating the individual conjuncts Aj .

All of the rules represented by (U1) run at higher priority than (U2), (U3),
or (U4). This implies that in any state visible to (U2), (U3), or (U4) we have
that find(x) and find(y) have been asserted and hence the normal forms of x and
y have been computed and the weights have been initialized. Rule (U2) is given
higher priority than either (U3) or (U4). This implies that at any state visible
to (U3) or (U4) we have that x and y have distinct normal forms (otherwise the
state would be visible to rule (U2) which would then delete the link assertion
and assert the trivial “true” assertion T).

The use of addition in the rules (U3) and (U4) is outside of the formal
language defined in section 2. However, the use of addition in the conclusion
can be replaced by an additional final antecedent of the form w3 = w1 + w2.
Theorem 1 can be generalized to handle constraint antecedents provided that
the set of assignments of values to the unassigned variables (those not appearing
in earlier antecedents) can be computed in time proportional to the number of
such assignments.

One should think of the rules (F1)–(U4) as a module U that takes as input
assertions of the form find(x) and union(x, y) and produces as output assertions
of the form x f

→! z such that z is the normal form of x in a canonical rewrite
system generated from the equations union(x, y). The input can be extended
dynamically by new assertions of the form find(x) and union(x, y) generated
from additional rules that are compatible with U .

5

Definition 1. A module consists of a rule set with priorities and deletions plus
specified input and output predicate symbols. All other predicates of the module
are called local. A rule set R will be called compatible with a module M provided
that it does not mention local predicates of M , and

– no output predicate of M appears in any conclusion or deleted antecedent of
a rule in R,

– no input predicate of M appears in any deleted antecedent of R,
– and every rule in R containing an output predicate of M in an antecedent

has priority lower priority than all rules in M .

An initial database D will be called compatible with a module M if it does not
mention any predicates of M other than input predicates.

Theorem 2. The union-find module U has the property that for any rule set
R and initial database D, where R and D are both compatible with U , and any
(R ∪ U)-computation C from D, the total number of prefix firings in C of the
rules in U is O(m + n logn) where m is the number of union assertions in C or
produced by R, and n is the number of distinct terms appearing in union or find
assertions.

Proof. Note that each non-redundant union operation generates a single new
assertion of the form x f

→ y where the weight of y prior to the addition of this
assertion is at least as large as the weight of x. This implies that weight at least
doubles as one moves across any assertion of the form x f

→ y. So for a given x

the set of y such that x f
→∗ y can have at most log n elements. (At most n − 1

rewrite rules x f

→ y can be generated until all terms become equal.)
Now we show that each of the rules in U has an appropriate number of prefix

firings. The rule (F1) has at most n firings. It follows from the above comments
that there are at most n logn assertions ever generated of the form x f

→! y. This,
and the fact that out-degree of f

→ is at most one, imply that rule (F2) has at
most n log n prefix firings. Rule (U1) has at most m firings. All states containing
the assertion union(x, y) and visible to any of the rules (U2), (U3), or (U4)
must assign the same unique normal forms and weights to x and y. This implies
that the rules (U2), (U3), and (U4) also have at most m prefix firings.

It is possible to give a more complex inference rule implementation of union-
find that runs in O(nα(n)) time where α is the inverse of Ackermann’s func-
tion. However, many algorithms based on union-find run in O(n log n) time even
when using an O(nα(n)) implementation of union-find. For such applications an
O(n log n) implementation of union-find suffices.

4 Congruence Closure

The congruence closure problem is to determine whether an equation s = t be-
tween ground terms is provable from a given set of equations between ground

6

find(〈x, y〉)
(C1)

find(x), find(y),
init⇒(〈x, y〉)

[init⇒(z)]
z ⇒ w

(C2)

T

[init⇒(z)]
(C3)

z ⇒ z

[〈x, y〉 ⇒ z]

x f
→! x′

〈x′, y〉 ⇒ z′

(C4)

union(z, z′)

[〈x, y〉 ⇒ z]

x
f
→! x′

(C5)

〈x′, y〉 ⇒ z

[〈x, y〉 ⇒ z]

y f
→! y′

〈x, y′〉 ⇒ z′

(C6)

union(z, z′)

[〈x, y〉 ⇒ z]

y
f
→! y′

(C7)

〈x, y′〉 ⇒ z

Fig. 2. Rules for congruence closure listed in order of decreasing priority

terms using the reflexivity, symmetry, transitivity and congruence rules for equal-
ity. Here we assume that expressions are represented using constants and a single
pairing function. The congruence property of the pairing function states that if
u1 = w1 and u2 = w2 then 〈u1, u2〉 = 〈w1, w2〉.

The inference rules in Figure 2 are compatible with the union-find module
U (assuming that rules in U have priority lower than the rules (C4)–(C7) that
use the output predicate f

→! of U). Combined with U , they give an O(n log n)
algorithm for congruence closure. The rules are related to rules given in [3] which
view congruence closure as a form of ground completion. The ternary atoms
〈 , 〉 ⇒ represent the signatures in [5], or the definitions in [3]. Note that, by
contrast to [3], we do not introduce new constants to denote the subterms of
the input equations. The terms on the right side in ⇒ play the role of these
constants. This explains rule (C3) where z ⇒ z gives us z as the handle to all
terms that are semantically equal to z. These rules have lower priority than all
rules in the union-find module and the priority between rules corresponding to
the order in which the rules are given with (C1) having highest priority and
(C7) having lowest. The precedence of (C2) over (C3), (C4) over (C6) and (C5)
over (C7) ensure the invariant that for any pair 〈x, y〉 there is at most one
assertion of the form 〈x, y〉 ⇒ z. Furthermore, one can check that in any state
visible to these rules, and hence where no union-find rules are still to be run,
we have that if the state contains 〈x, y〉 ⇒ z then 〈x, y〉 and z have the same
find value. Furthermore, the rules maintain the invariant that in states visible
to (C4) through (C7), if the state contains find(〈x, y〉) then there exists an x′

and y′ such that x f

→! x′ and y f

→! y′ and the state contains 〈x′, y′〉 ⇒ z where
z is equivalent to (has the same find as) 〈x, y〉. In any final (saturated) state we
must have that x′ and y′ are normal forms under the equivalence generated by
the union assertions. This implies that in the final state, if we have find(〈x1, y1〉)
and find(〈x2, y2〉) where x1 and x2 are equivalent and y1 and y2 are equivalent

7

we must also have 〈f1, f2〉 ⇒ z where f1 is the common find of x1 and x2, f2

is the common find of y1 and y2, and where z is equivalent to both input pairs,
and hence the input pairs are equivalent to each other.

The union-find module satisfies the condition that for any given x there are
at most log n terms y such that x f

→! y. This implies that an initial assertion
〈x, y〉 ⇒ z can generate at most 2 logn “descendents” of the form 〈x′, y′〉 ⇒ z.
This implies that at most 2n logn assertions of this form are ever generated
and this implies that each of the rules (C4), (C5), (C6), and (C7) have at most
2n logn prefix firings. The other rules have at most O(n) prefix firings. Hence
we have the following theorem.

Let C be the module with input predicates union and find and output pred-
icate f

→!, resulting from combining the union-find module with the congruence
closure rules.

Theorem 3. If R is a rule set and D an initial database where both R and
D are compatible with C then, in any computation from D of R ∪ C, the total
number of prefix firings of rules in C is O(m + n log n) where m is the number
of input union assertions, that is, union assertions in D or generated by R, and
n is the number of terms x appearing in find assertions (either in input find
assertions or find assertions generated by (C1)).

Note that in this case, n is proportional to the number of the different subterms
in input find assertions. The complexity bound given by the theorem is the same
as the one given in [5]. The latter paper, however, ignores the work needed for
processing the input equations. Our inference rules do include this preprocessing
and, therefore, come with an additional additive O(m) term in the complexity
bound.

5 Satisfiability of Ground Horn Clauses with Equality

We now extend congruence closure (in a compatible manner) to handle ground
(object-level) Horn clauses represented as assertions in the input database D.
(The meta-level Horn clauses are called inference rules.) More specifically we
want to construct an algorithm for computing the deductive closure of a set of
ground assertions of the form input(Φ → A) where the possible expressions for
Φ and A are defined by the following grammar where c ranges over constants
and p ranges over binary predicate symbols including the special symbol

.
= for

denoting formal equality.

Φ ::= A | Φ1 ∧ Φ2 A ::= T | p(t1, t2) t ::= c | 〈t1, t2〉

The algorithm takes as input a set D of ground assertions of the form Φ → A.
The algorithm uses the congruence closure module and all inference rules in this
section run at priority higher than those in the congruence closure module.

We start with the following linear time module for ground Horn clauses
without equality. The module may be viewed as a high-level implementation of

8

the algorithm in [4]. The main idea in this set of rules is that atoms appearing
in the antecedent of clauses are first detached from their clauses. This has the
effect that even if an atom has many occurrences in antecedents of clauses it is
nevertheless only derived once.

input(Φ → A)
(I1)

antecedent(Φ), conclusion(A),
true(Φ → A)

antecedent(Φ1 ∧ Φ2)
(I2)

antecedent(Φ1), antecedent(Φ2)

(I3)

true(T)
true(Φ → Ψ)
true(Φ)

(I4)

true(Ψ)

antecedent(Φ1 ∧ Φ2)
true(Φ1), true(Φ2)

(I5)

true(Φ1 ∧ Φ2)

A natural way to extend these rules to handle equality would be to treat
atoms themselves as terms and apply congruence closure. This would give a
simple O(m log m) algorithm for conditional equations, where m is the size (in
dag representation) of the set of clauses. If m is quadratic in the number n

of different terms appearing in the set, that would give the bound O(n2 log n).
However, for the particular application given in section 6 a more refined bound,
and more refined algorithm, is needed. We handle equality with the following
rules.

true(
.
=(s, t))

(I6)

union(s, t)

antecedent(p(s, t))
(I7)

find(s), find(t),
push(p(s, t))

conclusion(p(s, t))
(I8)

find(s), find(t),
push(p(s, t))

[push(p(s, t))]

s
f
→! s′

(I9)

true(p(s′, t) → p(s, t)),
true(p(s, t) → p(s′, t)),
push(p(s′, t))

[push(p(s, t))]

t
f
→! t′

(I10)

true(p(s, t′) → p(s, t)),
true(p(s, t) → p(s, t′)),
push(p(s, t′))

[push(
.
=(s, s))]

(I11)

true(
.
=(s, s))

The rules have priority in the order given with (I1) having highest priority
and (I11) having lowest but with all rules at lower priority than any rules in
the congruence closure module. We leave it to the reader to verify that any
saturation of these rules contains a given conclusion if and only that conclusion

9

follows from the input under the standard interpretation of equality. Here we
focus on the run time (number of prefix firings) of these rules.

Let m be the number of antecedents as derived by rules (I1) and (I2), plus
the number of clauses in the input, and let n and a, respectively, be the number
of different terms and atoms appearing there. Clearly, a is in O(m), and also
in O(n2), with m, n ≤ |D|. The number of prefix firings of rules (I1), (I2), (I3),
(I5), (I7), and (I8) are all proportional to m. The number of prefix firings of (I4)
is proportional to m plus the number of firings of (I9) and (I10). The number of
prefix firings of (I6) is proportional to m plus the number of firings of rule (I11).
The number of prefix firings of (I11) is bounded by to the number of prefix firings
of (I7) and (I8) (which is m) plus the number of prefix firings of (I9) and (I10). So
the total number of prefix firings is proportional to m plus the number of firings of
the two rules (I9) and (I10). Since f

→! has out-degree at most one we immediately
get that these two rules have at most n2 firings where n is the number of subterms
appearing in the input. By the properties of union-find we also get that those
rules have at most a logn firings. The number of union operations generated by
rule (I6) is at most a log n, hence in O(m log n). The number of prefix firings
inside the congruence-closure module is therefore O((m + n) log n). So the total
number of prefix firings is O(m + n logn + min(m log n, n2)).

Theorem 4. Satisfiability of ground Horn clauses with equality can be decided
in time O(|D|+n log n+min(m log n, n2)) where m is the number of antecedents
and input clauses and n is the number of terms.

The above bound is better than O(m log m) in any family of problems where m

is Ω(n2). In that case, also |D| is in Ω(n2) and the algorithm becomes linear in
the size of the input. In cases where the length of antecedents is bounded by a
constant, m is proportional to the number of input clauses in D.

6 Henglein’s Quadratic Typability Algorithm

Following the exposition by [10], the typability problem in a variant of the Abadi-
Cardelli object calculus [1] considered by [8] can be taken to consist of a given
set of assertions of the form σ ≤ τ and accepts(σ, l) and notaccepts(σ, l), where
σ and τ are type names and l is a message name. The instance is acceptable
(solvable) provided that the following rules do not derive fail . We also assume
that type(σ) is derivable for those type terms σ that appear in [not]accepts- or
≤-facts in the input, or which are of the form τ.l with accepts(τ, l) appearing in
the input. Moreover, we assume the standard reflexivity, symmetry, transitivity,
and congruence properties of equality.

type(σ)
σ v σ

σ ≤ τ

type(ρ)
τ v ρ

σ v ρ

accepts(σ, l)
accepts(τ, l)

σ v τ

σ.l
.
= τ.l

type(σ)
accepts(σ, l)

notaccepts(σ, l)

fail

10

To determine solvability of a problem instance we can now simply build all
ground Horn clauses that result from resolving the bodies of the first three rules
with the [not]accepts- and the ≤-facts in the input, and also with the the type-
facts derived from the input database. For the last rule we generate the ground
instances by resolving with the type-facts and instantiating with all label terms
in the input. If the size of the problem instance is m, the input contains O(m)
accepts- and input-facts and terms. Hence we obtain O(m2) resolvents which
are ground clauses in which O(m) terms appear. We now have that the input is
solvable if and only if one cannot derive fail from these ground clauses together
with the facts in the input.2 Applying theorem 4 we get a novel and simple proof
of Henglein’s result that solvability is decidable in O(m2) time.

7 Proof of the Meta-Complexity Theorem

In this section we prove Theorem 1. It turns out to be convenient to prove the
theorem for a slightly more general language. We define a literal-based rule to
be a rule of the form A1 ∧ · · · ∧ An → C where each Ai and C are literals, i.e.,
either atoms or negations of atoms. We write S

r
→ S′ if there exists a ground

substitution σ defined on all the variables in r such that for each antecedent
A of r we have that σ(A) is visible in S and S ′ is S ∪ {σ(C)} where C is the
conclusion of r. We then define the notion of a rule is applicable to a state, a
state being visible to a rule, an R-computation, and an R-saturated state, and a
prefix firing as in the case for rules with deletions (in both cases we allow rules
to have priorities). We now show that any rule set with priorities and deletions
can be translated to a literal-based rule set in a way that allow computations
to also be translated in a way that preserves the number of prefix firings up to
a constant factor. In particular, we translate a rule with deletions of the form
A1 ∧ · · · ∧ An → C to the following set of literal-based rules where p is a fresh
predicate symbol, x1, . . . , xn are all variables in the rule, and Ai1 , . . . , Aik

are
all the deleted antecedents.

A1 ∧ · · · ∧ An → p(x1, . . . , xn)

p(x1, . . . , xn) → ¬Ai1

. . .

p(x1, . . . , xn) → ¬Aik

p(x1, . . . , xn) → C

The first rule above has the same priority as the translated rule. The other
rules are called “transient” rules. Note that an “atomic” invocation of one of the
original rules gets translated into a sequence of intermediate states where some,

2 One needs to show that further ground clauses are redundant. Suppose, for instance,
we have accepts(s, l) and accepts(t, l) in the input. Then by the process just described
we generate the ground clause s v t → s.l

.
= t.l. If we later derive s

.
= s′, the clause

s′ v t → s′.l
.
= t.l is a consequence of the clause we already have.

11

but not all, of the deletions and insertions have been made. We must ensure that
these “transient” states are not visible to other rules in the system. This can
be done by assigning all transient rules higher priority than all rules in the set
being translated. It now suffices to prove theorem 1 for rules over literals rather
than rules with deletions.

We now perform source to source transformations on rules over literals to put
the rules in a simplified form without increasing the number of prefix firings by
more than a constant factor. First we convert rules such that they have at most
three literals. If r is a rule over literals A1∧A2∧. . .∧An → C with n > 2 then we
replace r by the following set of rules where P1, P2, . . . Pn, are fresh predicate
symbols and x1, . . . , xki

are the variables occurring in the first i antecedents.
The predicate Pi represents the relation defined by the first i antecedents, and
¬Pi represents the negation (retraction) of Pi.

A1 → P1(x1, . . . , xk1
)

¬A1 → ¬P1(x1, . . . , xk1
)

P1(x1, . . . , xk1
) ∧ A2 → P2(x1, . . . , xk2

)
P2(x1, . . . , xk2

) ∧ ¬P1(x1, . . . , xk1
) → ¬P2(x1, . . . , xk2

)
P2(x1, . . . , xk2

) ∧ ¬A2 → ¬P2(x1, . . . , xk2
)

...
Pn−1(x1, . . . , xk1

) ∧ An → Pn(x1, . . . , xk2
)

Pn(x1, . . . , xk2
) ∧ ¬Pn−1(x1, . . . , xk1

) → ¬Pn(x1, . . . , xk2
)

Pn(x1, . . . , xk2
) ∧ ¬An → ¬Pn(x1, . . . , xk2

)
Pn(x1, . . . , xkn

) → C

Since we are now proving a version of theorem 1 for rules over literals we must
consider the case where the rule being translated has negative antecedents. In
that case the above rules might include rules with doubly negated antecedents.
Such rules are simply dropped from the translation since negative literals can
not be deleted (or overruled). The last rule above is given the same priority as
the rule being translated. All other rules are given higher priority (but lower
than the priority of any original rule with priority higher than the rule that is
translated) where the priority is in the order given, i.e., the first rule has highest
priority and so on. This is possible since the original rules have all different
priorities.

To prove the version of theorem 1 for rules over literals it suffices to show that
any computation of the translated rule set can be mapped back to a computation
of the original rule set with no more than a constant factor reduction in the
number of prefix firings. In particular, if the new rule set derives Pi(x1, . . . , xki

)
then there must exist a single state in the computation of the original rule
set where A1, . . . , Ai all hold under the corresponding variable substitution.
This follows from the observation that the priority assignment guarantees that
in states visible to the rule deriving Pi(x1, . . . , xki

) the predicate Pi−1 is
guaranteed to have the appropriate meaning as a function of the predicates used
in the original antecedents.

12

We have now shown that we can assume without loss of generality that each
rule contains at most two antecedents. We now put the rules in an even more
restricted form. For any rule r with two antecedents A1 ∧ A2 → C we replace
r by the following set of rules where x1, . . . , xn are all variables occurring in
A1 but not A2, y1, . . . , ym are all variables that occur in both A1 and A2, and
z1, . . . , zk are all variables that occur in A2 but not A1. The predicates P , and
Q, and the function symbols f , g, and h are all fresh.

A1 → P (f(x1, . . . , xn), g(y1, . . . , ym))
¬A1 → ¬P (f(x1, . . . , xn), g(y1, . . . , ym))
A2 → Q(g(y1, . . . , ym), h(z1, . . . , zk))

¬A2 → ¬Q(g(y1, . . . , ym), h(z1, . . . , zk))

P (f(x1, . . . , xn), g(y1, . . . , ym)) ∧ Q(g(y1, . . . , ym), h(z1, . . . , zk)) → C

The rules are given priority in the order given with the last rule having the same
priority as the rule being translated. Again the validity of the translation relies
on the observation that in any state visible to a rule using one of the newly
introduced predicates P and Q in antecedents, these predicates must have the
intended meaning as a function of the underlying original predicates and hence
there is a corresponding firing of the original rule.

Without loss of generality we now need only prove the theorem for prioritized
inference rules over literals where each rule either has only a single antecedent
or is of the form P (t1, t2) ∧ Q(t2, t3) → C where t1, t2, and t3 do not share
variables and where the rules maintain the invariant that for all derivable ground
assertions of the form P (s1, s2) we have that s1 is a substitution instance of t1
and s2 is a substitution instance of s2, and for all derivable ground assertions of
the form Q(s2, s3) we have that s2 is a substitution instance of t2 and s3 is a
substitution instance of t3. For such rule sets we can use the algorithm shown
below to compute an R-saturation of a given initial database D.

Algorithm to Compute R(D):

Assume that D is in fully shared dag representation in which term equality can
be checked in constant time. We maintain queues Qp and Rp for each priority
p in R. Initialize S to be D and place every element of D on every queue Qp.
Initialize all queues Rp to be empty.

While some queue is nonempty do the following:

Let p be the highest priority such that either Qp or Rp is nonempty.
(The current state is visible to rules of priority p.) If Qp is nonempty
then remove a literal Φ from Qp and if Φ is visible in S then notice Φ at
priority p using the procedure given below. If Qp is empty then remove a
pair 〈r, σ〉 from Rp. (Here r is a rule of priority p and σ is a substitution
assigning ground values to all variables of r such that for each antecedent
of A of r we have σ(A) ∈ S.) If σ(A) is visible in S for each antecedent
A of R then let Ψ be the assertion σ(C) where C is the conclusion of R,
add Ψ to S, and place Ψ on all queues of the form Qp′ .

13

Algorithm to Notice Φ at priority p:

(The current state is visible to all rules of priority p and Φ is visible in S.)

1. For each single-antecedent rule of priority p of the form A → C determine
whether there is a substitution σ such that σ(A) = Φ and, if so, add the pair
〈r, σ〉 to Rp.

2. For each two-antecedent rule of priority p of the form P (t1, t2)∧Q(t2, t3) →
C do the following:
(a) If Φ has the form P (s1, s2) then for each s3 such that Q(s2, s3) is visible
in S add the pair 〈r, σ〉 to Rp where σ is the substitution mapping t1 to s1,
t2 to s2, and t3 to s3. (We are guaranteed that t1, t2, and t3 do not share
variables and that t1 matches s1, t2 matches s2, and t3 matches s3.)
(b) If Φ has the form Q(s2, s3) then for each s1 such that P (s1, s2) is
visible in S add the pair 〈r, σ〉 to Rp where σ is defined as in (a). (Analogous
guarantees also exist in this case.)

We leave it to the reader to verify the correctness and running time of this
algorithm. The main feature of the algorithm is that the processing of a given rule
r is restricted to states visible to r. By incrementally maintaining appropriate
indices it is possible to run steps (2a) and (2b) in time proportional to the
number of values of s3 and s1 defined in those steps respectively. For instance
the set of substitutions s3 such that Q(s2, s3) is visible in S (cf. step 2a) has
to be indexed using term s2 as key, so that upon adding a new Q-atom to S

the index can be updated in constant time. Note that since we have assumed
dag representations for expressions under which equality testing is a unit time
operation, all matching operations for patterns in R take unit time.

8 Future Work

We have presented a more refined concept of logic programming where the em-
phasis is on guaranteed execution time bounds linear in the number of prefix
firings of its rules. We are optimistic that this logic will continue to prove itself
useful in the design of algorithms. We have demonstrated some of the potential of
the method by giving a novel algorithm for testing satisfiability of ground Horn
clauses with equality and shown that in many cases its complexity is not worse
that (unconditional) congruence closure. On top of this we have implemented
an abstract version of Henglein’s type analysis, confirming the quadratic upper
bound that Henglein obtained before. In fact we believe that program analysis is
a particularly fruitful area for applying our method. This point was illustrated
in detail in [10]. With the methods in the present paper we are able to also deal
with congruences that appear in such analyses in a logical way.

There are many directions into which this work should be extended. Theo-
rem 4 should be generalized to cases of input clauses with variables. However,
already in the given form it is useful for local (equational) theories in the sense
of [7, 9, 6].

14

The relation between deletions and redundancy elimination, with redundancy
in the sense of [2] as entailment from smaller atoms, should be explored. For
instance, the rule (I9) deletes push(s, t) if s can be reduced to s′ after the re-
duced atom push(s′, t) has been generated. The deleted atom is “entailed” by
the “smaller” assertions push(s′, t) and s f

→! s′. The elimination of such redun-
dancies is stable under enrichments of a state or deletions of other redundant
atoms. Therefore, if only redundant premises are deleted, priorities are irrelevant
for the correctness of the algorithm and only affect its complexity.

The concept of priorities for rules should be refined in an instance-based
manner, allowing different instances of a rule to have different priorities. That
would give one direct means of formalizing algorithms that would normally have
to be defined via priority queues. For instance, minimal spanning trees can be
computed by a two-rule program on top of union-find if rules referring to edges
in graphs could be processed in an order related to their associated costs.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, Berlin,
Heidelberg, 1996.

2. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with se-
lection and simplification. J. Logic and Computation, 4(3):217–247, 1994. Revised
version of Research Report MPI-I-91-208, 1991.

3. Leo Bachmair and Ashish Tiwari. Abstract congruence closure and specializations.
In David McAllester, editor, Automated Deduction – CADE-17, 17th International
Conference on Automated Deduction, LNAI 1831, pages 64–78, Pittsburgh, PA,
USA, June 17–20, 2000. Springer-Verlag.

4. William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. J. Logic Programming, 3:267–284,
1984.

5. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressions
problem. J. Association for Computing Machinery, 27(4):771–785, 1980.

6. H. Ganzinger. Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In Proc. 16th IEEE Symposium on Logic
in Computer Science, IEEE Computer Society Press, 2001. To appear.

7. R. Givan and D. McAllester. New results on local inference relations. In Principles
of Knowledge Representation and reasoning: Proceedings of the Third International
Conference (KR’92), pages 403–412. Morgan Kaufmann Press, 1992.

8. F. Henglein. Breaking through the n3 barrier: Faster object type inference. Theory
and Practice of Object Systems, 5(1):57–72, 1999. A preliminary version appeared
in FOOL4.

9. D. McAllester. Automatic recognition of tractability in inference relations. J.
Association for Computing Machinery, 40(2):284–303, 1993.

10. David McAllester. On the complexity analysis of static analyses. In A. Cortesi and
R. Filé, editors, Static Analysis — 6th International Symposium, SAS’99, LNCS
1694, pages 312–329, Venice, Italy, September 1999. Springer-Verlag.

15

