
Logical Algorithms

Harald Ganzinger1 and David McAllester2

1 MPI Informatik, D-66123 Saarbrücken, Germany, hg@mpi-sb.mpg.de
2 AT&T Labs-Research

Abstract. It is widely accepted that many algorithms can be concisely
and clearly expressed as logical inference rules. However, logic program-
ming has been inappropriate for the study of the running time of al-
gorithms because there has not been a clear and precise model of the
run time of a logic program. We present a logic programming model of
computation appropriate for the study of the run time of a wide variety
of algorithms.

1 Introduction

It is widely accepted that many algorithms can be concisely and clearly expressed
as logical inference rules. Unfortunately there is a fundamental problem in using
inference rules in the study of algorithms — the precise running time of inference
rules can depend on implementation details such as indexing. Run time is one of
the most fundamental properties of any algorithm. Textbooks on algorithms and
data structures begin by giving a model of computation — usually a random
access memory (RAM) machine — which formally defines the notion of run
time. Algorithms must be presented in a way that makes their execution on
the underlying model sufficiently clear that precise run time analysis is possible.
We will use the phrase algorithmic model of computation to mean a model of
computation that includes a well defined notion of run time. Here we present a
new algorithmic logic programming model of computation. We prove that the
abstract notion of run time in this model is implementable on a RAM machine
extended with constant time hash table operations. We also show how a variety of
algorithms that are not easily expressed in earlier algorithmic logic programming
models are naturally expressed in our new model.

McAllester recently introduced a pure logic programming algorithmic model.
In this model a program is simply a finite set of first order Horn clauses [5].
The program (set of rules) R defines a mapping from an input database D to an
output database R(D) where R(D) is all assertions derivable from the assertions
in D using the rules in R. The running time of R on input D is defined to be
the number of assertions in R(D) plus the number of “prefix firings” in the
computation. A prefix firing is an instance of a prefix of the antecedents of a
rule such that the prefix instance is true in the final closure R(D) (see [5] for
details). McAllester proved that an interpreter can be constructed for pure logic
programs such that the program can be executed on a RAM machine extended



with constant time hash table operations in time proportional to its abstract
run time.

A variety of efficient algorithms can be naturally expressed as pure logic
programs, especially dynamic programming algorithms in parsing and in the
static analysis of computer programs. However, many other problems appear
not to have efficient solutions as pure programs. For example, pure logic pro-
grams do not seem to support an efficient union-find algorithm. In the same
paper, McAllester also presents a more elaborate logic-programming model that
incorporates union-find specifically into the model. More recently Ganzinger and
McAllester [2] gave a more general algorithmic logic programming model, one
including rule priorities and deletion, which allows union-find to be implemented
efficiently, as well as many other algorithms not naturally covered by the pure
logic programming model.

While rule priorities and deletions greatly expand the power of the model,
they still fail to cover certain algorithms. Dijkstra shortest path, for example, still
appears to not have a natural representation. The contribution of this paper is
an algorithmic logic programming model with yet broader coverage. In particular
we allow different instances of the same rule to run at different priorities. We
prove that an interpreter (or compiler) can be constructed on a RAM machine
extended with constant time hash table operations such that the time taken to
run a program is proportional to the abstract notion of run time. As evidence for
the power of our model we demonstrate implementations of Dijkstra’s shortest
path and of minimal spanning tree.

If one ignores the abstract notion of run time, our logic programming model
is not particularly novel. The language is variant of bottom-up logic program-
ming. Bottom-up logic programming has been widely studied in the context of
deductive databases [13, 11, 6, 12]. Bottom-up logic programming is closely re-
lated to “memoing” or “tabling” for Prolog programs [10, 9, 1]. The bottom-up
language described here allows deletion. Our notion of deletion is superficially
similar to widely studied notions of negation in logic programming such as well
founded (stratified) programs [8, 4] and stable-model semantics [3]. Here, how-
ever, we use a “don’t-care” nondeterministic semantics which does not require
the program to be well founded and where the final database need not be stable.
Deletion in logic programming has also been modeled with linear logic [7]. The
linear logic approach is similar to ours but it has not been given an abstract
notion of run time executable on a RAM machine. Our notion of rule priorities
is similar to notions previously studied in the logic programming literature, e.g.,
[14]. But to our knowledge earlier work has not provided an abstract notion of
run time implementable on a RAM machine.

2 A Broad Algorithmic Logic Programming Model

To support a wide variety of algorithms it is necessary to support arithmetic.
To support arithmetic we define atomic formulas and terms with the following



grammar.

Φ ≡ P (τ1, . . . , τk) | N1 < N2 | N1 ≤ N2

τ ≡ H | N

H ≡ x | f(τ1, . . . , τk)

N ≡ i | n | N1 + N2 | N1 ∗ N2

This is two-sorted grammar with a sort for Herbrand terms (H) and a sep-
arate sort for integers (N). We allow predicates and functions to take either
sort as arguments although we assume that each predicate and function symbol
has a specified arity and a specified sort for each argument. In the expression
P (τ1, . . . , τk) we require that P be a predicate symbol of arity (number of ar-
guments) k and that each argument is of the appropriate sort for the predicate
P . A similar comment applies to the expression f(τ1, . . . , τk) in the grammar
for H . The function symbol f in the grammar for Herbrand terms should be
viewed as a data constructor. The precise semantics is defined below. Note that
there are two sorts of variables — Herbrand variables such as x in the grammar
for Herbrand terms and integer variables such as i in the grammar for integer
terms. In the grammar for integer terms, n ranges over any integer constant.

A ground term is a term not containing variables or arithmetic operations.
A numerical constant such as 5 is a ground term. A constant symbol such as c

is also a ground term where we view c as a function of no arguments. The term
f(c, 4) is also a valid ground term provided that f is a function of two arguments,
the first of sort Herbrand term and the second of sort integer. The term f(c, 2+3)
is not a valid ground term because it contains an arithmetic operation but the
term f(c, 5) is. A ground substitution is a mapping from variables to ground
terms where the value of a Herbrand variable must be a ground term of the form
f(τ1, · · · , τk) and the value of an integer variable must be an integer constant.
If τ is a term (as defined by the above grammar) and σ is a ground substitution,
then we define σ(τ) to be the result of replacing each variable by its value in
σ and then computing the result of all arithmetic operations. For example, if
σ maps x to c and i to 3, then σ(f(x, i + 4)) is the ground term f(c, 7). A
ground atom is either one of the constants T or F (representing “true” and “
false” respectively) or an expression of the form P (τ1, . . . , τk) where each τi is
a ground term. If Φ is an atomic formula as defined by the above grammar, and
σ is a ground substitution, then we define σ(Φ) to be the result of replacing each
variable by its value and then computing arithmetic operations. For example, if
σ maps i to 5 then σ(P (c, i)) is the ground atom P (c, 5) while σ(i < 7) is the
constant T and σ(7 < i) is the constant F .

Here we are interested in inference rules (logic programs) that support dele-
tion. An expression of the form del(A) where A is an atomic formula (as defined
by the above grammar) will be called a deletion assertion. We use del(A) rather
than ¬A to avoid any confusion with the semantic notion of logical negation. We
will use the term assertion to mean either a ground atom or a deletion assertion.
A deletion assertion del(A) is called ground if A is a ground atom. We define an
inference rule to be an expression of the form A1 ∧ . . . ∧ An ⇒ C where each



antecedent Ai is an assertion (atoms or deletion assertions) not involving addi-
tion or multiplication and the conclusion C is a finite set of assertions (atoms
or deletion assertions) such that every variable in C occurs in some antecedent
and all variables in a comparison antecedent, i.e., an antecedent involving < or
≤, must occur in some earlier antecedent. A state of the computation is a fi-
nite set of ground assertions. In the computational processes defined here, states
grow monotonically over time — the deletion of A is modeled by the addition
of del(A). An atom A is said to be visible in state S if A is the constant T or A

is a ground atom such that A ∈ S and del(A) 6∈ S, or A is a deletion assertion
and A ∈ S.

Deletion makes the behavior of rule sets nondeterministic. For example, con-
sider the following rules with deletion.

p ⇒ q q ⇒ s, del(q) q ⇒ w, del(q)

Suppose the initial database contains only p. The first rule fires adding the
assertion q. Now either the second or third rule can fire, but once one of them
fires the other is blocked because q is no longer visible. Hence the final state
is nondeterministically either {p, q, del(q), s} or {p, q, del(q), w}. When
viewing rules with deletions as algorithms, this nondeterminism is viewed as
“don’t care” nondeterminism — choices between equal priority rule invocations
are made arbitrarily and are not backtracked (priorities are discussed below).
As another example consider the following rules.

p ⇒ q q ⇒ del(q), w w ⇒ del(w), q

A naive interpretation of deletion might lead one to think that starting from the
state {p} we get an infinite loop switching between a state where q is visible and
a state where w is visible. But under the semantics used here, once an atom is
deleted it remains invisible forever. Running the above rules from the start state
{p} terminates with the state {p, q, del(q), w, del(w)}. Our notion of deletion
is quite different from semantic negation.

Priorities allow fine grain control for rules with deletion. We define a program

to be a pair 〈R, π〉 where R is a finite set of rules (as defined above) and π

maps each rule to an arithmetic expression constructed from integer variables
occurring in the first antecedent of the rule. We use the convention that smaller
integers represent higher priorities. For r ∈ R, and σ a ground substitution
interpreting at least the variables of the first antecedent of r, we let π(r, σ) be
the maximum of 1 and the integer σ(π(r)). Note that “priority 1” is the highest
possible priority. We say that r has fixed priority if π(r) is an integer constant,
and otherwise we say that r has variable priority .

Now consider a fixed program 〈R, π〉. An instance of r is a pair 〈r, σ〉 where
σ is a ground substitution defined on (only) the variables occurring in the an-
tecedents of r (and hence also defined on the variables in the conclusion). We
will say that the antecedents of the instance 〈r, σ〉 hold in a state S if, for each
antecedent Ai of r, we have that σ(Ai) holds in S. We say that an instance 〈r, σ〉
is pending at state S if r ∈ R; the antecedents of the instance hold in S; and



S 6= S∪σ(C) where C is the conclusion of r. We define the priority of a state S,
written π(S), to be the priority of the highest priority pending rule instance, i.e.
π(r, σ) for some pending instance 〈r, σ〉 such that there is no pending instance
〈r′, σ′〉 with π(r′, σ′) < π(r, σ). If there is no pending rule instance for S

then S is called saturated and we define π(S) to be (positive) infinity. We write

S
R, π
→ S′ if there exists some instance 〈r, σ〉 pending in S with π(r, σ) = π(S)

and where S′ = S ∪σ(C) where C is the conclusion of r. An 〈R, π〉-computation

is a sequence S0, S1, . . . , St where Si
R,π
→ Si+1. We also allow infinite computa-

tions of the form S0, S1, S2, . . . . A program 〈R, π〉 is said to terminate provided
that there are no infinite 〈R, π〉-computations. An 〈R, π〉-computation is called
complete if it is finite and the final state is saturated. If there exists a complete
〈R, π〉-computation from S0 to St then St is called an 〈R, π〉-saturation of S0.

We now define an abstract notion of running time for terminating programs.
Consider a rule r ∈ R. If r has n antecedents then for 1 ≤ j ≤ n we let rj denote
the jth antecedent of r. A prefix instance of r is a triple 〈r, i, σ〉 where 1 ≤ i ≤ n

and σ is a ground substitution defined on (only) the variables occurring in the
first i antecedents r1, . . . , ri. An instance of r as defined earlier is just a prefix
instance with i = n.

Definition of Abstract Running Time: Consider a complete finite
computation C starting in state S0 and ending in state St. A weak prefix

firing of r in C is a prefix instance 〈r, i, σ〉 of r such that for 1 ≤ j ≤ i

we have that either σ(rj) is T or σ(rj) ∈ St (note that elements of St

need not hold in St — St may contain both A and del(A)). A strong

prefix firing of r is a weak prefix firing 〈r, i, σ〉 such that there exists a
state S with π(S) ≥ π(r, σ) such that all the antecedents of the firing
hold in S, i.e., for all 1 ≤ j ≤ i we have that σ(rj) holds in S. An
antecedent instance of a rule r is an element of St that is an instance
of an antecedent of r. The abstract running time of the computation is
defined to be |S0| + Pf + (Pv + Av) log N where |S0| is the number of
assertions in S0, Pf is the number of strong prefix firings of fixed priority
rules; Pv is the number of strong prefix firings of variable priority rules;
Av is the number of antecedent instances of variable priority rules; and
N is the number of distinct priorities, i.e., the number of priorities of the
form π(r, σ) with σ(r1) ∈ St.

Without deletion there is no distinction between week and strong prefix fir-
ings — any weak prefix firing is strong by virtue of the final state St which as
infinite priority. Also note that an assertion which is asserted and then deleted,
both at priority higher than the priority of a rule r, does not participate in
strong prefix firings of r. However, if such an assertion matches an antecedent of
r then it counts as an antecedent instance no matter how quickly it is deleted.
As a simple case consider the rule P (x, y)∧ P (y, z)∧Q(y) ⇒ P (x, z) with fixed
priority 1 and assume there is no deletion. Any firing of the first two antecedents
corresponds to at most one firing of all three antecedents but many firings of
the first two antecedents may fail to correspond to any firing of all three. Note



that the (logically equivalent) rule P (x, y) ∧ Q(y) ∧ P (y, z) ⇒ P (x, z) is more
efficient, i.e., has fewer prefix firings. We rely on the programmer to write rules
in an efficient form given an understanding of the abstract notion of run time.
The main result of this paper is the following which extends the result in [2]
beyond fixed priority rules.

Theorem 1. For any terminating program 〈R, π〉 there exists an algorithm run-

ning on a RAM machine extended with constant time hash table operations such

that for any given initial state S0 the algorithm computes a complete 〈R, π〉-
computation from S0 in time proportional to the abstract running time of the

generated computation.

3 Examples

Our first example is a simple algorithm for determining whether a given input
graph is bipartite. A graph is bipartite if its nodes can be partitioned into two
subsets A and B such that edges do not connect any pair of nodes of the same
subset. The rules in figure 1 determine bipartiteness — the graph is bipartite
unless these rules assign both labels to the same node. Each rule is labeled with
a name and a priority. In this example all rules have fixed priority. Furthermore,
all rules have priority 1 except rule (B6) which has (lower) priority 2. Note that
in any state with priority 2 or greater we have that unlabeled(u) is visible if
and only if there is no assertion of the form labeled(u, k). Since all rules in the
example have fixed priority, the abstract running time is just the size of the input
data base plus the number of strong prefix firings of the rules. One can check
that every rule has at most O(e) (weak) prefix firings where e is the number of
edges in the input graph. Hence the abstract running time of the algorithm is
linear in the size of the input graph.

The Dijkstra shortest path algorithm is depicted in Figure 2 where the as-
sertion E(u, c, v) represents a directed edge from u to v with integer distance c.
Let e be the number of input edges. We assume all distances are non-negative
and that every source node is contained in at least one edge so that the number
of nodes is at most twice the number of edges. The rule set derives assertions
of the form dist(v, d) stating that the shortest path from the given source node
to v is no longer than d. Note that rule (D2) ensures that in any state with
priority 2 or greater we have at most one bound associated with each node. It
is easy to see that when the computation terminates each bound is equal to the
actual minimal distance — the procedure is correct. Furthermore, for any state
transition cause by an instance of (D3) on node v and distance d we have that
all future state transitions involve distances at least as large as d and so d is the
final distance, i.e., the true shortest distance to d. This implies that all distance
assertions are either of the form dist(v, 0), where v is the source node, or of the
form dist(u, d+c) such that some edge ending in u with cost c starts a node with
minimal distance d. This implies that there are at most O(e) distance assertions
ever asserted and that the final state (including all deleted assertions) is of size



E(v, u)
(B1,1)

E(u, v)

E(v, u)
(B2,1)

unlabeled(u)

labeled(u, k)
(B3,1)

del(unlabeled(u))

labeled(u, A)
E(u, v)

(B4,1)

labeled(v, B)

labeled(u, B)
E(u, v)

(B5,1)

labeled(v, A)

unlabeled(u)
(B6,2)

labeled(u, A)

Fig. 1. Checking for Bipartiteness.

O(e). Now consider the abstract running time of this procedure. When rule (D3)
derives a new distance, rule (D2) immediately deletes the larger distance. In a
strong prefix firing all antecedents must be simultaneously true at the same state.
This implies there is one strong prefix firing of (D2) for each state transition in-
duced by rule (D3). Each state transitions caused by rule (D3) corresponds to
a strong prefix firing of (D3) so the number of such transitions can be no larger
than the number of strong prefix firings of (D3). So the number of strong prefix
firings of (D2) is bounded by the number of strong prefix firings of (D3). To
bound the number of strong prefix firings of (D3) we show that in any strong
prefix firings of (D3) we must have that d is the unique shortest distance to the
node v. To see this consider any strong prefix firing of (D3) involving v and d.
By definition there must be a state S with π(S) ≥ d+2 such that dist(v, d) holds
in S. But for this rule set, if π(S) ≥ d + 2 then the next state transition must
use an instance of (D3) involving a distance d or larger. This implies that all
bounds derived after this point will also be of distance d or larger. So d must be
the final distance bound for v, i.e., the true shortest distance to v. So in strong
prefix firings of (D3) each node v is always associated with the same distance
d. This implies that the number of strong prefix firings of (D3) is O(e). So we
have that |S0| is O(e), Pf is O(e), Pv is O(e) and Av (the number of antecedent
instances of variable priority rules) is no larger than |St| which is O(e). So the
abstract complexity is O(e log e).

Figure 3 shows a logic programming implementation of union-find. The rules
maintain the invariant that the find relation is functional — for any x there is
at most one y such that find(x, y) is visible. Furthermore, any two nodes x and
y have the same find value if and only if they are equivalent in the smallest
equivalence relation defined by the union operations. Figure 3 is essentially the
implementation given in [2] and we do not give a detailed analysis here. This
implementation uses greedy path compression. The total abstract running time



source(v)
(D1,1)

dist(v, 0)

dist(v, d)
dist(v, d′)
d′ < d

(D2,1)

del(dist(v, d))

dist(v, d)
E(v, c, u)

(D3,d+2)

dist(u, d + c)

Fig. 2. Dijkstra Shortest Path.

of all the union-find rules in figure 3 is O(n log n) where n is the total number of
union operations in the computation, i.e., the total number of union assertions,
including deleted assertions, in the final state. Furthermore, for any fixed node
x, the number of nodes y such that find(x, y) is ever asserted is at most log n

(every time the find of a node changes the size of that node’s equivalence class
at least doubles). It is possible to implement a lazy path compression version of
union-find that has inverse-Ackermann running time but the implementation is
somewhat more involved and the interface to the rules is more complex1

Figure 4 gives an algorithm for computing a minimum spanning tree of a
connected undirected graph. These rules take a set of input arcs of the form
E(x, c, y) which states that there exists an undirected arc between x and y

with cost c. The rules produce output arcs of the form out(x, c, y). The rules
use the union-find module given in figure 3 to maintain an equivalence relation
on nodes where x and y are equivalent if and only if there exists a path in
the output arcs from x to y. The rules also maintain the invariant that the
set of output edges form a subset of some minimum spanning tree. To see this
consider an invocation of rule (ST2) with first antecedent E(x, c, y). The edge
in the first antecedent connects two unequal nodes and is minimum cost over all
edges connecting nonequivalent nodes. By the induction hypothesis there exists
a minimum spanning tree containing all existing output edges. Let S be such a
minimum spanning tree. If S contains the edge E(x, c, y) then this invocation of
the rule preserves the invariant. If S does not contain E(x, c, y) then consider
the path in S from the equivalence class of x to the equivalence of y under
the equivalence relation defined by the current output edges where each current
equivalence class is viewed as a single node. Remove any edge in this path from S.
The resulting graph has two components — one containing x and one containing
y. Now add the edge E(x, c, y). The result is a spanning tree of cost no larger
than the original. This new spanning tree is also minimum. Hence there exists
a minimum spanning tree containing E(x, c, y) and the invariant is maintained.
The output edges of the final state must then be a minimum spanning tree of
the entire input graph.

1 The rules in figure 3 take union assertions as input and produce find assertions as out-
put. An inverse-Ackermann version requires on-demand find requests as additional
input.



union(x, y)
(UF1,1)

nofind(x)
nofind(y)

find(x, y)
(UF2,1)

del(nofind(x))

find(x, y)
find(y, z)

(UF3,1)

find(x, z)
del(find(x, y))

union(x, y)
find(x, z)
find(y, z)

(UF4,1)

del(union(x, y))

nofind(x)
(UF5,2)

find(x, x)
size(x, 1)

union(x, y)
find(x, x′)
find(y, y′)

(UF6,2)

merge(x′, y′)

merge(x, y)
size(x, s1)
size(y, s2)
s1 < s2

(UF7,1)

del(merge(x, y))
find(x, y)
del(size(y, s2))
size(y, s1 + s2)

merge(x, y)
size(x, s1)
size(y, s2)
s2 ≤ s1

(UF8,1)

del(merge(x, y))
find(y, x)
del(size(x, s1))
size(x, s1 + s2)

Fig. 3. Union-Find

Now consider the abstract running time of the algorithm shown in figure 4.
Let n be the number of nodes and e be the number of edges in the input graph.
The rules can generate at most n − 1 union assertions before all nodes become
equivalent. Since there are at most n− 1 union assertions, the abstract running
time of the union-find rules is O(n log n). In any state of priority 2 or greater
there is at most one find value for each node. Furthermore, for a given x there
can be at most log n values y such that find(x, y) is ever asserted. This implies
that there can be at most O(e log n) strong prefix firings of rule (ST1). Since this
rule has a fixed priority, its abstract running time is O(e log n). Finally, there are
at most e prefix firings and at most e antecedent instances of rule (ST2) and at
most e different priorities associated with this rule. Hence the abstract running
time of rule (ST2) is no larger than O(e log e). So we get a total abstract running
time of O(e log e).



E(x, c, y)
find(x, z)
find(y, z)

(ST1,3)

del(E(x, c, y))

E(x, c, y)
(ST2,c+4)

union(x, y)
out(x, c, y)

Fig. 4. Minimum Spanning Tree

4 Proof of Theorem 1

We first use a series of run-time preserving rule transformations to put rules in
a standard form. First we show that it suffices to consider rules with at most
two antecedents and with no more than one assertion in the conclusion. We
start by replacing the given priority assignment π by the assignment π′ where
π′(r) = 2 ∗ π(r) + 2. In the resulting program every priority is even and no rule
has priority 2. Now consider a rule r of the form A1 ∧ · · · ∧An ⇒ {Φ1, . . . , Φm}.
We replace r by the following where P1, P2, . . . , Pn, and Q are fresh predicate
symbols and x1, . . . , xki

are the variables occurring in the first i antecedents.
The predicate Pi represents the relation defined by the first i antecedents, and
del(Pi(x1, . . . , xki

)) represents the statement that some antecedent has been
deleted.

A1 ⇒ P1(x1, . . . , xk1
)

del(A1) ⇒ del(P1(x1, . . . , xk1
))

P1(x1, . . . , xk1
) ∧ A2 ⇒ P2(x1, . . . , xk2

)
P2(x1, . . . , xk2

) ∧ del(P1(x1, . . . , xk1
)) ⇒ del(P2(x1, . . . , xk2

))
P2(x1, . . . , xk2

) ∧ del(A2) ⇒ del(P2(x1, . . . , xk2
))

...
Pn−1(x1, . . . , xk1

) ∧ An ⇒ Pn(x1, . . . , xk2
)

Pn(x1, . . . , xk2
) ∧ del(Pn−1(x1, . . . , xk1

)) ⇒ del(Pn(x1, . . . , xk2
))

Pn(x1, . . . , xk2
) ∧ del(An) ⇒ del(Pn(x1, . . . , xk2

))
Pn(x1, . . . , xkn

) ⇒ Q(x1, . . . , xkn
)

Q(x1, . . . , xkn
) ⇒ Φ1

...
Q(x1, . . . , xkn

) ⇒ Φm

If some antecedent of the original rule r is of the form del(Bj) then the above
rules include rules with double deleted antecedents, i.e., rules with antecedents
of the form del(del(Bj)). Rules with double deletion antecedents are simply
thrown out — they are not included in the result of the transformation (dele-
tion assertions can not be deleted). Rules containing deletions of arithmetic
comparisons, e.g., del(i < j) are also ignored. All rules with conclusions of the



form del(Pi(x1, . . . , xki
)) or Φj have priority 1; rules with conclusions of the

form Pi(x1, . . . , xki
) have priority π(r) − 1, and the rule Pn(x1, . . . , xkn

) ⇒
Q(x1, . . . , xkn

) has priority π(r). In a computation under the transformed pro-
gram, states of the original computation correspond even priority states of the
transformed program. Odd priority states of the transformed program are used
to compute the next even-priority state. We leave it to the reader to verify that
the sequence of even priority states, restricted to the predicates of the original
program, yields a valid computation of the original program.

We also have to argue that the abstract running time of the transformed
program is no more than a constant factor more than the abstract running time
of the original program. We do this by charging each prefix firing of the trans-
formed program to some prefix firing of the original program. Since the deletion
rules run at the highest possible priority, if Pi(x1, . . . , xki

) ever holds in any
state then there exists a prefix firing in the even-state computation correspond-
ing to this assertion. This implies that a firing of a rule whose conclusion is of the
form del(Pi(x1, . . . , xki

)) can be charged to the prefix of r corresponding to the
assertion being deleted in the conclusion. We also have that if Pi(x1, . . . , xki

)
holds in a state with priority π(r) − 1 then the corresponding prefix firing of r

must hold in that state. This implies that each firing of a rule whose conclusion
is of the form del(Pi(x1, . . . , xki

)) corresponds to a prefix firing of the original
rule. Each firing of Pn(x1, . . . , xkn

) ⇒ Q(x1, . . . , xkn
) or a rule with a conclu-

sion of the form Φj corresponds to a full firing of the original rule. A similar
argument can be used to show that the number antecedent instances of variable
priority rules of the new program is no more than a constant times the number
of antecedent instances of variable priority rules of the old program.

We have now shown that we can assume without loss of generality that each
rule contains at most two antecedents and only a single conclusion. We now
simplify the rules further. Starting with a set of rules with at most two an-
tecedents and only a single conclusion replace the priority assignment π by π′

where π′(r) = π(r) + 1. Consider a rule r with two antecedents A1 ∧ A2 ⇒ B.
The definition of an inference rule requires that any variable in a comparison an-
tecedent occurs in some earlier antecedent. This implies that the first antecedent
is not a comparison. We first consider the case where the second antecedent is
also not a comparison — the case where the second antecedent is a comparison
is discussed below. If the second antecedent is not a comparison we replace r

by the following set of rules where x1, . . . , xn are all variables occurring in A1

but not A2, y1, . . . , ym are all variables that occur in both A1 and A2, and
z1, . . . , zk are all variables that occur in A2 but not A1. The predicates P , and
Q, and the function symbols f , g, and h are all fresh.

A1 ⇒ P (f(x1, . . . , xn), g(y1, . . . , ym))
del(A1) ⇒ del(P (f(x1, . . . , xn), g(y1, . . . , ym)))

A2 ⇒ Q(g(y1, . . . , ym), h(z1, . . . , zk))
del(A2) ⇒ del(Q(g(y1, . . . , ym), h(z1, . . . , zk)))

P (f(x1, . . . , xn), g(y1, . . . , ym)) ∧ Q(g(y1, . . . , ym), h(z1, . . . , zk)) ⇒ B



The last rule is given the same priority as the original and the other rules are
given priority one. The states with priority greater than one correspond to the
states of the original rule set. We can charge the firings of the rules with a single
antecedent of the form A1, A2, del(A1), or del(A2) to the rules asserting A1 or
A2.

We can now assume without loss of generality that every rule is either of the
form A ⇒ B where A is not a comparison, or of the form A1 ∧ A2 ⇒ B where
A1 is not a comparison, and either A2 is a comparison with all variables of A2

occurring in A1, or else the rule is of the form P (v, v′)∧Q(v′, v′′) ⇒ B where the
three terms v, v′, and v′′ do not share any variables. These rules will be called
unary rules , comparison rules , and binary rules respectively.

We now define a firing tuple to be a tuple of the form 〈r, A1〉 or 〈r, A1, A2〉
where r is a rule and A1 is a ground assertion matching the first antecedent
of r and A2 is a ground assertion matching the second antecedent of r. To
implement the saturation algorithm we maintain a global priority queue Q of
not-yet-processed firing tuples and a set R of already-processed firing tuples.
The priority of a tuple involving r and A1 is defined to be π(r, σ) where σ

is the substitution resulting from matching the first antecedent of r with A.
The algorithm iteratively removes and processes tuples from Q. In addition, for
each binary rule r of the form P (v, v′) ∧ Q(v′, v′′) ⇒ B, and for certain ground
terms t we maintain a data structure W(r, t) representing potential full firings
of r of the form P (s, t), Q(t, u). More specifically, W(r, t) is an alternating
sequence of P -blocks and Q-atoms where a P -block is a possibly empty set of
ground P -atoms of the form P (s, t) matching P (v, v′) and a Q-atom is an ground
assertion of the form Q(t, u) matching Q(v′, v′′) and any given assertion appears
in W(r, t) in at most one place. The sequence W(r, t) starts and ends with
(possibly empty) P -blocks. Atoms in the last P -block are called completed . The
priority of an element P (s, t) of a P -block of W(r, t) is π(r, σ) where σ is the
corresponding substitution. Each nonempty P -block is associated with a unique
element of highest priority with ties brocken arbitrarily. We will refer to this
selected element simply as “the” highest priority element of the P -block. The
saturation procedure maintains the following Q invariant which determines the
set of tuples in Q as a function of the current state S, the set R of processed
firings, and the state of the data structures of the form W(r, t).

Q-Invariant: The queue Q contains a pair of the form 〈 r, A〉 if and only
if A is visible in the current state; r is a rule in the program whose first
antecedent matches A; and the pair 〈 r, A〉 is not contained on the list R.
An triple of the form 〈 r, P (s, t), Q(t, u)〉 is on the queue Q if and only if
P (s, t) and Q(t, u) are both contained in the data structure W(r, t) and
P (s, t) is a highest priority element of the P -block immediately preceding
the Q-assertion Q(t, u).

Procedure Assert(A)
If A is not visible in S do the following
1. Add A to S.



2. If A is of the form del(B) then remove B and tuples involving B from Q
and all data structures of the form W(r, t). For each Q-assertion removed
from a data structure of the form W(r, t) merge the two adjacent P -blocks
updating Q as necessary to maintain the Q-invariant.

3. For each rule r such that A matches the first antecedent of r add the pair
〈r, A〉 to Q.

4. For each binary rule r such that A matches the second antecedent of r add
A as a new Q-atom at the end of W(r, t), where t is the first argument of
A, followed by a new empty P -block (initialize W(r, t) with an empty P -
block if necessary). If the P -block preceding Q is non-empty add the triple
〈r, B, A〉 to Q where B is the highest priority P -assertion in the P -block
preceding Q.

Saturation Procedure Let D be a given initial database.
1. Initialize Q and the state S to be empty.
2. Assert each element of D.
3. While Q is not empty do the following:

(i) Remove the highest priority tuple z on Q and add it to R.
(ii) If z is 〈r, A〉 for unary r assert the corresponding conclusion of r.
(iii) If z is 〈r, A〉 for a comparison rule r assert the corresponding conclusion
of r provided that the comparison holds.
(iv) If z is 〈r, P (s, t)〉 where r is a binary rule then add P (s, t) to the first
P -block of W(r, t) (initialize W(r, t) if necessary). Update Q so as to
maintain the Q-invariant over this change to W(r, t).
(v) If z is 〈r, P (s, t), Q(t, u)〉, assert the corresponding conclusion of r

and move P (s, t) from the P -block preceding Q(t, u) to the one following
and update Q so as to maintain the Q-invariant.

It is easy to check that the saturation procedure is sound — each state
transition corresponds to the invocation of a highest priority rule instance. It is
also easy to check that the procedure does not terminate until a saturated state
has been reached. We now consider the running time of the saturation procedure.
We assume that all expressions are “interned”, also known as “hash consed”, so
that the same expression is always represented by the same pointer to memory.
This allows equality testing to be done in unit time. Assuming that hash table
operations take unit time, matching and instantiating a given pattern can also
be done in unit time. Computing the priority of a pair 〈r, σ〉 or 〈r, A〉 can
also be done in unit time. Let k be the lowest priority (largest number) of any
fixed priority rule in the given program. We implement Q as a pair of a priority
queue for items of priority k or less and a Fibonacci heap for higher priorities.
For priorities of k or less the operations of insertion, deletion, and merging
of queues all take unit time. For larger priorities the Fibonacci heaps support
O(1) amortized insertion and queue merger and O(log N) amortized removal and
finding the highest priority element.2 The P -blocks are implemented as doubly
2 The amortized time for removal and find-min operations in fibonacci heaps is usually

given as O(log n) where n is the number of elements on the queue. By using at



linked lists for fixed priority rules and as Fibonacci heaps for variable priority
rules.

First we show that the total amount of time spent inside the assert proce-
dure is O(|D| + Pf + (Pv + Av) log N). Each call to the assert procedure either
corresponds to an element of D or to a unique strong prefix firing corresponding
to the value of z in step (i) of the saturation procedure. Since we are assuming
that expressions are interned we can determine whether an expression is already
a member of S by checking for an appropriate field in the data structure for that
assertion. So asserting an expression that is already visible takes O(1) time. For
a new assertion we consider the cost of each step in the assert procedure. Step 1
involves simply setting the value of an appropriate field in the data structure for
the assertion and takes O(1) time. To analyze the cost of removing B in step 2
we note that for any given assertion B and rule r there is at most one triple of the
form 〈r, A, B〉 and at most one triple of the form 〈r, B, A〉 in Q. This implies
that the total number of removals in step 2 is O(1). For variable priority rules, a
single removal costs O(log N) (amortized) including the time spent merging P -
blocks and updating Q to maintain the Q-invariant. However, a single assertion
can only be removed once and hence the total time spent removing instances of
antecedents of variable priority rules is O(Av log N). So the total time in step 2
is O(|D|+ Pf + Pv + Av log N). We now consider step 3 of the assert procedure.
Since Fibonacci heaps support O(1) time (amortized) insertions, the total time
in step 3 is O(D + Pf + Pv). A similar observation applies to step 4.

Finally we consider the time spent executing the saturation procedure not
counting time spent inside calls to assert. The time for steps 1 and 2 is O(D).
Each iteration of step 3 corresponds to a strong prefix firing of some rule. Step
(i) of 3 takes O(1) time if the rule involved is constant priority and O(log N)
time if the rule involved is variable priority. So the total time taken by the
removals in substep (i) is O(Pf + Pv log N). Substeps (ii) and (iii) are O(1)
time per iteration. We now consider substep (iv). Insertion into a P -block takes
O(1) time (amortized). This insertion may involve a removal and an insertion
into Q in order to maintain the Q-invariant. The insertion takes O(1) but in
the case where the rule is variable-priority the removal can take O(log N) time.
Fortunately, in this case the prefix firing corresponding to the value of z is a
variable-priority firing. So the time taken in step (iv) is O(Pf + Pv log N). A
similar analysis holds for substep (v). We now have the total execution time is
O(|D| + Pf + (Pv + Av) log N).

5 Conclusion

We have given a broad scope algorithmic logic programming model of computa-
tion. The increased scope of the model over those given in [5] and [2] has come
at the cost of some increased complexity in both the semantics of the language

most one element for each priority, where that element is a doubly linked list of
“subelements”, we can implment removal and find-min in O(log N) amortized time
where N is the number of distinct priorities.



and in the associated notion of abstract running time for logic programs. We
are hopeful, however, that this language has sufficient scope to cover the ma-
jority of algorithms found in standard texts. It would indeed be interesting to
write an algorithms text based on an algorithmic logic programming model of
computation.
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