
New Directions in Instantiation-Based Theorem Proving

Harald Ganzinger, Konstantin Korovin

MPI Informatik, D-66123 Saarbrücken, Germany
E-mail: {hg|korovin}@mpi-sb.mpg.de

Abstract

We consider instantiation-based theorem proving
whereby instances of clauses are generated by cer-
tain inferences, and where inconsistency is detected by
propositional tests. We give a model construction proof
of completeness by which restrictive inference systems
as well as admissible simplification techniques can be
justified. Another contribution of the paper are novel
inference systems that allow one to also employ decision
procedures for first-order fragments more complex than
propositional logic. The decision procedure provides for an
approximative consistency test, and the instance generation
inference system is a means of successively refining the
approximation.

1. Introduction

By Herbrand’s theorem and by compactness of first-
order logic, a set of first-order clauses is unsatisfiable if, and
only if, a finite set of ground instances of that set is propo-
sitionally unsatisfiable. Most methods for automated theo-
rem proving interleave, in one way or another, the two pro-
cesses: (i) the enumeration of suitable instances of clauses,
and (ii) a demonstration of their propositional unsatisfiabil-
ity. For instance, a resolution inference can be viewed as
consisting of two steps. First the unifier of complementary
literals is applied to two parent clauses to which, then, the
propositional cut rule is applied to generate the resolvent.
The resolvent is kept, but the instances of the premises of
the inference are discarded.

It has been argued that this fine-grained interleaving
of instance generation and propositional unsatisfiability
checking might not always be appropriate. Lee & Plaisted
(1992) have observed that the duplication and recombi-
nation of literals in the cut step of resolution often leads
to duplication of work in subsequent inferences. It has
also been argued that with the remarkable improvement in
the performance of Sat procedures in recent years proposi-
tional unsatisfiability checking should be handled by calling

upon such procedures, cf. (Lee & Plaisted 1992, Plaisted
& Zhu 2000, Hooker, Rago, Chandru & Shrivastava 2002),
among others. The theorem proving methods described in
these papers generate successively larger ground instances
of the clauses and employ a Sat checker to test their sat-
isfiability. The set of ground clauses generated at each
step of the process can be viewed as a sound propositional
approximation of the given first-order problem. Solving
safe approximations (relaxations) of difficult problems is a
standard technique for restricting search in many areas, in-
cluding combinatorial optimization, and program analysis
and verification. For instance the program analysis method
proposed in (Jackson 2000) and (Jackson 2002) advocates
a form of bounded model checking based on generating
propositional approximations of first-order program spec-
ifications.

Some work in instantiation-based theorem proving is tar-
geted at interleaving propositional methods and instance
generation without recombination of clauses. The Davis-
Putnam-Loveland-Logeman procedure (Davis & Putnam
1960, Davis, Logemann & Loveland 1962) has been one
of the main methods for Sat solving. Baumgartner (2000)
exploits that fact and combines instance generation with
Davis/Putnam-style satisfiability testing. Billon (1996) and
Letz & Stenz (2001) combine instance generation based
on resolution with an efficient tableau data structure (with-
out rigid variables) for satisfiability checking. In other ap-
proaches the interleaving is based on semantics, and infer-
ences are guided by propositional models. Plaisted & Zhu
(2000) compute inferences that reduce the minimal coun-
terexample to the perfect model of the set of ground in-
stances computed so far. Hooker et al. (2002) consider so-
called conflicts to a certain model hypothesis, again derived
from the current propositional abstraction.

Nevertheless one can say that instantiation-based theo-
rem proving has been much less studied than the classical
methods of resolution and semantic tableaux. Far less is
known regarding how instance generation can be effectively
restricted and guided, how global redundancies can be elim-
inated, and how effective and fair saturation strategies can
be efficiently implemented. This paper gives new answers



to some of these questions by studying some fundamental
inference systems for instance generation. We prove the
completeness of these calculi by showing that they have the
property of counterexample reduction for certain candidate
models. This implies that redundancy elimination based
on implication from smaller clauses is admissible similar
to what is the case for most versions of resolution infer-
ence systems. In most resolution provers, the deductive
core accounts for a rather small part of the system, while
most of the complexity of the prover derives from the im-
plementation of powerful, yet efficient redundancy elimina-
tion and simplification techniques. The degree of sophis-
tication of the latter methods usually distinguishes experi-
mental prototypes from practically useful tools. With our
results instance generation-based provers can now also be
equipped with similarly powerful techniques for simplifi-
cation. The inference systems presented here have been in-
spired by the work of Hooker et al. (2002). Compared to the
results of the latter paper, our inference systems are more
flexible (we also allow for hyper-inferences), are compati-
ble with many of the standard simplification techniques, and
we identify more general criteria for when instance gener-
ation processes are fair (and thus refutationally complete).
We also believe that our completeness results, involving re-
dundancy elimination criteria, are correct, whereas the main
redundancy elimination criterion in Hooker et al. (2002)
destroys refutational completeness of the system (see Sec-
tion 5 below).

A second contribution of this paper is directed at em-
ploying decision procedures for first-order fragments more
complex than propositional logic. Instance generation as it
has been considered previously ships ground clauses to a
Sat solver. We describe methods whereby also non-ground
clauses can be forwarded to a decision procedure for a de-
cidable non-ground clausal fragment. The intended benefit
of this is that fewer instances have to be generated explic-
itly as the decision procedure can handle more precise ab-
stractions of the given clauses. Our preliminary results pre-
sented in this paper may open up novel ways of fruitfully
using the large number of decision procedures for known
decidable fragments—see (Fermüller, Leitsch, Tammet &
Zamov 1993, Börger, Grädel & Gurevich 1997, Fermüller,
Leitsch, Hustadt & Tammet 2001) for overviews—also in
situations where problems fall outside the respective frag-
ment.

Technically this paper makes heavy use of model con-
struction methods for counterexample reducing inference
systems as developed in (Bachmair & Ganzinger 1994,
Bachmair & Ganzinger 2001) and applied, among others, in
(Nieuwenhuis & Rubio 1995, Degtyarev & Voronkov 2000,
Hähnle, Murray & Rosenthal 2001). We have attempted at
keeping the paper self-contained and hope that the reader
will not find the proofs too sketchy in some places.

2. Preliminaries

We shall use standard terminology for first-order clause
logic. In particular, a clause is a possibly empty multiset
of literals denoting their disjunction and is usually written
as L1 ∨ . . . ∨ Ln; a literal being either an atomic formula
or the negation thereof. We say that C is a subclause of D,
and write C ⊆ D, if C is a submultiset of D. Variables
are usually denoted by x, y, and z, whereas, unless indi-
cated otherwise, letters a, b and c denote constants. If L is
a literal, L denotes the complement of L.

Substitutions are defined as usual and will be denoted by
letters ρ, σ, τ , and θ. A substitution is called a proper in-
stantiator of an expression (a literal or clause) if at least one
variable of the expression is mapped to a non-variable term.
Renamings are injective substitutions, sending variables to
variables.1 The result of applying a substitution σ to an ex-
pression E is denoted Eσ. Two clauses are variants of each
other if one can be obtained from the other by applying a re-
naming. By l we denote the (strict) subsumption ordering
on clauses defined as follows: C l D iff Cτ ⊆ D for some
substitution, but Dρ ⊆ C for no substitution ρ. In that case
we say that C strictly subsumes D. We call C more specific
than D if Dτ = C for some proper instantiator τ of D.
Note that if C is more specific than D, then D strictly sub-
sumes C, but the converse is not true in general, not even
in the case of a single literal. In fact p(x, y) l p(x, x), but
p(x, x) is not more specific than p(x, y).

Instance-based theorem proving requires us to work with
a refined notion of instances of clauses we call closures. A
closure is a pair consisting of a clause C and a substitution
σ written C · σ. We work modulo renaming, that is, do not
distinguish between closures C ·σ and D ·τ for which C is a
variant of D and Cσ is a variant of Dτ . Note the distinction
between the two notations Cσ and C · σ. The latter is a
closure representing the former which is a clause. A clause
generally has more than one representation by closures. A
closure is called ground if it represents a ground clause.

Inference systems and completeness proofs will be based
on orderings on ground closures. A closure ordering is any
ordering � on closures (modulo alpha renaming) that is to-
tal and well-founded. In addition we require that C · σ �
D · τ whenever Cσ = Dτ and Cρ = D for some proper
instantiator ρ of C. Hence when we compare two ground
closures C · σ and D · τ where the former is a more spe-
cific representation than the latter of the same ground clause
then C · σ is necessarily greater than D · τ . For example,
we have (p(x) ∨ q(y)) · [a/x, b/y] � (p(a) ∨ y(z)) · [b/z]
where both ground clauses denoted are the same, but the

1Some papers in the area, including (Hooker et al. 2002), allow re-
namings to be non-injective. A substitution that is not a renaming in this
non-standard sense is a proper instantiator according to our definition. We
prefer to work with the standard concepts of subsumption and renaming.



clause p(x) ∨ q(y) is less specific than p(a) ∨ y(z). When
the clauses represented are different, we may order them ar-
bitrarily. A [ground] closure C · σ is called a [ground]
instance of a set of clauses S if C is a clause in S, and
then we say that the closure C · σ is a representation (of the
clause Cσ) in S. The representation is said to be minimal
if there exists no other representation of Cσ in S which is
smaller in the closure ordering.

The (Herbrand) interpretations we deal with are some-
times partial, given by consistent sets I of ground literals.
A ground literal L is called undefined in I if neither L nor
L is in I . I is called total if for each ground literal I either
contains the literal or its complement. A ground clause C
is called true (or valid) in a partial interpretation I , writ-
ten I |= C, if C is true in each total extension of I , and is
called false in I , otherwise. Truth values for closures are
defined from the truth values of the clauses they represent.
Implication (also denoted by |=) between (sets of) clauses
is defined as usual based on this definition of validity.

3. Completeness of Resolution-Based Instanti-
ation

This section gives a simple model-construction proof
of the fact that the combination of generating instances
based on resolution together with propositional consistency
checking is refutationally complete. Resolution-based in-
stance generation is given by this inference rule (in which
the variables in the two premises are assumed to be renamed
apart):

Inst-Gen
C ∨ L D ∨ K

(C ∨ L)σ (D ∨ K)σ

where σ is the mgu of L and K such that σ is a proper
instantiator of L or of K.

The inference has two resolvable premises. Yet it does not
generate the resolvent, but rather the two clauses obtained
from applying the unifier to the premises. Clearly the in-
ference is sound, and the two conclusions imply proposi-
tionally the resolvent (C ∨ D)σ of the two premises. That
suggests if a set of clauses is closed under Inst-Gen, propo-
sitional reasoning might suffice to test satisfiability. This
result will be stated and proved below. To formalize what
is meant by propositional reasoning, let ⊥ denote both a
distinguished constant and the substitution that maps each
variable to ⊥. If S is a set of clauses, by S⊥ we denote all
ground clauses obtained by applying ⊥ to each clause in S.

Suppose that S is a set of clauses such that S⊥ is sat-
isfied in a model I⊥. Let � be a closure ordering. By
induction over � we associate an interpretation IS , called
candidate model, with S that is intended to be a model of

“many” ground instances of S. Suppose, as an induction
hypothesis, that sets of literals εD have been defined for
the ground closures D smaller than C in �, and let IC de-
note the set

⋃
C�D εD. (IC is intended to be a model for

the closures smaller than C, and εC is an increment to also
make C become true in the final interpretation. Only if S
is closed under sufficiently many inferences will these con-
structions, however, achieve the desired effect.) Suppose
that C = C ′ · σ. Then define εC = {Lσ}, if

(i) C is false in IC ;
(ii) C is the minimal representation of C ′σ in S; and

(iii) L is a literal in C ′ such that Lσ is undefined in IC , and
L⊥ ∈ I⊥.
(In that case we say that Lσ is produced by C.) If no such
L can be found, we define εC = ∅. If more than one choice
for L can be made, we choose one arbitrarily. Finally define
IS to be the set

⋃
C εC . We say that a ground closure D is

a counterexample (to IS) if D false in IS . Obviously, IS

depends on � so that we will also write I�

S if � is not clear
from the context. In (iii) we generalize the truth value of L⊥
in I⊥ to ground instances Lσ of L, where, according to the
closure ordering, more specific representations of Lσ are
considered first. In that regard our construction is closely
related to the model construction of Letz & Stenz (2001).

THEOREM 3.1 Let S be a set of clauses closed under Inst-
Gen. Then S is satisfiable if, and only if, S⊥ is satisfiable.

Proof. Suppose S⊥ is satisfiable. We show that the can-
didate model IS is a model of all ground instances of S.
Suppose, for the purpose of deriving a contradiction, that
there exists a total extension I of IS that is not a model
of S, and let D = D′ · σ be the minimal ground instance
of S that is false in I . As D is not productive (otherwise
it would be true) there exists no literal L′ in D′ such that
L′σ is undefined in ID and L′⊥ ∈ I⊥. On the other hand,
L⊥ ∈ I⊥ for some L in D′ as D′⊥ is true in I⊥. Let us
choose one such L, thus D′ = L ∨ D′′. We conclude that
Lσ is in ID. Therefore, some ground instance C ′ · τ of S
produces Lσ into IS ; hence C ′ = C ′′ ∨ K, Kτ = Lσ, and
K⊥ ∈ I⊥. Consider the inference by Inst-Gen from the
premises C ′′ ∨ K and D′′ ∨ L, with ρ the mgu of K and
L, generating the clauses (C ′′ ∨K)ρ and (D′′ ∨L)ρ. Also,
let σ′ be a substitution for which (C ′′ ∨ K)ρσ′ = C ′τ and
(D′′ ∨ L)ρσ′ = D′σ.

We first show that ρ is a proper instantiator of L or K
so that the inference is legal. If ρ neither instantiates L nor
K properly, K⊥ = L⊥, but both K⊥ and L⊥ are in I⊥
which is impossible. Suppose that ρ is a proper instantiator
of a variable in K. Then, as S is closed under Inst-Gen,
(C ′′ ∨ K)ρ · σ′ is smaller than C ′ · τ so that C ′ · τ would
not be the most specific representation of C ′τ , and hence
would not be productive, which is a contradiction. On the
other hand, if ρ is a proper instantiator of a variable in L,



then (D′′ ∨L)ρ · σ′ is a smaller closure than D and false in
I , contradicting the minimality of D as a counterexample.
�

The significance of this theorem is that instance genera-
tion with Inst-Gen, together with propositional satisfiabil-
ity checking, is a refutationally complete proof method for
first-order clauses. Although this result follows from sev-
eral results proved in the literature it is somewhat surprising
that, to our knowledge, up to now it has not been formulated
in this basic form.

4. Redundancy Elimination

The proof of Theorem 3.1 shows that Inst-Gen has a
property related to the reduction property for counterexam-
ples as formally defined in (Bachmair & Ganzinger 2001).
This suggests that the standard notion of redundancy (based
on implication from smaller clauses or closures) might be
compatible with Inst-Gen in the sense that inferences from
redundant clauses can be ignored. Standard redundancy in
our case is to be defined as follows. Let S be a set of clauses
and C a ground closure. C is called redundant in S if there
exist closures C1, . . . , Ck that are ground instances of S
such that, (i) for each i, C � Ci, and (ii) C1, . . . , Ck |= C.
A clause C (possibly non-ground) is called redundant in S
if each ground closure C · σ is redundant in S. An infer-
ence from premises Ci and with a unifier θ (thus deriving
conclusions Ciθ) is redundant in S if for any substitution
σ grounding all the Ciθ there exists an index i0 such that
Ci0 · θσ is redundant in S. A set of clauses S is called sat-
urated up to redundancy wrt. Inst-Gen if all inferences in
Inst-Gen from premises in S are redundant in S.

THEOREM 4.1 Let S be a set of clauses saturated up to re-
dundancy under Inst-Gen. Then S is satisfiable if, and only
if, S⊥ is satisfiable.

Unfortunately this result does not follow directly from
Theorem 3.1 together with the general results in (Bachmair
& Ganzinger 2001). The reason is that Inst-Gen inferences,
as required in the proof of Theorem 3.1, do not always re-
duce counterexamples to the candidate model. The two con-
clusions Cσ and Dσ of needed inferences are instances of
their respective premises C and D where one represents a
counterexample and the other, if added to the set of clauses,
would become productive in the model construction. De-
pending on the unifier only one of the two conclusions
needs to be smaller than its corresponding premise. There-
fore in some cases a smaller productive clause rather than
a smaller counterexample will be computed. The theorem
will be a consequence of the completeness of an even more
restrictive inference system to be defined below.

What is redundant and what is not depends on the closure
ordering that is chosen. Tautologies are redundant for any
such choice. In practical applications one would typically
choose an ordering in which proper subclosures of a clo-
sure (the clauses represented by the closures are in the strict
subclause relation) are smaller. More specifically there ex-
ist closure orderings for which C · σ � D · ρσ, for every
σ, whenever (i) C ⊃ Dρ, or (ii) C = Dρ, with ρ neither a
renaming nor a proper instantiator of D. (Remember that if
C = Dρ, with ρ a proper instantiator of C, then necessar-
ily C · σ ≺ D · ρσ in any closure ordering.) Therefore, if
the ordering satisfies (i) and (ii), C is redundant in any set of
clauses containing D. For example, p(a)∨q(f(a, x)) can be
deleted when q(f(y, x)) is present, as can p(x)∨q(f(x, x))
when p(y) ∨ q(f(x, y)) exists. Subsumption resolution is a
special case of resolution where the resolvent subsumes a
subclause of one of its premises. That is the case if the
premises are of the form C ∨L and D ∨Cσ ∨Lσ. Adding
the D∨Cσ (after deleting one of the copies of Cσ in the re-
solvent) makes the second premise become redundant if the
ordering satisfies (i). In such a case it appears preferable
to simplify D ∨ Cσ ∨ Lσ to D ∨ Cσ rather than applying
Inst-Gen, and standard redundancy justifies these simplifi-
cations.

If closures denote the same ground clause, more gen-
eral representations become redundant in the presence of
more specific ones. For example, if a unary f and a con-
stant a are the only function symbols in the signature, then
the unit clause p(x) is redundant in any clause set contain-
ing the facts p(a) and p(f(y)). Employing elaborate con-
straint notations such as the ones proposed by Caferra &
Zabel (1992), might be useful in this regard.

Redundancy of an inference is based on redundancy of
those ground instances of its premises that are compatible
with the unifier. In particular, if one of the premises of an
inference is redundant, so is the inference. For effective
saturation it is important to observe another consequence of
the definition:

PROPOSITION 4.2 Let Cθ be a conclusion of an inference
and a proper instance of its respective premise C. If Cθ is
in S, or is redundant in S, the inference is redundant.

Proof. Let σ be a grounding substitution. If θ properly in-
stantiates C we have that Cθ · σ ≺ C · θσ, with both clo-
sures denoting the same ground clause. If Cθ is in S or is
redundant in S, Cθ · σ follows from closures smaller than
or equal to Cθ · σ. Therefore, C · θσ follows from closures
strictly smaller than C · θσ and, hence, is redundant. The
redundancy of the inference now follows by definition. �

The significance of the proposition is that by generating
(one of) those conclusions of an inference that are proper
instances of their respective premises one can make the in-
ference become redundant. Note that at least one of the



conclusions of any inference must be of this kind. Conclu-
sions that are no proper instances of their premises may be
ignored and need not be added to the clause set to achieve
saturation.

In general, redundancy for inferences is even stronger
than these special cases. Let us discuss one of the more
specific aspects with an example. If we have these three
clauses (written as implications)

e(a, b) (1)
e(x, y) ⊃ e(x, f(y)) (2)
e(a, y) ⊃ e(a, f(y)) (3)

then an inference between (1) and (2) produces the instance
e(a, b) ⊃ e(a, f(b)) of (2), applying the unifier [a/x, b/y]
to (2). The inference is redundant as the latter clause is im-
plied by (3), with (3) · [b/y] ≺ (2) · [a/x, b/y]. Actually
we may think of (3) as derived by the inference between
(1) and (2), followed by abstracting b to y. This abstraction
is sound, and for the inference to be reducing it is suffi-
cient that one variable be properly instantiated. The infer-
ences between (2) and (3) are redundant for similar rea-
sons. What the example demonstrates is, essentially, that
we may flexibly choose the degree of instantiation in SInst-
Gen. The amount of instantiation to choose will depend on
the particular application. In the section 7 below we will
discuss certain specific instantiation strategies.

5. Hyper-Inferences with Semantic Selection

Based on unrestricted resolution, instance generation as
represented by Inst-Gen is a rather prolific inference, and
we would like to restrict it by schemes for selecting resolv-
able literals. The candidate model construction on which
the proof of Theorem 3.1 is based starts out from any propo-
sitional model I⊥ of S⊥ and generalizes it to an inter-
pretation for all ground instances of literals occurring in
S. The idea is that any ground instance Lσ of L should
become true if L⊥ is true in I⊥. But this generaliza-
tion might give rise to conflicts. Suppose that p(f(x, a))
and ¬p(f(b, y)) occur both in S. A conflict arises if both
p(f(⊥, a)) and¬p(f(b,⊥)) are true in I⊥, as assigning true
to both p(f(b, a)) and ¬p(f(b, a)) would result in an incon-
sistent interpretation. Any conflict leads to a resolution in-
ference. Conversely, only resolution inferences arising from
conflicts need to be considered, as we shall prove below.
In other words, inferences can be guided by the proposi-
tional model for the approximation S⊥ of S. Also we shall
move from binary inferences to hyper-resolution inferences
(with binary inferences as special cases) to also accommo-
date macro steps whenever desired. Let us define this more
formally now.

Let S be a set of clauses such that S⊥ is propositionally
consistent. Let I⊥ be a propositional model of S⊥. For each
clause C ∈ S define sat⊥(C) = {L ∈ C | I⊥ |= L⊥}. We

consider selection functions sel on clauses (modulo renam-
ing) for which ∅ 6= sel(C) ⊆ sat⊥(C). Literals L in sel(C)
are called selected in C (by sel). Thus, selection functions
select some or all of the literals in a clause for which the ⊥-
instance is true in I⊥. Selection functions satisfying these
restrictions are said to be based on the interpretation I⊥. In-
stance generation, based on a given selection function sel, is
defined as follows.

SInst-Gen

L
′

1 ∨ C1 . . . L
′

k ∨ Ck L1 ∨ . . . ∨ Lk ∨ D

(L
′

1 ∨ C1)σ . . . (L
′

k ∨ Ck)σ (L1 ∨ . . . ∨ Lk ∨ D)σ

where (i) σ is the most general unifier of L1 =
L′

1, . . . , Lk = L′
k, (ii) the literals Li in the last

premise are exactly the ones selected by sel in that
clause; and (iii) each L

′

i is selected in its respective
clause by sel, for 1 ≤ i ≤ k.

This inference rule resolves conflicts only, and in this regard
is related to the system in (Hooker et al. 2002). Our sys-
tem is more flexible, however, in that we allow for hyper-
inferences, and one may choose, by selection, for which
clauses hyper-inferences are enabled.

PROPOSITION 5.1 In any inference by SInst-Gen, the mgu
σ is a proper instantiator for at least one of the variables in
each of the pairs (Li, L

′
i) of unified literals.

Proof. If for some i, σ does not properly instantiate one of
the variables in Li or L′

i then Li⊥ = L′
i⊥. As selection is

based on some model I⊥ of S⊥, we would have that both
Li⊥ and L

′

i⊥ are in I⊥ which is a contradiction. �

The proposition shows that SInst-Gen is a more restrictive
version of Inst-Gen for selection functions that select ex-
actly one literal in each clause.

THEOREM 5.2 Let S be a set of clauses such that S⊥ is
satisfiable. If S is saturated up to redundancy by SInst-Gen
for a selection function based on a model of S⊥ then S is
satisfiable.

Proof. The proof relies on a candidate model construction
that is the same as the one given in Section 3, except for the
slight modification that for a closure (C ∨L) · σ to produce
Lσ, in addition L must be selected in that closure. Let IS

be the interpretation associated with S by that construction.
We will show, by induction on the closure ordering, that if
C is a closure in S that is not productive then C is true in
IC . As productive closures C are true in IC ∪ εC thus, by
monotonicity of the candidate model construction, true in
IS , the theorem follows.



Suppose, for the purpose of deriving a contradiction that
the closure C = C ′ ·σ is the minimal (in �) ground instance
of S that is not productive and false in IC . By induction
hypothesis all closures D in S smaller than C are true in
ID∪εD, hence are true in IC . Therefore C cannot be redun-
dant in S. If sel(C ′) = {L1, . . . , Lk} ⊆ sat⊥(C) then for
each Li we have Liσ ∈ IC . (Otherwise, since C is in par-
ticular a minimal representation, C would be productive.)
These Liσ are produced by closures D′

i = (L
′

i ∨ Di) · τi

smaller than C. False in ID′

i
, the closures D′

i cannot be
redundant. (In fact, if one D′

i were implied by smaller in-
stances of S, as those by induction hypothesis are true in
ID′

i
, D′

i would be true in ID′

i
.) Let Gi denote the clause

L
′

i∨Di. It is straightforward to check that we can apply the
rule SInst-Gen to G1, . . . , Gk and C ′, generating conclu-
sions G1θ, . . . , Gkθ and C ′θ, where θ is the most general
unifier of L1 = L′

1, . . . , Lk = L′
k. There exist substitu-

tions µ and νi such that C ′θµ = C ′σ and Giθνi = Giτi,
1 ≤ i ≤ k. In other words, the closures C and D′

i are
instances of the premises of the inference which we have
shown to not be redundant in S. This contradicts the as-
sumption that S be saturated. �

Instance generation with semantic selection is complete
and compatible with redundancy. Let us at this point briefly
discuss the redundancy elimination criterion suggested in
(Hooker et al. 2002). Consider this inconsistent set S of
clauses:2

p(a, z) ∨ q(z), ¬p(y, z) ∨ r(z),

p(a, c) ∨ q(c), ¬p(a, c) ∨ r(c),

¬q(d), ¬r(d)

S⊥ is satisfied in the interpretation in which p(a,⊥),
¬p(⊥,⊥), p(a, c), q(c), r(c), ¬q(d), and ¬r(d) are true
and the remaining literals in S⊥ are false. An admissible
selection function would be one selecting in each clause C
the underlined literal. Then only one inference is possible
in SInst-Gen, namely between the first two clauses, gener-
ating the instance ¬p(a, z)∨ r(z) of the second clause. The
other conclusion is a variant of the first clause. According
to (Hooker et al. 2002) the inference should be ignored as
this new instance is a generalization of the more specific
fourth clause. With this criterion no inference is possible,
and the inconsistency remains undetected. Analysing the
situation with our notion of redundancy, for the instance by
[c/z] we find that (p(a, z)∨q(z))·[c/z] � (p(a, c)∨q(c))·[],
demonstrating that the c-instance of the clause is, in fact,
redundant. However, we cannot show that the d-instance is
redundant, too. Therefore according to our definition, the
inference is not redundant.

2Chr. Lynch informed us about this problem with Theorem 4.10 in
(Hooker et al. 2002) by giving a similar counterexample.

6. Effective Saturation Strategies

In this section we shall investigate how saturation of a set
of clauses can be achieved effectively. The main problem
here is that when we use selection functions based on truth
in propositional models, these models change when we add
more instances. We must make sure that all inferences from
persistent clauses as they are required by selection based
on the limit model of a saturation process are considered.
In order to show this a notion of depth-restricted saturation
will come in handy.

The depth of a clause is the maximal depth of its terms.
We say that a clause is n-bounded if its depth is less or
equal to n. Likewise a closure C · σ is n-bounded if Cσ
is n-bounded. We say that an inference is n-bounded if all
clauses in the conclusion are n-bounded. A set of clauses
S is called n-consistent if the set of all n-bounded ground
instances of clauses from S is consistent. From Herbrand’s
theorem it follows that the set of clauses is consistent if and
only if it is n-consistent for each natural number n. An n-
bounded closure is called n-redundant in S if it is redundant
in the set of all n-bounded ground instances of S. A clause
is called n-redundant in S if all its n-bounded closures are
redundant in S. Thus, for an n-bounded ground closure C
to be n-redundant smaller n-bounded closures have to be
found that imply C. An n-bounded inference with unifier θ
is called n-redundant in S if for each grounding substitution
σ for which the instance of the inference by σ is n-bounded
there exists a premise C of the inference such that C · θσ is
n-redundant in S.

n-redundancy, for all n, implies redundancy, but the con-
verse is not true in general. However when the closure or-
dering is such that C · σ � D · τ whenever the depth of Cσ
is greater than the depth of Dτ , then redundancy implies n-
redundancy for every n. If, in addition, the closure ordering
is compatible with the subclause ordering, the main redun-
dancy elimination and simplification methods (subclause
subsumption, subsumption resolution and tautology elim-
ination) are admissible also with regard to n-redundancy. It
is obvious that closure orderings that are both compatible
with clause depth and with the subclause ordering exist for
any signature.

Let S be a set of clauses such that S⊥ is satisfiable. Let
I⊥ be a model of S⊥ and sel a selection function based
on I⊥. Then S is called n-saturated up to redundancy
wrt. SInst-Gen if all n-bounded SInst-Gen inferences from
premises in S are n-redundant in S. Theorem 5.2 also holds
in the n-bounded case:

THEOREM 6.1 Let S be a set of clauses such that S⊥ is
satisfiable. If S is n-saturated up to redundancy wrt. SInst-
Gen with a selection function based on a model of S⊥ then
S is n-satisfiable.



Proof. The proof is a modification of the proof of Theo-
rem 5.2 by applying the candidate model construction to
the n-bounded ground instances of S. Note that when we
lift a ground resolution inference from n-bounded ground
instances of clauses to the clauses themselves, these, as well
as their instances by the unifier of the lifted inference, are
also n-bounded. In other words, the lifted inference is n-
bounded itself. �

A saturation process is a finite or infinite sequence
of triples 〈Si, I i

⊥
, seli〉, where Si is a set of clauses,

I i
⊥

a model of S⊥ and sel
i a selection function based

on that model. Given 〈Si, I i
⊥

, seli〉, a successor state
〈Si+1, I i+1

⊥
, seli+1〉 is obtained by one of these steps: (i)

Si+1 = Si ∪N , where N is a finite set of clauses such that
Si |= N ;3 or (ii) Si+1 = Si \ {C}, where C is redundant
in Si. If Si+1⊥ is unsatisfiable, the process terminates with
the result “unsatisfiable”. Let us denote by S∞ the set of
persisting clauses, that is, the lower limit of the sequence S i.
A saturation process is called fair if whenever an inference
from persisting clauses persists, in that there are infinitely
many indexes j such that the inference satisfies the selection
restrictions with respect to sel

j then there exists an index k
such that the inference is redundant in Sk. We call infer-
ences of this kind persistent conflicts (from C1, . . . , Ck, C).
The process is called length-bounded if there exists a num-
ber λ such that all clauses have length smaller than or equal
to λ. Note that if we start with a finite set of clauses and
never add any clauses longer than the longest initial clause,
the process is length-bounded. In particular inferences by
instance generation do not increase clause length, and nei-
ther do simplifications by subsumption resolution.

THEOREM 6.2 Suppose 〈Si, I i
⊥

, seli〉, i = 0, 1, 2, . . ., is a
length-bounded, fair saturation process based on a closure
ordering compatible with clause depth, and with S0 a finite
set of clauses. If the process is infinite, then S0 is satisfiable.

Proof. Let S0 be a finite set of clauses and
{〈Si, I i

⊥
, seli〉}∞i=0 be an infinite saturation process

satisfying the assumptions. Suppose that S0 is unsatisfi-
able. Then it is not n-consistent for some natural number n.
We show that for some k, Sk contains an n-saturated wrt
sel

k (up to redundancy) subset NR such that all n-bounded
ground instances of S0 follow from n-bounded instances of
NR. Let NR be the set of all n-bounded clauses which are
in ∪iS

i and not redundant in any Si, i = 0, 1, 2, . . .. Since
there exists only a finite number of n-bounded clauses of a
fixed length (and since the process is length-bounded) we
may infer that NR is finite and for some m and all i ≥ m,
NR ⊆ Si. Since there are only finitely many conflicts

3It is sound to add any logical consequence, including those generated
by SInst-Gen. The fairness requirement below will make sure that suffi-
ciently many of these inferences are considered.

possible in the finite set NR, there exists a k ≥ m such that
for all i ≥ k the inferences corresponding to any conflict
in NR are either not admissible with respect to sel

i, or are
redundant in NR. In other words, NR is n-saturated w.r.t.
sel

k. From Theorem 6.1 it follows that NR is n-consistent.
Now let us show that all n-bounded ground instances of

∪iS
i follow from n-bounded instances of NR. Suppose

C = C ′ ·σ is the minimal n-bounded closure in ∪iS
i which

does not follow from n-bounded instances of NR. Then C ′

is redundant in Sj for some j (for otherwise C ′ would be
in NR). Therefore there exist closures C1, . . . , Ck that are
ground instances of Sj such that, (i) for each i, C � Ci,
(and since � is compatible with clause depth Ci is an n-
bounded closure) and (ii) C1, . . . , Ck |= C. Now we have
that at least one closure Ci does not follow from n-bounded
instances of NR, which contradicts to the minimality of C.

We have, in particular, shown that all n-bounded in-
stances of S0 follow from n-bounded instances of NR and
NR is n-consistent, therefore S0 is n-consistent which is a
contradiction. �

7. Partial Instantiations and the Use of Non-
propositional Decision Procedures

We start with a motivating example.

EXAMPLE 7.1 Suppose we are given the following set of
Horn clauses (written as implications):

e(a, b) (1)
e(x, y) ⊃ e(x, f(y)) (2)

p(a) (3)
p(x) ⊃ p(f(x)) (4)

e(x, y), p(y) ⊃ ⊥ (5)

This satisfiable (in infinite Herbrand models) set of clauses
is almost monadic, except for the occurrences of the binary
e. Suppose we classify as (indicated by underlining) vari-
able x in clause (2) and in clause (5) as ⊥-variables. If
we (only) replace ⊥-variables by ⊥ then the set of non-
propositional clauses obtained by this partial instantiation
is in the monadic clause class (Bachmair, Ganzinger &
Waldmann 1993, Fermüller et al. 2001), and satisfiability is
decidable. If we generate sufficiently many (non-ground)
instances which instantiate ⊥-variables then by checking
decidability of these monadic instances we should obtain
a complete method. Instance generation should be needed
only for resolvable clauses in which the unifier “properly”
instantiates one of the ⊥-variables. We give formal defini-
tions later.

In the example, the following process would be fair: Re-
solving (1) and (2) gives us the instance e(a, b) ⊃ e(a, f(b))
of (2), where both the ⊥-variable x and the non-⊥-variable



y of (2) are instantiated. Since the instantiation of non-⊥-
variables is not strictly required, we abstract it back to y
which is sound, yielding

e(a, y) ⊃ e(a, f(y)). (2a)

As argued at the end of Section 4, adding (2a) makes the
inference between (1), (2) and (2a) become redundant. At
this point two more resolution inference need to be con-
sidered ((1) and (2a) into (5)) that instantiate a ⊥-variable.
They generate these instances of (5):

e(a, b), p(b) ⊃ ⊥ (6)
e(a, f(y)), p(f(y)) ⊃ ⊥ (7)

No more inferences exist that instantiate a ⊥-variable.
Sending, in the remaining set of clauses, the ⊥-variables
to ⊥ (which we choose to be a) leaves us with this set
of clauses (where we have renamed the atoms e(s, t)
into es(t), with new predicates es, to make them become
explicitly monadic):

ea(b) (1)
ea(y) ⊃ ea(f(y)) (2), (2a)

p(a) (3)
p(x) ⊃ p(f(x)) (4)

ea(y), p(y) ⊃ ⊥ (5)
ea(b), p(b) ⊃ ⊥ (6)

ea(f(y)), p(f(y)) ⊃ ⊥ (7)

Hence the procedure terminates with “satisfiable”. Instead
of computing (6) and (7), by the same argument that lead
us to compute (2a) rather than the more specific instance of
(2), we could have abstracted b at the non-⊥ position in (7)
into y and generated

e(a, y), p(y) ⊃ ⊥ (6′)

which would have made both inferences into (5) redundant.
From the example we are led to the following definitions.

For each clause we classify all variables in that clause to be
either a ⊥-variable or a non-⊥-variable. We write x⊥ to
indicate that x is a ⊥-variable. As before ⊥ also denotes a
substitution which now maps all ⊥-variables to the constant
⊥ and is the identity on non-⊥ variables.

We say that a substitution σ is a proper instantiator if
it maps a ⊥-variable to a nonvariable term or to a non-⊥
variable; or if it maps a non-⊥-variable to a term contain-
ing a ⊥-variable. It is easy to see that a substitution is not a
proper instantiator if it maps ⊥-variables to ⊥-variables and
non-⊥ variables to terms not containing any ⊥-variables.
We say that a proper instantiator is a subs-proper if it is
not a renaming, and call it ⊥-proper otherwise. For ex-
ample [y/x, f(u)/z] is a subs-proper instantiator, as is
[y/z, y/x], whereas [y/x] is a ⊥-proper instantiator.

PROPOSITION 7.2 Let L be a literal, σ a grounding sub-
stitution for L and ρ a substitution such that σ = ρσ′

for some σ′. If ρ is not a proper instantiator of L then
L⊥σ = Lρ⊥σ′.

Proof. Under the given assumptions, x⊥ = ⊥ = xρ⊥ for
any ⊥-variable x in L. For non-⊥ variables y in L we ob-
tain yρ⊥ = yρ as yρ cannot contain a ⊥-variable, hence
yρ⊥σ′ = yρσ′ = yσ = y⊥σ. �

Now we consider the generalization of Inst-Gen to the more
general notion of proper instantiators. We assume that all
clauses are variable disjoint, which can be achieved by re-
namings preserving ⊥-ness of the variables.

When we unify two atoms we need to keep track of ⊥-
variables. To be able to do so we assume that all unifiers are
idempotent and do not introduce new variables, i.e. they are
the identity on the variables not occurring in the unifying
atoms.

GInst-Gen
C ∨ L D ∨ K

(C ∨ L)σ (D ∨ K)σ

where σ is the mgu of L and K such that σ is a proper
instantiator of L or of K. In addition we require:

(i) if σ is subs-proper then the variables in the conclu-
sion are classified arbitrarily; (ii) if σ is ⊥-proper then
all ⊥-variables of the premises, and all variables ⊥-
variables are mapped to, are classified as ⊥-variables
in the conclusion.

Let us note that if we classify all variables in all clauses as
⊥-variables then GInst-Gen coincides with Inst-Gen.

In order to show completeness of GInst-Gen we have to
work with closures with classified variables. We again do
not distinguish between a closure and any variant obtained
from a renaming preserving the classification of variables.
Closure orderings are as before except that they have to be
compatible with the more general notion of proper instanti-
ation. In other words, closure orderings satisfy C ·σ � D ·τ
whenever Cσ = Dτ and (i) Cρ = D, with ρ a subst-
proper instantiator of C, or (ii) C and D are variants of
each other and there exists a renaming ρ preserving ⊥-ness
of variables such that the set of ⊥-variables of Cρ is a strict
subset of the set of ⊥-variables of Dρ. According to (ii),
C = p(x, y) · [a/x, b/y] � D = p(x′, y′) · [a/x′, b/y′],
as after renaming ρ = [x′/x] we have that the set of ⊥-
variables of C is a strict subset of the the set of ⊥-variables
of D.

Closure orderings are less restricted now compared to
the initial definition in Section 2. Consequently more cases
of subsumption can be made compatible with a closure or-
dering. For instance we may find closure orderings where
p(x, f(y)) · [s/x, t/y] � p(x, z) · [s/x, f(t)/z], for all
ground terms s and t, the reason being that [x/x, f(y)/z]



is not a proper instantiator. One would typically prefer clo-
sure orderings that are compatible with strict subsumption
for non-⊥ variables.

Redundancy of clauses and inferences is defined as in
Section 4, now referring to closure orderings satisfying the
properties we just indicated. As before we obtain that
adding the properly instantiated conclusions to a set of
clauses makes the inference redundant:

PROPOSITION 7.3 Let Cθ be a conclusion of an inference
and a proper instance of its respective premise C. If Cθ is
in S, or is redundant in S, the inference is redundant.

Proof. Let σ be a grounding substitution. If θ properly in-
stantiates C and is subs-proper, we have that Cθ·σ ≺ C ·θσ,
with both closures denoting the same ground clause, and the
proof proceeds as for Proposition 4.2.

Otherwise, if θ is ⊥-proper then either for some non-⊥-
variable x in C we have that x is mapped to a ⊥-variable,
or else a ⊥-variable in C is mapped to a non-⊥ variable x
occurring in C or in the other premise of the inference. Ac-
cording to (ii) in the definition of GInst-Gen, the occurrence
of x in Cθ must be classified as ⊥. That happens with all
variables that are mapped to a variable of different classifi-
cation. Comparing the variables in C with the correspond-
ing variables in Cθ, we find that C has more ⊥-variables
than Cθ . Again we may infer that Cθ · σ ≺ C · θσ, and the
rest of the proof follows as in the first case. �

We present a modified candidate model construction for
sets of clauses S. Suppose that S⊥ is satisfiable with a
model I⊥. Let � be a closure ordering. By induction over
� we construct a sequence of interpretations as follows. Let
C be any ground instance of S and assume, as an induction
hypothesis, that sets of literals εD have been defined for the
ground closures D smaller than C in �, and let IC denote
the set

⋃
C�D εD. Suppose that C = C ′ · σ. Then define

εC = {Lσ}, if
(i) C is false in IC ;

(ii) C is the minimal representation of C ′σ in S; and
(iii) L is a literal in C ′ such that Lσ is undefined in IC , and
L⊥σ ∈ I⊥.
(Again we say that Lσ is produced by C.) If no such L can
be found, we define εC = ∅. If more than one choice for
L can be made, we choose one arbitrarily. The difference
from the previous construction is that since L⊥ can be a
non-ground literal, we check whether the ground instance
by σ is true in the model of S⊥ and then make Lσ true in
the interpretation we construct. Again define IS to be the set⋃

C εC . We say that a ground closure D is a counterexample
(to IS) if D false in IS .

THEOREM 7.4 Let S be a set of clauses saturated up to re-
dundancy with respect to GInst-Gen. Then S is satisfiable
if, and only if, S⊥ is satisfiable.

Proof. The proof is essentially the same as the proof of The-
orem 5.2. The proposition 7.2 is used to infer that inferences
between a productive clause and a minimal counterexample
have unifiers that are proper instantiators. �

Since the concepts leading to the more restrictive infer-
ence are orthogonal to issues of redundancy elimination and
effective saturation, Theorems 5.2, 6.1, and 6.2 can be ac-
cordingly generalized. On the other hand, since models
of S⊥ are now infinite in general how to effectively ap-
proximate semantic selection is not obvious. This connects
our work to results about model building, cf. (Caferra &
Zabel 1992, Fermüller & Leitsch 1996), among others.

The method suggested by Theorem 7.4 is to choose the
⊥-variables in clauses so that with some decision procedure
at our disposal, satisfiability of S⊥ can be decided. Hence if
S is a set of clauses that “almost” falls into one of the known
decidable classes, an appropriate choice of the ⊥-variables
might make S⊥ conform to the criteria of that fragment.
In fact for many decidable clause classes certain constraints
about variable occurrences is what makes them decidable.
In the monadic class one essentially has a fixed list of vari-
ables of which all argument lists of (Skolem) functions must
be prefixes of. In the guarded fragment, all variables of a
clause must occur in a guard atom, that is as arguments of
negatively occurring predicate. Very often, variables have to
occur linearly to make a class decidable. In all these cases
one may attempt to classify those variables as ⊥-variables
that fail to satisfy the constraints. ⊥-variables are instan-
tiated with ground terms before the clause is passed to the
decision procedures. Many decidable clause classes don not
constraint where ground terms may occur in a clause.

8. Future Work

There are many directions for future work. Calculi for
equality should be developed, possibly using results from
(Letz & Stenz 2002).

Semantic selection is based on the ability to evaluate
ground atoms in given models. For infinite models as they
might be computed by decision procedures for fragments
that do not have the finite model property, model generation
and evaluation methods have to be be suitably adapted.

Implementation based on substitution or context-trees
(Graf 1995, Ganzinger, Nieuwenhuis & Nivela 2001)
should be developed as these data structures should give
good performance to instance generation.

The ideas underlying the partial instantiation method of
Section 7 should be extended to more general concepts
of abstraction for first-order clauses. The non-ground in-
stances resulting from grounding only the ⊥-variables rep-
resent a more precise abstraction of the given clauses than
those obtained by any finite set of propositional instances.



This appears as a semantic counterpart to proof-theoretic
concepts of abstraction in theorem proving as put forward
by Giunchiglia & Walsh (1992).

One might want to combine instance generation with res-
olution in order to exploit its lemma generation capabilities
for speeding up proof search. Our concept of fair processes
allows one to add resolvents, but doing so might not render
the corresponding instance generation inference redundant.

Finally, it should be interesting to see what kind of deci-
sion procedures for which fragments can be obtained by the
combination of existing decision procedures with instance
generation made possible through Theorem 7.4.
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