
Strict Basic Superposition
and

Chaining

Leo Bachmair
Harald Ganzinger

MPI–I–97–2–011 December 1997

On this document
The contents of this document is identical to its Postscript version, except that, to avoid a bug in the hyper package, the first footnote had to be reanchored.

In this PDF version all (inline) definitions of notions are prefixed with a (hopefully) invisible ``!''. Prepending ``!'' to your search string gets you to the definition of the concept (in blue color). For example typing ``!direct'' into the find window warps you to the definition of ``direct rewrite proof'' on the page 13.

The article has been typeset with the hyper package which marks cross references and external references by dashed blue boxes.

Authors’ Addresses

Leo Bachmair
Department of Computer Science
SUNY at Stony Brook, Stony Brook, NY 11794, U.S.A.
email: leo@cs.sunysb.edu, web: www.cs.sunysb.edu/~leo

Harald Ganzinger
Max-Planck-Institut für Informatik
Im Stadtwald, D-66123 Saarbrücken, Germany
email: hg@mpi-sb.mpg.de, web: www.mpi-sb.mpg.de/~hg

Publication Notes

A short version of this report has been submitted for publication elsewhere.

Acknowledgements

This research was supported in part by the National Science Foundation un-
der grants INT-9314412 and CCR-9510072, by the German Science Foun-
dation (Deutsche Forschungsgemeinschaft) under grants Ga 261/7-1 and
Ga 261/8-1, and by the ESPRIT Basic Research Working Group 22457 (Con-
struction of Computational Logics II).

Abstract

The most efficient techniques that have been developed to date for equality
handling in first-order theorem proving are based on superposition calculi.
Superposition is a refinement of paramodulation in that various ordering
constraints are imposed on inferences. For practical purposes, a key aspect
of superposition is its compatibility with powerful simplification techniques.
In this paper we solve a long-standing open problem by showing that strict
superposition—that is, superposition without equality factoring—is refuta-
tionally complete. The difficulty of the problem arises from the fact that the
strict calculus, in contrast to the standard calculus with equality factoring, is
not compatible with arbitrary removal of tautologies, so that the usual tech-
niques for proving the (refutational) completeness of paramodulation calculi
are not directly applicable. We deal with the problem by introducing a suit-
able notion of direct rewrite proof and modifying proof techniques based on
candidate models and counterexamples in that we define these concepts, not
in terms of semantic truth, but in terms of direct provability. We also intro-
duce a corresponding concept of redundancy with which strict superposition
is compatible and that covers most simplification techniques, though not,
of course, removal of all tautologies. Reasoning about the strict calculus,
it turns out, requires techniques known from the more advanced basic vari-
ant of superposition. Superposition calculi, in general, are parametrized by
(well-founded) literal orderings. We prove refutational completeness of strict
basic superposition for a large class of such orderings. For certain order-
ings, positive top-level superposition inferences from variables turn out to be
redundant—a result that is relevant, surprisingly, in the context of equality
elimination methods. The results are also extended to chaining calculi for
non-symmetric transitive relations.

Keywords

Automated Theorem Proving, Basic Paramodulation, Chaining, Redun-
dancy, Candidate Models, Counterexamples

Contents

1 Introduction 6

2 Preliminaries 7

3 Strict and Non-Strict Superposition 7

4 Candidate Models, Counterexamples, and Redundancy 9
4.1 Basic Concepts . 10
4.2 Constructing Candidate Models . 11

5 Weak Counterexamples 13

6 Simplification Afforded by Weak Redundancy 14

7 Lifting 15
7.1 The Lifting Problem for S and SS . 15
7.2 Closures . 17
7.3 Strict Basic Superposition . 18
7.4 Optimized Variable Chaining . 21

8 Chaining Calculi 22

9 Conclusions 26

1 Introduction

In 1988, Zhang & Kapur have proposed a clausal paramodulation calculus ZK. ZK is closely re-
lated to the superposition calculus S of Bachmair & Ganzinger (1990). ZK is weaker than S in that
negative superposition also rewrites non-maximal terms of maximal negative equations. On the
other hand, ZK is stronger than S as it comes without the equality factoring inference of the latter
calculus. An inference derived from resolution with transitivity and ordered factoring, equality
factoring not only represents an additional inference and increases the search space, it is also not
very appealing from a conceptual point of view. In (Zhang & Kapur 1988), ZK was claimed to
be refutationally complete, even in the presence of eager simplification of clauses by a variant of
contextual rewriting that is sufficiently strong to eliminate all tautologies. However, Bachmair &
Ganzinger (1990) have shown that tautologies cannot be eliminated without rendering ZK incom-
plete. Since then the question as to whether ZK is refutationally complete when tautologies are
not eliminated, has remained open.

In (Bachmair & Ganzinger 1990, Bachmair & Ganzinger 1994b) it has also been shown that S can
be combined with a variety of simplification techniques including those used in the Knuth/Bendix
completion procedure. A general notion of redundancy based on logical entailment from smaller
clauses has been established for justifying their admissibility. Accordingly, tautologies are always
redundant and can be eliminated eagerly. Hence the proof techniques of these papers are not
directly applicable to ZK. As a second problem, even if ZK should be refutationally complete, the
calculus would be uninteresting from the practical point of view, if many of the standard techniques
for eliminating redundancy (tautologies, subsumption, reduction) would not be compatible with
the inference system.

This paper investigates these problems and gives answers which can be summarized as follows.
We shall define a calculus SS, called strict superposition, which is superposition S without equality
factoring. Therefore, SS is at the same time a substantially more restrictive version of ZK. We show
that SS is refutationally complete. We also show that SS is compatible with a notion of redundancy
by which most, but not all, of the major simplification techniques can be justified.

Our results are obtained by introducing a suitable notion of direct rewrite proof and modifying
proof techniques based on candidate models and counterexamples in that we define these concepts,
not in terms of semantic truth, but in terms of direct provability. Another contribution of this
paper is that it makes the method of candidate models and counterexamples more transparent,
separating its two central concepts, which are (i) the reduction of counterexamples (to certain
candidate models) by inferences, and (ii) notions of redundancy which approximate the problem
of identifying minimal such counterexamples. For SS the notion of counterexamples is weaker
and, therefore, is accompanied by a weaker concept of redundancy. As weak counterexamples
are not closed under reducing substitution parts of clauses, the lifting of strict superposition to
non-ground clauses requires the technology for basic superposition (Bachmair, Ganzinger, Lynch &
Snyder 1992, Nieuwenhuis & Rubio 1992a). This is another indication of why there are no obvious
fixes for the gaps in the completeness proof for ZK that was attempted in (Zhang 1988).

We will also extend the results about strict superposition also to the case of ordered chaining
calculi for general transitive relations. We will be able to show that transitivity (or composi-
tion) resolution inferences, the corresponding generalizations of the equality factoring inference, as
they were required in (Bachmair & Ganzinger 1994a, Bachmair & Ganzinger 1994c, Bachmair &
Ganzinger 1995) can also be dispensed with in a similar way.

6

2 Preliminaries

We assume the usual notions and notations about equational clauses, convergent term rewrite sys-
tems, and reduction orderings. We assume that equality, denoted by the symbol ≈, is the only
predicate. Equations are also syntactically symmetric, that is, we do not distinguish between atoms
s≈ t and t≈ s. On the semantic side we consider equality Herbrand interpretations which are con-
gruences on ground terms over the given signature. We will assume that equality interpretations
are represented in the form of convergent ground rewrite systems I so that an atom s≈ t is true in I
if, and only if, s ⇓I t, that is, if there exists a!rewrite proof for s≈ t. When given a complete reduc-
tion ordering � we may identify a ground equation with its ordered (according to �) counterpart,
called!rewrite rule. Given an interpretation I, we speak of a convergent ground rewrite system with
respect to � if the equations in I, when oriented with respect to �, represent a confluent rewrite
system.

Superposition calculi are based on orderings which guide proof search and identify the normal
forms of syntactic expressions which simplification is targeted at. A well-founded ordering � on
ground literals and ground terms is called!admissible if (i) the restriction of � to literals is a total
ordering, (ii) the restriction of � to ground terms is a total reduction ordering, and (iii) if L and
L′ are literals, then L � L′, whenever (iii.1) max(L) � max(L′), or (iii.2) max(L) = max(L′), and
L is a negative, and L′ is a positive literal. Hereby, max(L) denotes the maximal term (in �) of
an equation or disequation L. If � is an admissible ordering, its multi-set extension, again denoted
by �, is called an!admissible ordering on ground clauses. Admissible clause orderings are total and
well-founded. The essence of condition (iii) is that replacing the maximal term in a literal by a
smaller term yields a smaller literal in any admissible ordering. Condition (iii.2) makes clauses in
which the maximal term occurs negatively larger than any clause with the same maximal term but
with only positive occurrences of the latter. We observe that an admissible ordering on literals is
firmly based on the ordering on terms. But there is some flexibility in extending a term ordering to
literals. Provided (iii) is satisfied, any other syntactic criteria such as the ordering on the minimal
terms or the division between skeleton and substitution positions (cf. below) may be employed
freely to make the literal ordering become total.

By regarding literals as unit clauses we may use � to also compare literals with clauses. In
particular, a clause C ∨ s≈ t is called!reductive for s ⇒ t if (s≈ t) � C and if s � t. Equivalent to
an implication ¬C → s≈ t, a reductive clause may be viewed as a conditional rewrite rule, rewriting
s by t under the positive and negative conditions in ¬C. With reductive clauses, rewriting and
recursive evaluation of the condition are terminating.

A clause ordering � may be extended to sets of clauses by defining N � M if, and only if,
there exists a clause D in N such that, for all clauses D in M , C � D. If the clause ordering is
well-founded, so is its extension to sets of clauses. In that case, the ordering may form the basis of
definitions by noetherian induction. If N is a set of ground clauses and if C is a ground clause, by
NC we denote the set of clauses D in N with C � D. If C is in N then N � NC . Subsequently all
calculi will be parameterized by an admissible ordering.

3 Strict and Non-Strict Superposition

We assume for now that all clauses are ground. Problems related to lifting will be discussed in the
Section 7 below.

The inference rules of strict (ground) superposition SS are given in the Figure 1. The ordering
constraints restrict equational replacement such that only maximal terms of maximal equations in

7

!Positive strict superposition

C ∨ s≈ t D ∨ w[s]≈ v

w[t]≈ v ∨ C ∨ D

where (i) s � t, (ii) w � v, (iii) (s≈ t) � C, (iv) (w≈ v) � D, and (v) (w≈ v) � (s≈ t).

!Negative strict superposition

C ∨ s≈ t D ∨ w[s] 6≈ v

w[t] 6≈ v ∨ C ∨ D

where (i) s � t, (ii) w � v, (iii) (s≈ t) � C, and (iv) (w 6≈ v) � max(D).

!Reflexivity resolution

s 6≈ s ∨ C

C

where (s 6≈ s) � max(C).

!Ordered Factoring

C ∨ s≈ t ∨ s≈ t

C ∨ s≈ t

where (s≈ t) � max(C).

Figure 1: !Strict superposition SS

the second premise (the!negative premise) are replaced by the minimal term of a maximal equation
of the first (the!positive) premise. If D is a clause, by max(D) we denote the maximal literal in
D.1

The calculus ZK (Zhang & Kapur 1988) is an early predecessor of SS. The ordering constraints
in ZK restrict positive superposition for ground clauses in a similar way as in SS. ZK has constraints
(i) and (ii), but not (v), with (iii) and (iv) slightly different due to a slightly different notion of
literal orderings. In negative superposition also non-maximal terms of maximal equations have to
be rewritten, that is, restriction (ii) is absent. ZK also has (unordered) factoring both for positive
and for negative literals.

Bachmair & Ganzinger (1990) have shown that tautologies cannot be eliminated without ren-
dering strict superposition incomplete. For example, the set of clauses

→ a≈ b, a≈ c

→ b≈ c

a≈ b, a≈ c →
1In order to simplify matters technically, in this paper we do not consider selection functions for negative literals.

All results of the paper, however, can be extended appropriately.

8

where a, b, and c are constants, is unsatisfiable. However, if a � b � c, strict superposition cannot
derive any other clause than the tautology b≈ b, a≈ c → a≈ c.2 One can see that even if unre-
stricted factoring and superposition into the smaller sides of negative equations is admitted one
cannot derive the empty clause. Hence ZK, too, is not compatible with the elimination of tautolo-
gies. Since then the question as to whether SS is refutationally complete if one does not eliminate
tautologies has remained open. The ordering constraints for SS do not admit superposition with
tautologies as the positive premise, but superposition into tautologies is not excluded. In fact, in
the example we may obtain a refutation as follows:

(1) → a≈ b, a≈ c
(2) → b≈ c
(3) a≈ b, a≈ c →
(4) b≈ b, a≈ c → a≈ c (1) into (3)
(5) b≈ b, b≈ c → a≈ c, a≈ c (1) into (4)
(6) b≈ b, b≈ c → a≈ c factoring (5)
(7) b≈ c, a≈ c, b≈ b, b≈ c → (6) into (3)
(8) b≈ b, b≈ c, b≈ c, c≈ c, b≈ b, b≈ c → (6) into (7)

From (8), superposition by (2) together with reflexivity resolution derives the empty clause.
It has since been shown (Bachmair & Ganzinger 1990), also for the basic variants of the calcu-

lus (Bachmair et al. 1992, Nieuwenhuis & Rubio 1992a), that superposition is complete, with all
ordering constraints imposed, if one adds one more inference rule, called!equality factoring:

!Equality factoring

C ∨ s≈ t ∨ s≈ t′

C ∨ t 6≈ t′ ∨ s≈ t′

where (s≈ t) � (s≈ t′), s � t, and (s≈ t) � C.

!(Non-strict) superposition, denoted S, is defined as the extension of SS by equality factoring.
Equality factoring is conceptually not very appealing as it combines a resolution inference into a
certain instance of transitivity with factoring:

C ∨ s≈ t ∨ s≈ t′ (x 6≈ y ∨ y 6≈ z ∨ x≈ z)[t′/z]
C ∨ t 6≈ t′ ∨ s≈ t′ ∨ s≈ t′

C ∨ t 6≈ t′ ∨ s≈ t′

In other words, in addition to the superposition inferences, there are still some inferences with the
transitivity clause required in S. As equality factoring only applies in the presence of disjunctions
the differences between the strict and non-strict versions of superposition only become apparent
for general, non-Horn clauses.

4 Candidate Models, Counterexamples, and Redundancy

A powerful method for proving the completeness of calculi for refutation proofs is centered around
the concept of candidate models and the reduction of counterexamples. The main feature in our

2This example due to Chr. Lynch and W. Snyder is simpler than the one given in (Bachmair & Ganzinger 1990).

9

presentation of these concepts in the present paper is the separation between local aspects of
reducing counterexamples (by inferences) and the global methods for identifying them. The latter
will be captured by notions of redundancy: clauses are redundant if they can never become a
minimal counterexample.

4.1 Basic Concepts

Let I be a (clausal) inference system, in which case we denote by I(N) the set of clauses that
can be derived by applying an inference in I to premises in N . Suppose we have a mapping I,
called !model functor, assigning (equality) Herbrand interpretations IN , called !candidate models,
to any given set N of ground clauses which does not contain the empty clause. Considering N ,
two cases may arise. IN might be a model of N . Then one is finished as no contradiction can be
derived from N , soundness of I assumed. Otherwise, there exists a clause C in N which is false in
IN . Such a clause C is called a!counterexample (for IN). If a counterexample exists, N must in
particular contain a minimal counterexample with respect to the given clause ordering �. Suppose
that whenever C is a minimal counterexample, there exists an inference in I from C and, possibly,
additional premises in N , such that the conclusion D of the inference is smaller than C, i.e., C � D,
and such that D is also a counterexample for IN . If this property holds for all sets of clauses N we
say that I has the!reduction property for counterexamples (with respect to I). Inference systems
that have the reduction property for counterexamples are refutationally complete:

Proposition 4.1 If I has the reduction property for counterexamples and if N is closed under I,
that is, I(N) ⊆ N , either N contains the empty clause, or else N is satisfiable.

Proof. Suppose that I has the reduction property for counterexamples with respect to some model
functor I. Any (minimal) counterexample C in N for IN , by the reduction property, can be reduced
to a smaller counterexample D which, if I(N) ⊆ N , must be contained in N which is impossible.
2

The proposition also shows that only inferences which reduce minimal counterexamples are essen-
tial. Clauses which can never become a minimal counterexample are, therefore, redundant. More
formally, let us call a ground clause C (not necessarily in N)!redundant with respect to a set N of
ground clauses if there exist clauses C1, . . . , Ck in N such that C1, . . . , Ck |= C and C � Ci. Let
R(N) denote the set of redundant clauses with respect to N , and let us call N !saturated up to
redundancy with respect to I whenever I(N \R(N)) ⊆ N ∪R(N). If a clause C is redundant in N
then it is not only entailed by NC , but also by NC \ R(N), the subset of non-redundant clauses in
N smaller than C. Also note that any model of NC \R(N) is also a model of N . We observe that
the redundancy criterion R and the inference system I are coupled through the common ordering
they depend on.

Proposition 4.2 Let I be sound and have the reduction property, and let N be saturated up to
redundancy with respect to I. Then N is unsatisfiable if, and only if, N contains the empty clause.

Proof. Suppose that I has the reduction property for counterexamples with respect to some model
functor I. Let M be an abbreviation for N \ R(N). Suppose that N does not contain the empty
clause. If IM is a model for M , it is also a model for N , and the proof is finished. Otherwise M
contains a minimal counterexample D for IM . As I has the reduction property we may find clauses

10

Ci in M such that some inference from premises D and Ci has a conclusion D′, where D′ ≺ D and
D′ is a counterexample for IM . By the saturation assumption, D′ is an element of N ∪R(N) since
the premises of the inference are all in N \R(N). If D′ is in R(N) then it is entailed by NC \R(N)
which is a subset of M . This contradicts the assumption that D is the minimal counterexample to
IM in M . If D′ is not in R(N) it must be in M , which again is a contradiction. We have shown
that M does not contain a counterexample for IM , therefore, IM is a model for M and, hence, also
a model for N . 2

Our previous papers, e.g., (Bachmair & Ganzinger 1994b), define formal notions of theorem
proving processes, as sequences of steps of deduction and deletion of redundant clauses. The
stability of redundancy under deduction and deletion (of redundant clauses), is shown. Under
certain assumptions about fairness any such process is refutationally complete. In particular,
redundant clauses can be eliminated eagerly in any theorem proving process. All this is essential
for effectively and efficiently constructing saturated sets of clauses, but orthogonal to the topic of
the present paper.

4.2 Constructing Candidate Models

The previous propositions leave us with the problem, given I, how to construct a model functor
I such that I has the reduction property for counterexamples with respect to I. In the sequel
we present a construction that can be applied to many clausal inference systems for equality and
other transitive relations. Recall that equality interpretations are given in the form of a convergent
(with respect to �) ground rewrite system R, such that an equation s≈ t is true in R if and only
if s ⇓R r.

IN will consist of equations that are produced by certain reductive clauses in N . Let R be an
interpretation. A clause C of the form D ∨ s≈ t is called!productive on R if

(i) C is reductive for s ⇒ t
(ii) D is a counterexample for R ∪ {s≈ t}, and
(iii) s is irreducible by R.

We also say that C !produces s≈ t from R. With this, we inductively define IN as

IN = {s≈ t | ∃C ∈ N : C produces s≈ t from INC
}.

(As N � NC whenever C is in N , the INC
can assumed to be well-defined by induction hypothesis.)

IN is the set of equations produced by those clauses C in N which are productive on the!partial
interpretations INC

. In that case, C is a counterexample for INC
and, as a result of producing s≈ t,

becomes true in INC
∪ {s≈ t}. However, its side literals D (assuming that C = D ∨ s≈ t) remain

a counterexample (that is, the condition ¬D of the conditional rewrite rule ¬D → s≈ t remains
true) when s≈ t is added to INC

, cf. condition (ii). The mapping I is monotone in that whenever
C and D are two clauses with C � D, then INC

⊆ IND
⊆ IN . Whenever the set N is known from

the context or assumed to be arbitrary then we will abbreviate IN and INC
by, respectively, I and

IC .
By the condition (iii), the sets IC and I are left-reduced rewrite systems with respect to � and,

therefore, convergent. The technicalities of the clause ordering and the convergence of the rewrite
systems imply that if D is a productive clause in N , and if C, D′, and D′′ are other clauses such
that D′′ � D′ � D � C then C is a counterexample for ID′ if, and only if, C is a counterexample
for ID′′ .

Let us explain this construction by means of an example. Suppose we have constants a � b �
c � d. The following table lists a set of clauses in ascending order from bottom to top, together

11

with the rewrite rules that are produced into the interpretation by that clause.

C I remarks
a≈ b → a≈ d true in IC

a≈ d → b≈ c false in IC and I
c≈ d → a≈ c, b≈ c a≈ c reductive and false in IC

→ c≈ d c≈ d

In the end, I = {c≈ d, a≈ c} such that all but the second clause are true in the candidate model.
We observe that a superposition inference

c≈ d → a≈ c, b≈ c a≈ d → b≈ c

c≈ d, c≈ d → b≈ c, b≈ c

exists between the third and the second clause which produces a smaller counterexample
c≈ d, c≈ d → b≈ c, b≈ c for I. Indeed, if a clause C such as a≈ d → b≈ c is false in IC , its
negative literal a≈ d converges in IC . Consequently, its maximal term a must be reducible by a
rule in IC . As this rule is produced by a clause D in NC , a reducing superposition inference exists.
From the condition (i) in the model functor construction, the side literals in D are false, such that
the reduced clause is indeed a counterexample.

Theorem 4.3 Let N be a set of ground clauses not containing the empty clause. Let C be the
minimal counterexample in N for IN . Then there exists an inference in S from C such that

(i) its conclusion is a counterexample for IN and is smaller than C; and
(ii) if the inference is a superposition inference then C is its negative premise and the positive

premise is a productive clause.

We shall see the details of the required reasoning in the closely related proof for the Theorem 7.2
below.

The theorem in part (i) states that S has the reduction property, and hence is refutationally
complete and compatible with the removal of redundant clauses. In addition, part (ii) gives further
semantic restrictions to S which may be exploited with a notion of redundancy for inferences in
addition to the one for clauses. We shall return to this in the Section 7 when we will deal with
lifting.

To see what goes wrong for strict superposition, let us now apply the construction to the critical
example of the Section 3.

clauses C I remarks
a≈ b, a≈ c → true

→ a≈ b, a≈ c minimal counterexample
→ b≈ c b≈ c

The clause D = a≈ b, a≈ c is non-productive, as producing a≈ b would make a≈ c become true,
contradicting the condition (i). In the absence of equality factoring, no inference can reduce this
counterexample. (Equality factoring can, as it derives b≈ c → a≈ c from D.)

We have shown in the Section 3 that a contradiction can be derived if one computes inferences
with the tautology. If there is at all an extension of the concept of model candidates and counterex-
ample reduction to cover this situation, it must come with a more liberal notion of counterexamples
where certain tautologies, although semantically true, can be considered “weak” counterexamples
for some interpretations. Such a concept must be proof-theoretic in nature, and will be developed
next.

12

5 Weak Counterexamples

Let R be a ground rewrite system. An equation s≈ t is said to have a!direct rewrite proof in R if,
and only if, s ⇓Rs,t t, where Rs,t denotes the set of equations l≈ r in R such that s≈ t � l≈ r in
the given literal ordering. In a direct rewrite proof only those rewrite rules may be applied that are
not larger than the equation to be proved. We call a ground clause C a!weak counterexample for R
if, and only if, (i) for each negative literal u 6≈ v in C we have u ⇓R v and, (ii) no positive equation
in C has a direct rewrite proof in R. Clearly, any counterexample is also a weak counterexample,
but the converse is not true in general.

Given an inference system I and a model functor I we say that I has the!reduction property for
weak counterexamples (with respect to I) if whenever a (nonempty) clause C in N is the minimal
weak counterexample for IN then there exists an inference in I from C and, possibly, additional
premises in N , such that the conclusion D of the inference is smaller than C, i.e., C � D, and such
that D is also a weak counterexample for in IN .

Proposition 5.1 If I has the reduction property for weak counterexamples and if N is closed
under I, that is, I(N) ⊆ N , either N contains the empty clause or else N is satisfiable.

Again, identifying minimal weak counterexamples leads to a compatible notion of redundancy. Call
a ground clause C (not necessarily in N) !(weakly) redundant with respect to a set N of ground
clauses if for any convergent ground rewrite system R (with respect to �) for which C is a weak
counterexample there exists a weak counterexample D in N for R such that C � D. Let Rw(N)
denote the set of redundant clauses (based on weak counterexamples) with respect to N , and let us
call N !saturated up to weak redundancy with respect to I whenever I(N \Rw(N)) ⊆ N ∪Rw(N).
Note that if R is an interpretation such that no clause in N \Rw(N) is a weak counterexample for
R then also no clause in N can be a weak counterexample for R, and, in particular, R is a model
for N . Conversely, if C in Rw(N) is a weak counterexample for R then N \ Rw(N) also contains
a (smaller) weak counterexample for R.

Proposition 5.2 Let I be sound and have the reduction property for weak counterexamples, and
let N be saturated up to weak redundancy with respect to I. Then N is unsatisfiable if and only
if N contains the empty clause.

In applying these concepts to strict superposition, we modify the previous definitions of produc-
tive clauses and of the model functor IN , in that we replace “counterexample” by “weak counterex-
ample”. Let Iw

N denote the modified constructions, again omitting the index N when no confusion
can arise, and writing Iw

C for Iw
NC

when referring to the “partial” interpretations for the subsets
NC of N . The condition (ii) for productive clauses C now simply reduces to requiring that C be a
weak counterexample for IC . If C = D ∨ s≈ t is a weak counterexample for Iw

C , no positive literal
L in D can have a direct rewrite proof in Iw

C ∪ {s≈ t}‘. In fact, as the clause has to be reductive
for s≈ t, we have (s≈ t) � L so that s≈ t cannot be applied in any direct rewrite proof of L.

In the critical example we now obtain this candidate model:

C Iw remarks
a≈ b, a≈ c → minimal weak counterexample

→ a≈ b, a≈ c a≈ b
→ b≈ c b≈ c

Now the clause a≈ b, a≈ c is productive. Superposing this clause one may reduce the counterex-
ample to b≈ b, a≈ c → a≈ c. If we analyse this tautology with respect to the rewrite system

13

{a≈ b, b≈ c} we find out that it constitutes a weak counterexample. In fact, strict superposition
does have the reduction property for weak counterexamples and, hence, is refutationally complete
for ground clauses.

Theorem 5.3 Let N be a set of ground clauses not containing the empty clause. Let C be the
minimal weak counterexample in N for Iw

N . Then there exists an inference in SS from C such that
(i) its conclusion is a weak counterexample for Iw

N and is smaller than C; and
(ii) if the inference is a superposition inference (left or right) then C is its negative premise and

the positive premise is a productive clause.

For the proof idea we again refer to the closely related proof of the Theorem 7.2.
The theorem in part (i) states that SS has the weak reduction property for Iw, and hence is

refutationally complete and compatible with the removal of weakly redundant clauses. As for S,
part (ii) gives further semantic restrictions to SS which may be exploited with an additional notion
of redundancy for inferences.

6 Simplification Afforded by Weak Redundancy

We will briefly investigate the principle simplification methods in superposition theorem proving
with regard to their admissibility based on weak redundancy. We treat the ground case. For the
non-ground case additional consideration have to be taken into account which arise from lifting
with the basic strategy, cf. Section 7. In general, simplification is a derivation step (on sets of
clauses) of the form

!Simplification:

N ∪ {C} ` N ∪ {D}

such that C and D are logically equivalent, C � D, and C is in Rw(N ∪ {D}).
In other words, by a simplification of C to D we mean that adding D is sound and causes C to be
redundant. Reduction is an admissible simplification:

!Positive reduction:
N ∪ {s≈ t, C ∨ w[s]≈ u} ` N ∪ {s≈ t, C ∨ w[t]≈ u}, if (w[s]≈ u) � (s≈ t) and s � t.

Soundness is trivial. We show that C ∨ w[s]≈u is redundant in {s≈ t, C ∨ w[t]≈ u}. Let R be
a convergent ground rewrite system with respect to � such that neither s≈ t nor C ∨ w[t]≈ u is
a weak counterexample. We argue that, then, C ∨ w[s]≈ u is not a weak counterexample for R
either. Suppose that C ∨ w[t]≈ u is not a weak counterexample because of the existence of a direct
rewrite proof for w[t]≈ u in R. As R is convergent, this rewrite proof may be combined with the
direct rewrite proof for s≈ t to a rewrite proof for w[s]≈ u. Since (w[s]≈ u) � (s≈ t), any rule
used in this proof is not greater than w[s]≈ u, hence the rewrite proof is direct.

Reduction of negative literals is less restricted as there is no difference between regular and
direct rewrite proofs for negative literals.

!Negative reduction:
N ∪ {s≈ t, C ∨ w[s] 6≈ u} ` N ∪ {s≈ t, C ∨ w[t] 6≈ u}, if s � t.

14

Tautology elimination must be weaker than usual. By a!direct tautology we mean a clause C
such that for any convergent rewrite system R with respect to � for which s ⇓R t, for all negative
literals s 6≈ t in C, there exists a positive literal in C which has a direct rewrite proof in R. Direct
tautologies can be eliminated.

!Direct tautology elimination:
N ∪ {C} ` N if C is a direct tautology.

Here is a sufficient, decidable criterion for direct tautologies:

Proposition 6.1 C is a direct tautology if C is of the form Cn ∨ Cp ∨ w[s]≈ t, with Cn the
subclause of negative literals in C, the context w[] nonempty, and w[s] � t, such that Cn ∨ s≈u
and Cn ∨ w[u]≈ t, for some u ≺ s, are tautologies.

Proof. We show that under the given assumptions, C is a direct tautology. The case is trivial if
w[s] = t. Let us, therefore, assume that w[s] � t. Let R be a convergent ground rewrite system
for which the negative equations Cn converge. As Cn ∨ s≈u and Cn ∨ w[u]≈ t are tautologies,
the equations s≈u and w[u]≈ t have (possibly non-direct) rewrite proofs in R. The context w[]
is nonempty, and therefore, w[s] � s in any reduction ordering. Placing the rewrite proof for s≈u
into the context w[], therefore, provides us with a direct rewrite proof of w[s]≈w[u]. Since R is
convergent, the latter may be combined with the rewrite proof for w[u]≈ t into a direct rewrite
proof of w[s]≈ t. 2

In practice, one might implement the tautology test provided by the proposition by ground com-
pleting Cn, and then proving w≈ t with a rewrite proof in which the left side of any appearing
rewrite rule is smaller than w.

Strict subsumption is as usual since being a weak counterexample requires all literals of the
clause to be weak counterexamples.

!Subsumption:
N ∪ {C, C ∨ D} ` N ∪ {C}

To summarize, we have shown that with certain additional restrictions, the usual simplification
techniques for non-strict superposition are also admissible for the strict calculus.

7 Lifting

7.1 The Lifting Problem for S and SS

When lifting superposition inferences to non-ground clauses one wants to exclude superposition into
terms that occur at or below a variable in the respective ground instances. Otherwise, unification is
not an effective filter for the inference, and superposition would be extremely prolific. The restricted
superposition system no longer has the reduction property . In fact, ground superposition systems,
if target terms for replacement are arbitrarily restricted, are obviously incomplete. Fortunately,
sets of ground clauses N which are obtained by forming all ground instances of a given set of
non-ground clauses M have the crucial property that if Cσ, for C in M , is a clause in N , so is any
clause Cτ for which τ can be obtained by reducing the substitution σ with respect to any rewrite
system I, in particular, with respect to IN .

15

Let us explain the situation using an example. Consider the inference

D ∨ s≈ t (C[x] ∨ x≈u)[s/x]
(D ∨ C[x] ∨ t≈u)[s/x]

and, for simplicity, assume that all expressions, except for the ones containing the variable x, are
ground. That is, we deal with a set of clauses N containing s≈ t and all the ground instances of
C[x] ∨ x≈u, but disallow superposition into subterms at x. For the inference to be ordered, we
have s � t. From part (ii) of the Theorem 4.3 we observe that we may assume the positive premise
of the inference to produce s≈ t into IN . Then, however, the negative premise cannot be the
minimal counterexample. For if (C[x] ∨ x≈u)[s/x] is false in IN then, as s≈ t is true, the reduced
instance (C[x] ∨ x≈u)[t/x], also an element of N , is false in IN and smaller. We conclude that the
non-ground version of S, when restricted to subterms above variables, has the reduction property
for counterexamples in !schematic sets of ground clauses, by which we mean sets which consist of
all the ground instances of some set of non-ground clauses. From this refutational completeness for
general clauses follows.

In the case of strict superposition with “counterexample” replaced by “weak counterexample”
the situation is more involved although we have the analogous Theorem 5.3. Consider the example
in the Figure 2 where we assume a � b � c � d � e and consider the instances of a non-ground clause
D = x≈ b, x≈ e along with some other ground clauses and again list the clauses in ascending order
(from bottom to top), side-by-side with the equations they generate in the model construction
Iw based on weak counterexamples. One observes that the first clause is true in Iw but it is a

clauses C Iw remarks
→ a ≈ b, a ≈ e D[a/x]
→ a≈ c, a≈ d a≈ c
→ b≈ b, b≈ e D[b/x]
→ c≈ b, c≈ e D[c/x]
→ d≈ b, d≈ e D[d/x]
→ e≈ b, e≈ e D[e/x]
→ c≈ e c≈ e
→ d≈ e d≈ e

Figure 2: Reduction of Weak Counterexamples

(minimal) weak counterexample to Iw. If one forbids superposition into the (boxed) substitution
position a of the first clause, no inference is possible so that the weak counterexample cannot be
reduced; the correspondingly reduced instance (the fourth clause) of x≈ b, x≈ e is present, but is
not a weak counterexample. In short, SS does generally not have the reduction property for weak
counterexamples in schematic sets of clauses.

A remedy to this problem will be to consider clause sets N which only contain “reduced”
(with respect to Iw

N) instances of the given non-ground clauses. The precise definition of “reduced”
will be closely related to the reductions that are admitted in direct rewrite proofs. The same
technique was needed for proving the refutational completeness of basic superposition (Bachmair
& Ganzinger 1990, Bachmair et al. 1992, Nieuwenhuis & Rubio 1992a) and is known to lead
to a somewhat more complex notion of redundancy. This indicates that a non-basic version of

16

strict superposition might not be very interesting from a practical point of view, motivating us to
generalize our results to the basic variant of strict superposition.

7.2 Closures

Basic strategies are best formulated with constrained clauses (Nieuwenhuis & Rubio 1992b). In this
paper we do not want to describe details of how to actually compute with constrained clauses but
only want to treat matters on a level such that the lifting problem can be considered as theoretically
solved. Therefore we just introduce as much additional syntax as is needed for marking those
subterms in ground clauses in which replacement is not allowed. Specifically, we assume that
the positions in any ground clause are !marked according to whether or not they belong to the
substitution by which they were obtained as instance of a non-ground clause. Generally for any
ground expression (term, literal, clause) we assume that their substitution positions be marked.
We shall use the same meta-variables as before (C and D for clauses, L for literals, and s, t, u, v,
w for terms) for the respective kinds of marked ground expressions.

When we need to explicitly represent the markings, we shall use a representation by closures. A
!(ground) closure is a pair C ·σ consisting of a (general) clause C and a ground substitution σ such
that Cσ is a ground clause. Then the!substitution positions in the instance Cσ are exactly the ones
at or below a variable in C. We identify any two closures C · σ and D · τ whenever they represent
the same ground clause with the same markings. That is the case precisely when Cσ = Dτ and
when the!skeletons C and D are identical up to variable names, that is, Cρ = Dρ, for some variable
renaming substitution ρ. (Subsequently we shall use the notation E ≡ E′ whenever two syntactic
expressions E and E′ only differ in the names of their variables.) In particular, we may assume
that the variables in the skeleton C of a closure C · σ are always freshly chosen to achieve variable
disjointness where required. Also, any two closures can be brought into the form C · σ and D · σ,
respectively, with a common substitution σ.

Admissible orderings are defined as as before. With the extended syntax, the literal ordering
may now also depend on the marking of positions in clauses whenever the maximal terms and the
polarity of two literals under comparison are the same (cf. Section 7.4).

A notion central to the lifting of basic inference systems is that of a reduced clause. For reduced
clauses no inferences at substitution positions need to be considered. Given a rewrite system R, in
reduced clauses, all substitution positions in a literal L are reduced by rules in R which are smaller
than L. More precisely, we say that a literal L[s]p is!order-reducible (at position p) by an equation
s≈ t, if s � t and L � (s≈ t). In any admissible ordering, a negative literal is order-reducible
by s≈ t if and only if it is reducible by s≈ t. On the other hand, a positive equation u≈ v is
order-reducible by s≈ t only if (u≈ v) � (s≈ t) in the literal ordering. The restriction for order
reducibility is slightly stronger than the one for direct rewrite proofs where only (u≈ v) � (s≈ t) is
required for the application of s≈ t in u≈ v. A literal is!order-reducible by R if it is order-reducible
by some equation in R. Likewise, a clause is called order-[ir]reducible at p if the literal to which
p belongs is order-[ir]reducible at p. “Order-irreducible” is the same as “not order-reducible.” A
ground clause is simply called!reduced with respect to R if it is order-irreducible with respect to R
at all substitution positions.

For concrete examples of order-reducible, respectively, order-irreducible clauses in the context
of a specific literal ordering the reader is referred to the Section 7.4.

17

!Positive strict basic superposition

(C ∨ s≈ t) · σ (D ∨ w[s′]≈ v) · σ
(w[t]≈ v ∨ C ∨ D) · σ

where sσ = s′σ, and (i) sσ � tσ, (ii) wσ � vσ, (iii) (s≈ t) · σ � C · σ, (iv) (w≈ v) · σ � D · σ,
and (w≈ v) · σ � (s≈ t) · σ, and (v) s′ is not a variable

!Negative strict basic superposition

(C ∨ s≈ t) · σ (D ∨ w[s′] 6≈ v) · σ
(w[t] 6≈ v ∨ C ∨ D) · σ

where sσ = s′σ, and (i) sσ � tσ, (ii) wσ � vσ, (iii) (s≈ t) · σ � C · σ, (iv) (w 6≈ v) · σ �
max(D · σ), (v) s′ is not a variable.

!Reflexivity resolution

(s 6≈ s′ ∨ C) · σ
C · σ

where sσ = s′σ and (s 6≈ s′) · σ � max(C · σ).

!Ordered Factoring

(C ∨ s≈ t ∨ s′≈ t′) · σ
(C ∨ s≈ t) · σ

where (i) sσ = s′σ, tσ = t′σ, (s≈ t) · σ � max(C · σ), and (ii) s ≡ s′ and t ≡ t′.

Figure 3: !Strict basic superposition SBS

7.3 Strict Basic Superposition

The inference rules of (ground) strict basic superposition SBS are given in the Figure 3. One
observes that the calculus is simply the strict superposition calculus applied to marked ground
clauses represented by closures such that, with the condition (v), term replacement is not allowed at
substitution positions. Another characteristic property of the basic variant is that when generating
a clause by an inference, all its skeleton positions correspond to skeleton positions in the premises so
that no new skeleton positions are ever generated. Observe that the condition (ii) in the factoring
inference requires that also the skeletons of the factor equations to be identical (up to variable
renaming).

In investigating the reduction property for SBS we assume that candidate models Iw for sets
of ground clauses N be defined as before. Produced equations keep their marking of substitution
positions as present in the producing clause.

A set of ground clauses N is said to be!reduced if any clause C in N is reduced by Iw
C . From

the monotonicity of Iw, and considering the details of the clause orderings, we observe that if C is
reduced by Iw

C it is also reduced by Iw
N . No clause greater than or equal to C can produce a rule

18

that is smaller than some literal in C. We say that a reduced subset M of N is!maximal whenever
it contains all clauses in N which are reduced with respect to Iw

M .

Proposition 7.1 Any set of clauses contains a maximal reduced subset.

Proof. Define M = M(N) as the set of all clauses C in N which are reduced with respect to Iw
M(NC),

where M(NC) denotes, by induction hypothesis, the maximal reduced subset of NC . Observe that
M(NC) = MC , for any C. Moreover, a clause C in N is reduced with respect to Iw

M(NC) and, hence,
with respect to Iw

MC
, if and only if C is reduced with respect to Iw

M . (Productive clauses in M \MC

produce equations which are maximal in a clause not smaller than C. Such equations cannot be
smaller than any literal in C, hence, cannot order-reduce redexes in C.) We conclude that M is
reduced and maximal. 2

Theorem 7.2 Let N be a reduced set of clauses not containing the empty clause. Let C be the
minimal weak counterexample in N for Iw

N . Then there exists an inference in SBS from C such
that

(i) its conclusion D is a weak counterexample for Iw
N , is smaller than C, and is reduced with

respect to Iw
N ; and

(ii) if the inference is a superposition inference then C is its negative premise, and the positive
premise is a productive clause.

Proof. The proof proceeds by a case analysis of the various kinds of counterexamples that might
exist for Iw

N . Suppose the minimal weak counterexample C is of the form C ′ ∨ w≈ v where C is
reductive for w ⇒ v, hence in particular w � v. As C is a weak counterexample, C ′ is a weak
counterexample for Iw

N , and C is not productive. If a clause of this form is not productive, its
maximal term w must be reducible by a rule s≈ t in Iw

C which is produced by a clause D′′ = D′ ∨
s≈ t smaller than C. It follows that (w≈ v) � (s≈ t). w≈ v is order-irreducible by Iw

N , hence
irreducible by s≈ t at all its substitution positions. Therefore, s cannot occur at a substitution
position in w, so that

D′ ∨ s≈ t C ′ ∨ w[s]≈ v

w[t]≈ v ∨ C ′ ∨ D′

is an inference in SBS, assuming that the conclusion D = w[t]≈ v ∨ C ′ ∨ D′ inherits the marking
of the substitution positions from its premises as specified in SBS. From what we have said before,
the ordering constraints for the inference are, in fact, satisfied. As the maximal term w[s] in the
negative premise is reduced to w[t], we have (w[s]≈ v) � (w[t]≈ v) in any admissible ordering.
From (w[s]≈ v) � s≈ t � D′ we, therefore, infer that C � D. As D′′ is productive, D′ is a weak
counterexample for Iw

N . C is a weak counterexample by assumption, and, hence, so are C ′ and
C ′ ∨ D′. s≈ t is true in Iw

N , so that if w[t]≈ v had a direct rewrite proof in Iw
N , by applying s≈ t

to w[s], the proof could be extended to a direct rewrite proof of w≈ v, and C would not have been
be a weak counterexample. In short, D is a weak counterexample.

It remains to be shown that D is reduced. The C ′ ∨ D′ part of D inherits the substitution
positions from the respective premises which are order-irreducible by assumption. It is also easy to
see that the new literal w[t]≈ v is order-irreducible. If a redex occurs at a substitution position in
t, reducing it by any rewrite rule would order-reduce the corresponding position in s≈ t. Redexes

19

at substitution positions outside t in w[t]≈ v also occur in the substitution part of w[s]≈ v and are,
by assumption, irreducible by rules smaller than w[s]≈ v. In summary, D is reduced.

If the minimal weak counterexample C is of the form w 6≈ v ∨ C ′ where (w 6≈ v) � max(C ′)
then two cases may arise. Suppose that w � v. For C to be a weak counterexample, w≈ v has a
rewrite proof in Iw

N , so that w is reducible by a rule s≈ t in Iw
C . Suppose that s≈ t is produced by

D′′ = D′ ∨ s≈ t. Then the proof for this case is essentially as before, deriving a smaller reduced
weak counterexample by a negative strict basic superposition inference from D′′ and C. If w = v
we may use reflexivity resolution to construct a smaller reduced weak counterexample.

The remaining case for C is that of a (non-reductive, hence, non-productive) clause of the form
(C ′ ∨ s≈ t ∨ s′≈ t′) ·σ, with (s≈ t) ·σ � max(C), sσ � tσ. Moreover, since neither is greater than
the other in the literal ordering, (s≈ t) · σ and (s′≈ t′) · σ are identical up to variable renaming.
In particular, sσ = s′σ, tσ = t′σ, s ≡ s′ and t ≡ t′. This form of a weak counterexample can be
reduced by a factoring inference. 2

The theorem in part (i) states that SBS has the reduction property for weak counterexamples in
reduced sets of clauses. It in addition asserts that the smaller counterexample is again a reduced
clause, which is important for effective saturation.

A set of clauses N is called!schematic, whenever there exists a set of (general) clauses M such
that N is the set of closures C · σ with C in M and σ an arbitrary ground substitution. The
reduction property of SBS implies its refutational completeness for schematic sets of clauses. We
will, however, right away prove a stronger result which shows that SBS is, in addition, compatible
with an appropriate notion of redundancy. The new redundancy criterion will be the same as Rw

except that it refers only to reduced weak counterexamples. Let us call a clause C !redundant with
respect to a set of clauses N if for all convergent (with respect to �) rewrite systems R for which C
is a weak counterexample and reduced, N contains a reduced weak counterexample D for R such
that C � D. By Rc(N) we denote the set of clauses redundant with respect to N . N is called
!saturated up to redundancy with respect to SBS if SBS(N \ Rc(N)) ⊆ N ∪Rc(N).

In order to show that N ∪ {C} ` N ∪ {D} is a simplification that is compatible with Rc, one
now has to show that C and D are logically equivalent, C � D, and C is in Rc(N ∪ {D}). A
sufficient criterion ensuring that C is in Rc(N ∪ {D}) is when C is in Rw(N ∪ {D}) and when,
for any convergent rewrite system, D is reduced whenever C is reduced. The latter will be the
case if subterms s at substitution position in a literal L of D also occur in C at a substitution
position of a literal L′ such that L′ � L. With this criterion of !relative order reducibility, the
techniques discussed in the Section 6 can be appropriately refined. The specificities of Rc with
regard to reducibility provide us with additional simplification rules. The following rule has turned
out to be of some use in the context of equality elimination transformations (Bachmair, Ganzinger
& Voronkov 1997):

!Ground reflexivity resolution:

N ∪ {(C ∨ x 6≈ y) · σ} `
{

N ∪ {C · σ}, if xσ = yσ
N, if xσ 6= yσ

where x, y are variables.

Because of the requirement that x and y be variables, relative order reducibility can easily be
shown. In the first variant, the simplified clause is clearly equivalent and smaller. In the second
case, suppose that R is a convergent rewrite system and (C ∨ x 6≈ y) · σ is a weak counterexample
for R. Then xσ≈ yσ must converge in R. As these two terms are different, at least one of them

20

must be reducible by R, hence x 6≈ y · σ is order-reducible by R. Hence, whenever (C ∨ x 6≈ y) · σ is
order-irreducible, it is not a weak counterexample. Therefore, (C ∨ x 6≈ y) · σ is redundant.

On the level of non-ground closures C · γ, with equality constraints γ generalizing the concept
of ground subsitutions in ground closures, the simplification rule can be represented as

!Reflexivity resolution:
N ∪ {(C ∨ x 6≈ y) · γ} ` N ∪ {C · (γ ∧ x = y)}, where x, y are variables.

Theorem 7.3 Let N be a set of clauses which is saturated up to redundancy with respect to SBS.
Moreover, assume that N contains a schematic subset K such that every clause in N \K is a logical
consequence of K. Then either N contains the empty clause, or else N is satisfiable.

Proof. Let N not contain the empty clause, let N ′ denote N \ Rc(N), and let M ′ be a maximal,
reduced subset of N ′. Assume for the purpose of deriving a contradiction that M ′ contains a
minimal weak counterexample C for IM ′ . As C is not redundant with respect to N it is also
non-redundant with respect to its subset M ′. Applying the Theorem 7.2, part (i), to M ′, we infer
the existence of a smaller, reduced weak counterexample D for IM ′ . As N is saturated, D is an
element of N ∪ Rc(N). By definition of Rc this implies the existence of a clause D′ in N which
is smaller than C, reduced with respect to IM ′ , and a weak counterexample for IM ′ . The smallest
such D′ cannot be redundant in N , hence it is in N ′ and even in M ′, since it is reduced. But this
is a contradiction to the minimality of C. Therefore, IM ′ is a model of M ′.

We next show that IM ′ is also a model for K. If C is any clause in K, then we may consider
the clause D in M ′ which results from C normalizing any subterm at a substitution position by
IM ′ . If D is in N ′ then, by maximality of M ′, it is also contained in M ′ and therefore true in IM ′ ,
which in turn implies that C is true in IM ′ . If D is redundant with respect to N then, if it were
counterexample for IM ′ , N would also contain a non-redundant, reduced weak counterexample for
IM ′ , which we have already shown to be impossible. Again, D, hence C, is true in IM ′ . In summary,
all clauses in K, and therefore all clauses in N , are true in IM ′ . 2

Whenever N is the closure under SBS (ignoring inferences involving redundant clauses) of some
initially given set N0 of (general) clauses then the set K of ground instances of N0 is schematic
and, hence, this theorem can be applied.

In summary, SBS can be lifted to any suitable notion of constrained clauses.

7.4 Optimized Variable Chaining

The preceding completeness results have been proved for the class admissible orderings. We shall
now define a particular subclass of such orderings for which certain superposition inferences from
variables in skeletons become impossible.

Given a complete reduction ordering � on terms, one may extend � to (marked) ground literals
L by associating a complexity measure c as follows: c(L) = (max(L), P, V,min(L)), where (i) P is
1 if the literal is negative, and 0, otherwise; and (ii) V is 1 if the root position of the maximal term
max(L) of L belongs to the substitution part of L, and V is 0, otherwise. With this, we define
L � L′ whenever c(L) � c(L′), where the quadruples are compared lexicographically, using � for
terms and 1 > 0 for the bits P and V . This gives us only a partial ordering on marked literals
(it is possible for two literals that differ in their markings to have the same complexity measure
associated) which we assume to be extended to a total ordering in an arbitrary, but well-founded,

21

manner. The V bit makes literals where the maximal term lies entirely within the substitution part
larger than other literals with the same maximal term and polarity.

Let us illustrate this class of literal orderings in terms of what it implies for order reducibility. If
a � b � c, the clause (f(x)≈ b ∨ f(x)≈ a) · [a/x] is reduced with respect to the system {fa≈ a},
but z 6≈ c · [fa/z] and (x≈ b ∨ fy≈ a) · [fa/x, a/y] are not. In the latter case we observe that
(x≈ b) · [fa/x] � (fa≈ a) since the redex is an instance of a variable.

The significance of this particular literal ordering lies in the avoidance of positive top-level
superposition inferences from variables.

Theorem 7.4 With the specific class of orderings, in SBS� no positive superposition inference
from a variable into the topmost position of another positive equation is possible.

Proof. For positive superposition inferences of the form

(C ∨ s≈ t) · σ (D ∨ s′≈ v) · σ
(t≈ v ∨ C ∨ D) · σ

(with sσ = s′σ and s′ not a variable) we observe that s cannot be a variable as otherwise the
ordering constraints (s′≈ v) · σ � (s≈ t) · σ for the inference would be violated. In fact, the
maximal terms and the polarities of the two literals are identical, while, if s is a variable, the V bit
for (s≈ t) · σ is 1, but V = 0 in c((s′≈ v) · σ). 2

Superposition through variables is extremely prolific since unification provides for no effective filter
in such cases. Superposition into substitution positions, in particular variables, are excluded in SBS,
regardless of the ordering. With the specific class of literal orderings (which are based on arbitrary
reduction orderings on terms), in addition, no positive superposition inferences from a skeleton
variable into the topmost position of any other positive equation is required. This observation has
been crucial for recent results in (Bachmair et al. 1997) on equality elimination transformations
suitable for model elimination provers. In the latter paper we may safely adopt this variant of
positive strict basic superposition:

!

(C ∨ s≈ t) · σ (D ∨ w[s′]≈ v) · σ
(w[t]≈ v ∨ C ∨ D) · σ

where sσ = s′σ, and (i) sσ � tσ, (ii) wσ � vσ, (iii) (s≈ t) · σ � C · σ, (iv) (w≈ v) · σ � D · σ,
and (wσ, vσ) �lex (sσ, tσ), and (v) s′ is not a variable, and either s is not a variable or else s′

is a proper subterm of w,

which is the specialization of the general inference with respect to the specific class of literal
orderings.

8 Chaining Calculi

Equality is a special case of a transitive relation. Calculi of ordered chaining have been developed
by Bachmair & Ganzinger (1994c) which may be viewed as generalizations of superposition to
possibly non-symmetric transitive relations, including partial and total orderings. Many of these

22

calculi contain an inference, called!transitivity resolution, which generalize equality factoring to the
non-symmetric case. With the concept of weak counterexamples, one may get rid of transitivity
resolution just like we were able to eliminate equality factoring from superposition. For general
transitive relations R, chaining from and/or into variables cannot be avoided. Hence, for the general
case that we treat below, there is no technical problem related to lifting so that the markings in
clause can be ignored, and a setup with closures is not required when presenting the inference
systems. However, in the presence of additional axioms for R, some, if not all, chaining inferences
through variables are redundant. For those optimized calculi, one again needs to resort to specific
orderings on literals that depend on the distinction between substitution and skeleton positions,
cf. (Bachmair & Ganzinger 1995) for details.

In the Figure 4 we present (the ground version of) a calculus of ordered chaining OC for one
transitive relation S. In a chaining or resolution inference, the first premise is called the positive
premise, and the second premise is called the negative premise of the inference. We now assume
that we have an arbitrary signature of predicate symbols, including the binary symbol S which
is assumed to be a transitive relation. Non-S atoms are eliminated by ordered resolution. OC
is parameterized by a well-founded, total ordering on ground terms. The concept of admissible
orderings is now slightly different from the equational case. A well-founded ordering � on ground
literals and ground terms is called!admissible if (i) � is a total ordering on ground literals, (ii) � is
a total ordering3 on ground terms, and (iii) if L and L′ are two S literals, then L � L′, whenever
(iii.1) max(L) � max(L′), or (iii.2) max(L) = max(L′), L is a negative, and L′ a positive literal, or
(iii.3) max(L) = max(L′), L and L′ have the same polarity, and max(L) occurs as the left argument
of S in L but does not occur as the left argument of S in L′. (Again, by max(L) we denotes the
maximal term (in �) of an S atom in a literal L). Since S is generally non-symmetric, admissible
literal orderings also consider the argument position of the maximal term in an S literal. Otherwise
there are no requirements about literal orderings. In particular, non-S atoms may be compared
arbitrarily. As before, an admissible clause ordering is the multi-set extension of an admissible
literal ordering, and we will only consider admissible orderings on literals and clauses.

We will show that the calculus is reductive for weak counterexamples. For this purpose we
provide a model functor similar to what we did in the equational case. The construction requires
an adaptation of the notion of a rewrite proof. Let I be a set of ground atoms over the given
signature. An atom A has a!rewrite proof in I if either (1) A is in I; or else (2) A = S(s, t) and
there exist ground terms s = s0, . . . , sk = tn, . . . , t0 = t, such that (i) si � si+1, (ii) tj+1 ≺ tj, (iii)
the!rules S(si, si+1) and S(tj+1, tj) which are!used in the proof are contained in I. We shall write
s ⇓I t, whenever S(s, t) has a rewrite proof in I. An atom is called!true in I if there exists a rewrite
proof for it in I, and is called!false in I, otherwise. The extension of this notion of truth to literals
and clauses is as usual. A clause which is false in I is also called a!counterexample for I. A clause
C is called a!weak counterexample for I if for any negative literal ¬A in C, A is true in I, and if
for no positive literal B in C there exists a direct rewrite proof in I. As in the equational case, in
a direct rewrite proof all rules that are used in the proof have to be smaller or equal to the atom
being proved.

In short, given the notion of rewrite proof for general transitive relations, the concept of weak
counterexample is otherwise the same as for the equational case: for verifying positive literals, one
may not rewrite with an R atom that is larger that the fact to be proved.

The definition of the model functor Iw is now essentially the same as for equational clauses and
weak counterexamples. Only the concept of a productive clause has to be adapted appropriately.

3In the absence of subterm chaining inferences, � need not necessarily be a reduction ordering on terms.

23

Let J be an interpretation. A clause C of the form D ∨ s≈ t is called!productive on J if
(i) A � C
(ii) D is a weak counterexample for J , and
(iii) if A = S(s, t), with s � t, then u ⇓J t, for any u such that s � u and S(u, s) is in J .

We also say that C !produces A from J . With this, we inductively define IN as

IN = {A | ∃C ∈ N : C produces A from INC
}.

Again, whenever the set N is known from the context or assumed to be arbitrary then we will also
omit the index N and also simply write Iw

C for Iw
NC

. Note that the set of atoms S(s, t) which have a
rewrite proof in Iw

N represents a transitive relation. S atoms that would result in a non-convergent
“peak” S(u, s);S(s, t) are, due to condition (iii), not produced. Note that atoms of the form S(u, s),
with s � u, do not require an analogue of (iii) since no atom S(s, t), with s � t, can be smaller
than S(u, s) in any admissible literal ordering. The technicalities of the clause ordering imply that
if D is a clause in N , and if C and D′ are other clauses such that D′ � D � C, then C is a weak
counterexample for Iw

D if, and only if, C is a weak counterexample for Iw
D′ .

Theorem 8.1 Let N be a set of ground clauses not containing the empty clause. Let C be the
minimal weak counterexample in N for Iw

N . Then there exists an inference in OC from C such that
(i) its conclusion is a weak counterexample for Iw

N and is smaller than C; and
(ii) if the inference is a chaining inference or a resolution inference then C is its negative premise

and the positive premise is a productive clause.

This theorem can be again be easily verified by an inspection of all the possible forms of counterex-
amples.

The theorem in part (i) states that S has the reduction property, and hence is refutationally
complete and compatible with the removal of redundant clauses if redundancy is defined by the
criterion Rw. In that definition the concept of a convergent ground rewrite system has to be
replaced by Herbrand interpretations R in which the set of S atoms that have a rewrite proof in
R is a transitive relation. Part (ii) of the theorem gives further semantic restrictions to OC which
may be exploited with a notion of redundancy for inferences in addition to the one for clauses.

Theorem 8.2 N be saturated up to redundancy with respect to OC. Then N has a model in
which S is a transitive relation if, and only if, N does not contain the empty clause.

24

!Positive chaining

C ∨ S(t, s) D ∨ S(s, v)
S(t, v) ∨ C ∨ D

where (i) s � t, (ii) s � v, (iii) S(t, s) � C, and (iv) S(s, v) � D.

!Negative chaining

C ∨ S(s, t) D ∨ ¬S(s, v)
¬S(t, v) ∨ C ∨ D

where (i) s � t, (ii) s � v, (iii) S(s, t) � C, and (iv) ¬S(s, v) � max(D);

and

C ∨ S(t, s) D ∨ ¬S(v, s)
¬S(v, t) ∨ C ∨ D

where (i) s � t, (ii) s � v, (iii) S(t, s) � C, and (iv) ¬S(v, s) � max(D).

!Ordered resolution

C ∨ A D ∨ ¬A

C ∨ D

where (i) A � C, and (ii) ¬A � max(D).

!Ordered Factoring

C ∨ A ∨ A

C ∨ A

where A � max(C).

Figure 4: !Ordered Chaining OC

25

9 Conclusions

This paper solves a long-standing open problem showing that the superposition calculus by Zhang &
Kapur (1988) is refutationally complete if certain tautologies are not eliminated. More precisely, we
have shown that slight restrictions of the usual simplification and redundancy elimination techniques
are compatible with strict basic superposition, a substantially more restrictive form of ZK. The
completeness results have been proved for large classes of admissible orderings on terms and literals.
In particular one may choose literal orderings which generally avoid positive superposition inferences
from variables into the top position of positive equations. The results have also been extended to
ordered chaining, showing that transitivity resolution and composition resolution inferences are not
required.

On the methodological level we have been able to make our previous proof techniques more
transparent. The two main components in such proofs, reduction of counterexamples through in-
ferences and the identification of clauses that cannot become counterexamples have been strictly
separated. Constructions similar to our candidate models for superposition have been sketched,
but not formalized with the required mathematical rigor, by Zhang (1988). Already Brand’s proof
in (1975) of his equality elimination method contains related ideas. The present definitions, in-
cluding redundancy, have originated from (Bachmair & Ganzinger 1990), where, however, proofs
are technically more difficult in that they deal with counterexample reduction and redundancy
simultaneously. Shortly after, Pais & Peterson (1991) have given a similar proof of completeness of
superposition, however, without presenting a general concept of redundancy. For SBS the semantic
concept of counterexamples as suitable for non-strict superposition needed to be replaced by a
proof-theoretic notion based on direct rewrite proofs.

From a theoretical point of view, strict basic superposition is rather appealing in that the two
main issues in equational clause logic, transitivity and disjunction, are now clearly separated. As to
whether strict basic superposition is the method of choice in practice still needs to be seen. Due to
the technical complications with the basic setup and with simplification, implementing the calculus
efficiently appears to be a non-trivial task.

References

Bachmair, L. & Ganzinger, H. (1990), On restrictions of ordered paramodulation with simplification, in
M. Stickel, ed., ‘Proc. 10th Int. Conf. on Automated Deduction, Kaiserslautern’, Vol. 449 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, pp. 427–441.

Bachmair, L. & Ganzinger, H. (1994a), Ordered chaining for total orderings, in ‘Proc. 12th International
Conference on Automated Deduction’, Vol. 814 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin, pp. 435–450.

Bachmair, L. & Ganzinger, H. (1994b), ‘Rewrite-based equational theorem proving with selection and sim-
plification’, Journal of Logic and Computation 4(3), 217–247. Revised version of Technical Report
MPI-I-91-208, 1991.

Bachmair, L. & Ganzinger, H. (1994c), Rewrite techniques for transitive relations, in ‘Proc. 9th IEEE
Symposium on Logic in Computer Science’, IEEE Computer Society Press, pp. 384–393.

Bachmair, L. & Ganzinger, H. (1995), Ordered chaining calculi for first-order theories of binary relations,
Technical Report MPI-I-95-2-009, Max-Planck-Institut für Informatik, Saarbrücken. Revised version to
appear in JACM.

Bachmair, L., Ganzinger, H., Lynch, C. & Snyder, W. (1992), Basic paramodulation and superposition, in
D. Kapur, ed., ‘Automated Deduction — CADE’11’, Vol. 607 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, pp. 462–476.

26

http://www.mpi-sb.mpg.de/~hg/pca.html#LICS94
http://www.mpi-sb.mpg.de/~hg/pra.html#MPI-I-95-2-009

Bachmair, L., Ganzinger, H. & Voronkov, A. (1997), Equality elimination with ordering constraints, Tech-
nical Report MPI-I-97-2-012, Max-Planck-Institut für Informatik, Saarbrücken.

Brand, D. (1975), ‘Proving theorems with the modification method’, SIAM J. Comput. 4, 412–430.

Nieuwenhuis, R. & Rubio, A. (1992a), Basic superposition is complete, in ‘ESOP’92’, Vol. 582 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, pp. 371–389.

Nieuwenhuis, R. & Rubio, A. (1992b), Theorem proving with ordering constrained clauses, in ‘Automated De-
duction — CADE’11’, Vol. 607 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 477–
491.

Pais, J. & Peterson, G. (1991), ‘Using forcing to prove completeness of resolution and paramodulation’,
Journal of Symbolic Computation 11, 3–19.

Zhang, H. (1988), Reduction, superposition and induction: Automated reasoning in an equational logic,
PhD thesis, Rensselaer Polytechnic Institute, Schenectady, New York.

Zhang, H. & Kapur, D. (1988), First-order theorem proving using conditional rewrite rules, in E. Lusk &
R. Overbeek, eds, ‘Proc. 9th Int. Conf. on Automated Deduction’, Vol. 310 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 1–20.

27

http://www.mpi-sb.mpg.de/~hg/pra.html#MPI-I-97-2-012

���
�

�� k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via
WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Birgit Hofmann
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-97-2-010 S. Vorobyov, A. Voronkov Complexity of Nonrecursive Logic Programs with
Complex Values

MPI-I-97-2-009 A. Bockmayr, F. Eisenbrand On the Chvátal Rank of Polytopes in the 0/1 Cube

MPI-I-97-2-008 A. Bockmayr, T. Kasper A Unifying Framework for Integer and Finite
Domain Constraint Programming

MPI-I-97-2-007 P. Blackburn, M. Tzakova Two Hybrid Logics

MPI-I-97-2-006 S. Vorobyov Third-order matching in λ→-Curry is undecidable

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-004 W. Charatonik, A. Podelski Solving set constraints for greatest models

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many
propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Viganò Labelled modal logics: quantifiers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware
Verification

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories
of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D.A. Basin, S. Matthews, L. Viganò Natural Deduction for Non-Classical Logics

