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Abstract. We show that finding roots of Boolean matrices is an NP-
hard problem. This answers a twenty year old question from semigroup
theory. Interpreting Boolean matrices as directed graphs, we further re-
veal a connection between Boolean matrix roots and graph isomorphism,
which leads to a proof that for a certain subclass of Boolean matrices
related to subdivision digraphs, root finding is of the same complexity
as the graph-isomorphism problem.

1 Introduction

Multiplication of Boolean zero-one matrices is defined as ordinary matrix mul-
tiplication with + and · replaced by the Boolean operations ∨ and ∧. So the
matrix product C = AB is given by

cij =
∨n

h=1
aih ∧ bhj ,

and as with matrices over fields, the kth power Ak of a Boolean n × n matrix A
is simply the k-fold product of A with itself.

Besides its theoretical relevance for semigroup theory, Boolean matrix algebra
serves as a fundamental tool in algorithmic graph theory. Efficient algorithms
for transitive-closure or shortest-path computations rely on the interpretation of
directed graphs as Boolean matrices [16,1,3].

In this work, we investigate the computational complexity of finding roots
of a given Boolean matrix. A kth root of a square Boolean matrix B is some
other matrix A whose kth power Ak equals B. Twenty years ago, in the open
problems section of his book [9], Kim asked if given a matrix B, such a root A
can be computed in polynomial time or whether this problem is perhaps NP-
complete. (Actually, he inquired for the case k = 2 only.) We give an answer to
that question.

Theorem 1. Deciding whether a square Boolean matrix has a kth root is NP-
complete for each single parameter k ≥ 2.
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With the “right” computational problem for the reduction, the proof of this
result turns out surprisingly simple. This is quite remarkable since it thus relates
Boolean matrix roots to a well-known NP-complete problem, which yields insight
in the local structure of Boolean matrices.

In the second, technically more challenging part of our work, we reveal further
properties of matrix roots which show a close relation to graph isomorphism.
This eventually leads to a proof that for a certain subclass of Boolean matrices
kth root computation is graph-isomorphism complete. Before we can state this
result precisely, we have to switch from matrices to the graph theoretic point
of view. Actually, throughout this whole exposition we shall interpret Boolean
matrices as adjacency matrices of directed graphs.

Boolean Matrices and Graph Theory. Any Boolean n × n matrix A = (aij) can
be interpreted as a directed graph D on the vertex set {1, . . . , n} with an arc
from j to i iff aij = 1. So D may have loops but no multiple arcs. The kth power
of D, k ∈ N, is the directed graph Dk defined on the same vertex set and with
an arc from a to b if and only if there is a directed walk of length exactly k from
a to b in D (possibly visiting some vertices several times); compare the figure.
It is easy to see that the adjacency matrix of Dk is in fact the kth power of the
adjacency matrix of D (see, for example, [18]).1

So taking the graph theoretic point of view, we investigate the kth-root prob-
lem for digraphs: given a directed graph D, does there exist another digraph R
(on the same vertex set) such that Rk = D. Our answer to the guiding question
then reads as follows.

Theorem 1 (digraph version). Deciding whether a digraph has a kth root is
NP-complete for each single parameter k ≥ 2.

Our second main result, which relates roots to isomorphisms, is based on
subdivisions, defined as follows.

Definition 1. The complete subdivision of a digraph D is the digraph obtained
from D by replacing each arc a → b of D by a new vertex xab and the two arcs
a → xab → b. We call a digraph a subdivision digraph if it is (isomorphic to)
the complete subdivision of some digraph.

1 Alternatively, one might view a Boolean matrix as a binary relation. Then the kth
matrix power is simply the k-fold composition of this relation.
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Subdivisions are a fundamental notion in graph theory. But opposed to their
common usage in relation with topological minors, we employ them here to
equip our graphs with a certain stiffness that makes root finding computationally
simpler. In fact, under an additional minor degree condition on which we shall
comment later, we can show that finding roots of such graphs is of the same
complexity as the graph-isomorphism problem.

Theorem 2. Deciding whether a subdivision digraph with positive minimal in-
degree and outdegree has a kth root, is graph-isomorphism complete for each
parameter k ≥ 2.

Graph Isomorphism. The graph-isomorphism problem asks: are two given (di)-
graphs2 isomorphic or not? It is neither known to have a polynomial-time solu-
tion nor is it known to be NP-complete. On the contrary, it is a prime candidate
for a problem strictly between P and NP-completeness (cf. [10] and [12]). A com-
putational problem of the same complexity as the graph-isomorphism problem
is called graph-isomorphism complete, or simply isomorphism complete because
isomorphism problems for several algebraic or combinatorial structures fall into
this class. For example, isomorphism of semigroups and finite automata [2],
finitely represented algebras, or convex polytopes [8]. Other problems ask for
properties of the automorphism group of a graph, for example, computing the
size of the automorphism group or its orbits [14].3 Finally, several restrictions of
the graph-isomorphism problem are known to remain isomorphism complete, as
for example isomorphism of regular graphs [2].

As the above list indicates, actually all problems known to be isomorphism
complete are more or less obviously isomorphism problems of various combina-
torial structures. Hence, the relation between digraph roots and graphs isomor-
phism established through Theorem 2 may come quite as surprise.

Theorem 2 rests on a structural result which states that any kth root of a
subdivision digraph D essentially establishes a one-to-one correspondence be-
tween k isomorphic subgraphs of D (Theorem 3). Due to space constraints, we
shall only sketch the proofs of Theorems 1, 2, and 3, stating some of the central
lemmas that pave the way.

2 Related Work—Related Questions

Over the field of complex numbers or the reals, matrix roots are a well-studied
and still up-to-date topic of linear algebra [11,7,17]. But results from that field
of research do generally not apply to Boolean matrices. While it is known, for
example, that every regular matrix over the complex numbers has a kth root for

2 One usually considers undirected graphs but it is well-known and easily seen that
with respect to their computational complexity the undirected and directed version
of the problem are equivalent.

3 The latter two problems are known to be isomorphism complete only in the weaker
sense of Turing reduction, as opposed to the concept of many-one reduction.
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any k ≥ 2 [17], this is not true for Boolean matrices, as the invertible matrix
(

0
1

1
0

)

shows. Further, complex or real matrices are amenable to numerical methods like
Newton iteration [6], whereas such techniques clearly do not apply to Boolean
matrices. When it comes to roots, Boolean matrices don’t seem to have much in
common with matrices over C since the former behave much more rigidly than
the latter.

The situation is, however, slightly different if we ask for powers of a matrix
instead of roots. There are theoretical results on Boolean matrix powers [4] and
in practice we can of course compute the kth power of a Boolean matrix A by
treating it as a matrix over the reals. We calculate Ak over R and afterwards
replace each positive entry with 1. This simple reformulation allows us, for ex-
ample, to apply fast matrix multiplication methods such as Strassen’s to path
problems in graphs [16,1]. But this simulation through matrices over the reals
clearly only works because there cannot happen cancellation between positive
and negative entries. For root finding, such simulation over R or C would lead
into major problems.

Alternative Notions of Graph Powers. A problem similar to the one at hand
has been discussed by Motwani and Sudan. In [15] they showed that computing
square roots of undirected graphs is NP-hard. But their notion of graph powers
differs from ours in two important points.

They consider undirected graphs only, which corresponds to having bidirec-
tional edges in our setting. This not only restricts the set of possible inputs but
also—and this is the decisive difference—the solutions. For example, the four-
vertex graph consisting of two disjoint bidirectional arcs has the directed 4-cycle
as a square root, but no undirected graph can be a root.

Further, Motwani and Sudan define squaring to maintain existing edges,
which in our setting would corresponds to attaching loops to all vertices. This
monotonicity ensures that much information of the underlying graph can be
read off from its square and the hardness proof of [15] makes essential use of this
property. In contrast to this, squaring a digraph under the rules derived from
Boolean matrix multiplication can almost completely destroy the neighborhood
information and may even decompose the digraph. Actually, most of our argu-
ments depend crucially on such “vanishing edges.” So apparently, the squares in
[15] and our notion of powers are essentially different concepts.

3 NP-Completeness

We now sketch the proof of Theorem 1, presenting the two main ingredients for
our NP-completeness result: a suitable NP-complete problem and a many-one
reduction from that problem to digraph roots.

Surprisingly, the reduction is very straightforward, it goes without any so-
phisticated gadgets. This simplicity indicates that the two problems are actually
very closely related. While skipping the details of the correctness proof here,
we elaborate a bit on the reduction to visualize and endorse this claim. The
appropriate problem for our reduction is the set-basis problem:
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Let C be a collection of subsets of some finite set S. A set basis of C is another
collection B of subsets of S such that each C ∈ C can be written as a union of
sets from B. Given a finite set S together with such a collection C of subsets
of S and an integer r ≤ |S|, the set-basis problem asks whether there exists a
set basis B for C consisting of at most r sets. This problem is known to be
NP-complete [19].

The Reduction. The key idea for the reduction stems from the following general
observations about digraph square roots.

Consider some set X of vertices of a digraph D and let Z denote all outneigh-
bors of vertices in X. Let us assume for simplicity that X and Z are disjoint, so
in particular, there are no loops or cycles. Then in a square root of the digraph
D, any of the arcs from X to Z must be realized as walks of length two and since
there are no loops, these walks are actually paths. Hence, in the root there must
exist a set Y of “intermediate vertices” through which all these paths can pass.
If now—for whatever reason—there is only a small number of such intermediate
vertices available, |Y | ≤ r, say, with r a little smaller than |Z|, these paths have
to interact in order to ship all their information from X to Z.

We claim that the the square-root problem for these sets X, Y , and Z is
nothing but a set-basis instance. This is easily seen by interpreting Z as the
ground set S and X as a collection of subsets of S, defined trough containment
relations given by the original D-arcs. The vertices in Y represent the set basis
where the root arcs from Y to Z define the subsets and the arcs from X to Y
tell us how to represent sets in X as unions of Y -sets.

In order to turn a set-basis instance into a digraph, we simply draw the
containment graph of the set system C on S and provide the right number of
intermediate vertices. In the general case of kth roots that would be k − 1 times
r vertices, which we leave almost isolated except for some framework arcs to
ensure that any root uses them as intended.

Interpretation. We emphasize that the given set-basis instance is completely
maintained by our reduction. Its containment relations are encoded one-to-one
by arcs of the digraph. Moreover, the preceding discussion shows that an instance
of the digraph-root problem can be seen as a large collection of interacting set-
basis problems. One might well argue that finding digraph roots is actually a
generalized set-basis problem.

As a corroboration for this point of view we mention that the set-basis
problem already appeared before in connection with Boolean matrix algebra.
Markowsky [13] used it in a very economic proof for the NP-completeness of
Schein-rank computation.4

4 Analogous to the matrix rank over fields, the Schein rank of a Boolean matrix A is
the minimal integer ρ such that A can be represented as a Boolean sum A =

∨ρ

i=1
ciri,

where the ci are column and the ri row vectors with zero-one entries [9, Sec. 1.4].



The Complexity of Boolean Matrix Root Computation 217

4 Roots and Isomorphism

In this second part, we establish the isomorphism-completeness result of Theo-
rem 2. Our considerations are guided by the following fundamental connection
between digraph roots and digraph isomorphism.

Proposition 1. Let D = D1∪̇D2∪̇· · ·∪̇Dk be the disjoint union of k isomorphic
digraphs D1, . . . , Dk. Then D has a kth root.

Because the proof is short, instructive, and of importance for the general un-
derstanding of Theorem 2, we briefly sketch the ideas. We construct the sought-
after root R on the vertices of D from the isomorphisms ϕi: D1 → Di, 1 ≤ i ≤ k
(ϕ1 being simply the identity). For each vertex a of D1, we let R contain the
path ϕ1(a) → ϕ2(a) → · · · → ϕk(a) and additionally the arcs ϕk(a) → b for all
D-outneighbors b of a. The following figure shows a local picture of this con-
struction. (The continuous lines form the root, the dashed lines the given D.)
One easily verifies that in fact, Rk = D.

Obviously it was essential to switch from matrices to digraphs. While it
might be possible to carry out our NP-completeness proof in terms of matrices,
the statement and proof of Proposition 1 clearly belong to the realm of graph
theory.

Identifying Subdivision Vertices

The crucial step towards our isomorphism-completeness result is to show that
subdivision digraphs almost satisfy a converse of Proposition 1. That is, any root
of such a digraph carries an isomorphism structure of its components. However,
we have to take care of some degenerate cases that do not fit into this picture.

Usually in a subdivision digraph, one can easily distinguish the original ver-
tices, commonly called the branching vertices, from the subdivision vertices. In
fact, a subdivision digraph is obviously bipartite and as soon as every weakly
connected component contains at least one vertex whose indegree or outdegree
differs from 1, the two classes can be uniquely identified.

A problem arises with subdivision digraphs that contain isolated cycles (of
even length). In such components, all vertices look like subdivision vertices and
this absence of clearly identifiable branching vertices leads to untypical behavior
with respect to root finding. Fortunately, isolated cycles are simple objects and
we can completely describe their powers.
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Lemma 1. The kth power of a directed cycle of length r is the disjoint union
of gcd(r, k) cycles of length r/gcd(r, k).

As a consequence, isolated cycles clearly cannot have the isomorphism prop-
erty we are looking for. But this is no problem. It turns out that a vertex that
lies on an isolated cycle of a subdivision digraph D must also lie on an isolated
cycle in any root of D. Thus, with respect to roots, cycle vertices do not interact
with the other vertices of a subdivision digraph and so we may in the following
restrict our attention to subdivision digraphs without cycles. Then each vertex
can really be uniquely identified as subdivision or branching vertex.

From Roots to Isomorphisms

With all isolated cycles removed, subdivision digraphs now bear the desired iso-
morphism structure, under the unfortunately indispensable additional condition
that each vertex has at least one inneighbor and one outneighbor.

Theorem 3. A subdivision digraph without isolated cycles and with positive
minimal indegree and outdegree has a kth root if and only if it is the disjoint
union of k isomorphic digraphs.

The proof of Theorem 3 is lengthy and rather technical and we have to
omit the details due to space constraints, but the key ideas are easily explained:
Recall the long root paths in the proof of Proposition 1. Each inner vertex
had indegree and outdegree exactly 1 in R. Theorem 3 rests on the fact that
conversely, any root of a subdivision digraph satisfying the preconditions has
exactly this structure, i.e., it consists mainly of paths of length k − 1 on which
no other paths enter or leave. From those paths one can read off the desired
isomorphisms. Let us substantiate these ideas by stating some of the central
lemmas.

Long Paths. Our aim is to assign each vertex of R to a path of exactly k vertices,
the beginning and end of which shall be uniquely determined.

Lemma 2. Let R be a kth root of a subdivision digraph D without isolated
cycles. Then any subdivision vertex of D lies on an R-path a1 → a2 → · · · →
ak of length k − 1 where each ai, 1 ≤ i ≤ k, is a subdivision vertex of D.
Moreover, such a path is maximal in the sense that the inneighbors of a1 and
the outneighbors of ak are branching vertices of D.

There exists an analog of Lemma 2 for branching vertices, which looks almost
the same, with the exception that we have to forbid isolated vertices. So here
the degree condition of Theorem 3 enters the first time, in a weakened form.

An attempt to prove Lemma 2 directly, faces a principal problem: subdivision
vertex and branching vertex are global notions. A branching vertex with indegree
and outdegree 1 is locally indistinguishable from a subdivision vertex. We resolve
this ambiguity by ignoring the global picture for a moment, calling a vertex thin
if it looks like a subdivision vertex, i.e., if it has indegree and outdegree 1 in D.
For such vertices, we can prove a preliminary version of Lemma 2.
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Lemma 3. Let R be a kth root of a subdivision digraph D and let a0 → a1 →
· · · → al be an R-walk of length l ≤ k between two D-thin vertices a0 and al.
Then all ai, 1 ≤ i < l, are also thin (with respect to D).

The arguments employed in the proof of Lemma 3 are typical for most of
our intermediate results on the way to Theorem 3. Thinness in D tells us that
all R-walks starting from a0 and al have to meet again after exactly k steps.
We use these confluent walks to “sandwich” R-walks that start from one of
the intermediate vertices ai, showing that those walks also meet again after a
certain number of steps. Thinness of ai in D finally follows from the simple
but important observation that in a subdivision digraph, two different vertices
cannot have common inneighbors and common outneighbors at the same time.

Combining Lemma 3 with its analog for non-thin vertices eventually leads to
a proof of Lemma 2 and its counterpart for branching vertices.

Unique Arcs. In order to use the paths from the preceding paragraph for isomor-
phism construction, we have to make sure that they indeed establish one-to-one
correspondences. Therefore we show that those paths do not interfere, i.e., they
must only touch at their end vertices. As above, we resort to the technical notion
of thinness.

Lemma 4. Let R be a kth root of a subdivision digraph D and let a, b be two
thin vertices of D with a → b in R. Then there are no further R-arcs leaving a
or entering b.

Again, we have an analog of this lemma for pairs of non-thin vertices but
once more we have to be careful about the existence of neighbors, which was
trivially guaranteed for thin vertices. In the next lemma, the additional degree
condition of Theorem 3 is indispensable.

Lemma 5. Let R be a kth root of a subdivision digraph D. Let a, b be two non-
thin vertices of D with a → b in R such that a has an outneighbor and b has an
inneighbor in D. Then there are no further R-arcs leaving a or entering b.

The two preceding lemmas naturally lift to statements about subdivision
and branching vertices, the only problem being to show that of two adjacent
branching vertices either both are thin or neither is, which is not too difficult.

Concluding the Proofs. The statement of Theorem 3 is now obtained by “in-
verting” the proof of Proposition 1. The paths provided by Lemma 2 establish
correspondences between k disjoint subgraphs of the digraph D and with the
help of Lemmas 4 and 5 this can be done in a unique and consistent way.

Theorem 2 then comes as a direct consequence. Isolated cycles are com-
putationally easy to deal with, as we already argued. We should specify that
the reduction from root finding to isomorphism finding is actually a Turing re-
duction, which means that we can find roots in polynomial time on a Turing
machine that may call an isomorphism oracle several times at unit cost. Note
that we cannot turn it into a stronger many-one reduction (Karp reduction) by
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simply checking whether k copies of one component of the given digraph D are
isomorphic to D itself because the k isomorphic subgraphs of D need not be
connected. The other reduction, from isomorphisms to roots, however, can be
done in a many-one fashion as Proposition 1 shows.

Dropping the Degree Condition

Let us indicate what can happen in a subdivision digraph that contains ver-
tices without in– or outneighbors. The following figure shows such a digraph D
together with a square root R.

The two topmost root arcs can touch since the precondition of Lemma 5 does
not hold. Observe that instead of being the disjoint union of two isomorphic
subgraphs, the left component can be decomposed into two parts, A and B (the
former consisting of the two paths on the left, the latter containing the remaining
five vertices) such that there exists a surjective homomorphism from A onto B
(i.e., an arc-preserving map). This homomorphism corresponds exactly to those
arcs of R that go from A to B.

This example is only meant to indicate the phenomena that might show up.
The general situation is more difficult to analyze and it is not clear whether the
digraph root problem remains isomorphism complete under these relaxed condi-
tions since the general homomorphism problem for graphs is NP-complete [5].

5 Outlook

While the original problem, the open complexity status of Boolean matrix root
computation is now settled, the discovered relation to graph isomorphism raises
new questions. First of all, it would be desirable to get rid of the degree condition
of Theorem 2. Though this restriction turned out indispensable for underlying
structural statement of Theorem 3, it is not clear whether it might be possi-
ble to eliminate it from the complexity result since that would lead to special
homomorphism problems which take us closer to the world of NP-hardness.

More generally, we may ask for relaxations of the concept of subdivisions
that still serve the task of “deactivating” computationally hard aspects of root
finding, thus keeping the problem isomorphism complete. If one traces the details
of our proofs, notions like bounded tree width appear promising and might lead
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to weaker conditions for isomorphism completeness. Eventually, the problem
of Boolean matrix root computation could turn out to be a suitable object for
analyzing the “boundary” between isomorphism completeness and NP-hardness.
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