
On Threshold BDDs and the Optimal Variable
Ordering Problem

Markus Behle

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, behle@mpi-inf.mpg.de

Abstract. Many combinatorial optimization problems can be formu-
lated as 0/1 integer programs (0/1 IPs). The investigation of the struc-
ture of these problems raises the following tasks: count or enumerate the
feasible solutions and find an optimal solution according to a given lin-
ear objective function. All these tasks can be accomplished using binary
decision diagrams (BDDs), a very popular and effective datastructure in
computational logics and hardware verification.
We present a novel approach for these tasks which consists of an output-
sensitive algorithm for building a BDD for a linear constraint (a so-called
threshold BDD) and a parallel AND operation on threshold BDDs. In
particular our algorithm is capable of solving knapsack problems, subset
sum problems and multidimensional knapsack problems.
BDDs are represented as a directed acyclic graph. The size of a BDD
is the number of nodes of its graph. It heavily depends on the chosen
variable ordering. Finding the optimal variable ordering is an NP-hard
problem. We derive a 0/1 IP for finding an optimal variable ordering
of a threshold BDD. This 0/1 IP formulation provides the basis for the
computation of the variable ordering spectrum of a threshold function.
We introduce our new tool azove 2.0 as an enhancement to azove 1.1
which is a tool for counting and enumerating 0/1 points. Computational
results on benchmarks from the literature show the strength of our new
method.

1 Introduction

For many problems in combinatorial optimization the underlying polytope is a
0/1 polytope, i.e. all feasible solutions are 0/1 points. These problems can be
formulated as 0/1 integer programs. The investigation of the polyhedral structure
often raises the following problem:

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, compute a list of
all 0/1 points satisfying the system.

Binary decision diagrams (BDDs) are perfectly suited to compactly represent
all 0/1 solutions. Once the BDD for a set of inequalities is built, counting the
solutions and optimizing according to a linear objective function can be done in
time linear in the size of the BDD, see e.g. [1, 3]. Enumerating all solutions can
be done by a traversal of the graph representing the BDD.

Threshold BDDs and the Optimal Variable Ordering Problem 127

In section 2 of this paper we develop a new output-sensitive algorithm for
building a QOBDD for a linear constraint (a so-called threshold BDD). More
precisely, our algorithm constructs exactly as many nodes as the final QOBDD
consists of and does not need any extra memory. In section 3 the synthesis of
these QOBDDs is done by an AND operation on all QOBDDs in parallel which
is also a novelty. Constructing the final BDD by sequential AND operations on
pairs of BDDs (see e.g. [3]) may lead to explosion in size during computation
even if the size of the final BDD is small. We overcome this problem by our
parallel AND operation.

The size of a BDD heavily depends on the variable ordering. Finding a vari-
able ordering for which the size of a BDD is minimal is a difficult task. Bollig
and Wegener [4] showed that improving a given variable ordering of a general
BDD is NP-complete. For the optimal variable ordering problem for a thresh-
old BDD we present for the first time a 0/1 IP formulation in section 4. Its
solution gives the optimal variable ordering and the number of minimal nodes
needed. In contrast to all other exact BDD minimization techniques (see [7] for
an overview) which are based on the classic method by Friedman and Supowit
[8], our approach does not need to build a BDD explicitly. With the help of this
0/1 IP formulation and the techniques for counting 0/1 vertices described in [3]
we are able to compute the variable ordering spectrum of a threshold function.

We present our new tool azove 2.0 [2] which is based on the algorithms de-
veloped in sections 2 and 3. Our tool azove is able to count and enumerate all
0/1 solutions of a given set of linear constraints, i.e. it is capable of constructing
all solutions of the knapsack, the subset sum and the multidimensional knapsack
problem. In section 5 we present computational results for counting the satisfi-
able solutions of SAT instances, matchings in graphs and 0/1 points of general
0/1 polytopes.

BDDs

BDDs were first proposed by Lee in 1959 [11]. Bryant [5] presented efficient
algorithms for the synthesis of BDDs. After that, BDDs became very popular in
the area of hardware verification and computational logics, see e.g. [12, 16].

We provide a short definition of BDDs as they are used in this paper. A
BDD for a set of variables x1, . . . , xd is a directed acyclic graph G = (V,A), see
figure 1(a). All nodes associated with the variable xi lie on the same level labeled
with xi, which means, we have an ordered BDD (OBDD). In this paper all BDDs
are ordered. For the edges there is a parity function par : A → {0, 1}. The graph
has one node with in-degree zero, called the root and two nodes with out-degree
zero, called leaf 0 resp. leaf 1. Apart from the leaves all nodes have two outgoing
edges with different parity. A path e1, . . . , ed from the root to one of the leaves
represents a variable assignment, where the level label xi of the starting node of
ej is assigned to the value par(ej). An edge crossing a level with nodes labeled
xi is called a long edge. In that case the assignment for xi is free. All paths from
the root to leaf 1 represent the set T ⊆ {0, 1}d of true-assignments. The size of
a BDD is defined as the number of nodes |V |. Let wl be the number of nodes in

128 M. Behle

x1

x2

x3

x4

8, 8

8, 8 5, 6

7, 8 3, 3 4, 6 0, 2

3, 8 0, 2

1 0

(a) BDD

x1 x2 x3 x4

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 1 0 0

(b) Represented set T of true-assignments

Fig. 1. A threshold BDD representing the linear constraint 2x1 +5x2 +4x3 +3x4 ≤ 8.
Edges with parity 0 are dashed.

level l. The width of a BDD is the maximum of all number of nodes in a level
w = max{wl | l ∈ 1, . . . , d}.

Vertices u, v ∈ V with the same label are equivalent if both of their edges
with the same parity point to the same node respectively. If each path from root
to leaf 1 contains exactly d edges the BDD is called complete. A complete and
ordered BDD with no equivalent vertices is called a quasi-reduced ordered BDD
(QOBDD). A vertex v ∈ V is redundant if both outgoing edges point to the same
node. If an ordered BDD does neither contain redundant nor equivalent vertices
it is called reduced ordered BDD (ROBDD). For a fixed variable ordering both
QOBDD and ROBDD are canonical representations.

A BDD representing the set T =
{
x ∈ {0, 1}d : aT x ≤ b

}
of 0/1 solutions

to the linear constraint aT x ≤ b is called a threshold BDD. For each variable
ordering the size of a threshold BDD is bounded by O (d(|a1|, . . . , |ad|)), i.e.
if the weights a1, . . . , ad are polynomial bounded in d, the size of the BDD is
polynomial bounded in d (see [16]). Hosaka et. al. [10] provided an example of an
explicitly defined threshold function for which the size of the BDD is exponential
for all variable orderings.

2 Output-sensitive building of a threshold BDD

In this section we give a new output-sensitive algorithm for building a threshold
QOBDD of a linear constraint aT x ≤ b in dimension d. This problem is closely
related to the knapsack problem. Our algorithm can easily be transformed to
work for a given equality, i.e. it can also solve the subset sum problem.

A crucial point of BDD construction algorithms is the in advance detection
of equivalent nodes [12]. If equivalent nodes are not fully detected this leads
to isomorphic subgraphs. As the representation of QOBDDs and ROBDDs is

Threshold BDDs and the Optimal Variable Ordering Problem 129

canonical these isomorphic subgraphs will be detected and merged at a later
stage which is a considerable overhead.

We now describe an algorithm that overcomes this drawback. Our detection
of equivalent nodes is exact and complete so that only as many nodes will be
built as the final QOBDD consists of. No nodes have to be merged later on. Be
w the width of the BDD. The runtime of our algorithm is O (dw log(w))

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0 (in case ai < 0 substitute xi with
1 − x̄i). In order to exclude trivial cases let b ≥ 0 and

∑d
i=1 ai > b. For the

sake of simplicity be the given variable ordering the canonical variable ordering
x1, . . . , xd. We assign weights to the edges depending on their parity and level.
Edges with parity 1 in level l cost al and edges with parity 0 cost 0. The key
to exact detection of equivalent nodes are two bounds that we introduce for
each node, a lower bound lb and an upper bound ub. They describe the interval
[lb, ub]. Let cu be the costs of the path from the root to the node u. All nodes u
in level l for which the value b − cu lies in the interval [lbv, ubv] of a node v in
level l are guaranteed to be equivalent with the node v. We call the value b− cu

the slack. Figure 1(a) illustrates a threshold QOBDD with the intervals set in
each node.

Algorithm 1 Build QOBDD for the constraint aT x ≤ b

BuildQOBDD(slack, level)
1: if slack < 0 then
2: return leaf 0
3: if slack ≥

Pd
i=level ai then

4: return leaf 1
5: if exists node v in level with lbv ≤ slack ≤ ubv then
6: return v
7: build new node u in level
8: l = level of node
9: 0-edge son = BuildQOBDD(slack, l + 1)

10: 1-edge son = BuildQOBDD(slack - al, l + 1)
11: set lb to max(lb of 0-edge son, lb of 1-edge son + al)
12: set ub to min(ub of 0-edge son, ub of 1-edge son + al)
13: return u

Algorithm 1 constructs the QOBDD top-down from a given node in a depth-
first-search manner. We set the bounds for the leaves as follows: lbleaf 0 = −∞,
ubleaf 0 = −1, lbleaf 1 = 0 and ubleaf 1 = ∞. We start at the root with its slack
set to b. While traversing downwards along an edge in step 9 and 10 we substract
its costs. The sons of a node are built recursively. The slack always reflects the
value of the right hand side b minus the costs c of the path from the root to the
node. In step 5 a node is detected to be equivalent with an already built node v
in that level if there exists a node v with slack ∈ [lbv, ubv].

If both sons of a node have been built recursively at step 11 the lower bound
is set to the costs of the longest path from the node to leaf 1. In case one of the

130 M. Behle

sons is a long edge pointing from this level l to leaf 1 the value lbleaf 1 has to be
temporarly increased by

∑d
i=l+1 ai before. In step 12 the upper bound is set to

the costs of the shortest path from the node to leaf 0 minus 1. For this reason
the interval [lb, ub] reflects the widest possible interval for equivalent nodes.

Lemma 1. The detection of equivalent nodes in algorithm 1 is exact and com-
plete.

Proof. Assume to the contrary that in step 7 a new node u is built which is
equivalent to an existing node v in the level. Again let cu be the costs of the
path from the root to the node u. Because of step 5 we have b− cu 6∈ [lbv, ubv].
Case b− cu < lbv:
In step 11 lbv has been computed as the costs of the longest path from the node
v to leaf 1. Let lbu be the costs of the longest path from node u to leaf 1. Then
there is a path from root to leaf 1 using node u with costs cu + lbu ≤ b, so
we have lbu < lbv. As the nodes u and v are equivalent they are the root of
isomorphic subtrees, and thus lbu = lbv holds.
Case b− cu > ubv:
With step 12 ubv is the costs of the shortest path from v to leaf 0 minus 1. Be
ubu the costs of the shortest path from u to leaf 0 minus 1. Again the nodes
u and v are equivalent so for both the costs we have ubu = ubv. Thus there
is a path from root to leaf 0 using node u with costs cu + ubu < b which is a
contradiction.

Algorithm 1 can be modified to work for a given equality, i.e. it can also be
used to solve the subset sum problem. The following replacements have to be
made:

1: replace slack < 0 with slack < 0 ∨ slack >
∑d

i=level ai

3: replace slack ≥
∑d

i=level ai with slack = 0 ∧ slack =
∑d

i=level ai

3 Parallel AND operation on threshold BDDs

Given a set of inequalities Ax ≤ b, A ∈ Zm×d, b ∈ Zm, we want to build
the ROBDD representing all 0/1 points satisfying the system. This problem is
closely related to the multidimensional knapsack problem. Our approach is the
following. For each of the m linear constraints aT

i x ≤ bi we build the QOBDD
with the method described in section 2. Then we build the final ROBDD by
perfoming an AND operation on all QOBDDs in parallel. The space consumption
for saving the nodes is exactly the number of nodes that the final ROBDD
consists of plus d temporary nodes. Algorithm 2 describes our parallel and -
synthesis of m QOBDDs.

We start at the root of all QOBDDs and construct the ROBDD from its root
top-down in a depth-first-search manner. In steps 1 and 3 we check in parallel
for trivial cases. Next we generate a signature for this temporary node of the
ROBDD in step 5. This signature is a 1+m dimensional vector consisting of the

Threshold BDDs and the Optimal Variable Ordering Problem 131

Algorithm 2 Parallel conjunction of the QOBDDs G1, . . . , Gm

parallelAndBDDs(G1, . . . , Gm)
1: if ∀i ∈ {1, . . . , m} : Gi = leaf 1 then
2: return leaf 1
3: if ∃i ∈ {1, . . . , m} : Gi = leaf 0 then
4: return leaf 0
5: if signature(G1, . . . , Gm) ∈ ComputedTable then
6: return ComputedTable[signature(G1, . . . , Gm)]

7: xi = NextVariable(G1, . . . , Gm)
8: 0-edge son = parallelAndBDDs(G1|xi=0, . . . , Gm|xi=0)
9: 1-edge son = parallelAndBDDs(G1|xi=1, . . . , Gm|xi=1)

10: if 0-edge son = 1-edge son then
11: return 0-edge son

12: if ∃ node v in this level with same sons then
13: return v
14: build node u with 0-edge and 1-edge son
15: ComputedTable[signature(G1, . . . , Gm)] = u
16: return u

current level and the upper bounds saved in all current nodes of the QOBDDs.
If there already exists a node in the ROBDD with the same signature we have
found an equivalent node and return it. Otherwise we start building boths sons
recursively from this temporary node in steps 8 and 9. From all starting nodes
in the QOBDDs we traverse the edges with the same parity in parallel.

When both sons of a temporary node in the ROBDD were built we check its
redundance in step 10. In step 12 we search for an already existing node in the
current level which is equivalent to the temporary node. If neither is the case we
build this node in the ROBDD and save its signature.

In practice the main problem of the parallel and -operation is the low hitrate
of the ComputedTable. This is because equivalent nodes of the ROBDD can have
different signatures and thus are not detected in step 5. In addition the space
consumption for the ComputedTable is enormous and one is usually interested in
restricting it. The space available for saving the signatures in the ComputedTable
can be changed dynamically. This controls the runtime in the following way. The
more space is granted for the ComputedTable the more likely equivalent node
will be detected in advance which decreases the runtime. Note that because of
the check for equivalence in step 12 the correctness of the algorithm does not
depend on the use of the ComputedTable. If the use of the ComputedTable is
little the algorithm naturally tends to exponential runtime.

4 Optimal variable ordering of a threshold BDD via 0/1
IP formulation

Given a linear constraint aT x ≤ b in dimension d we want to find an optimal
variable ordering for building the threshold ROBDD. A variable ordering is called

132 M. Behle

x1

x2

x3

x4

leaf 1

2

5

4

3

0 1 2 3 4 5 6 7 8

•

• •

• • • •

• • • • • •

• • • • • • • •©

© ©

© © © ©

© © © © © ©

© © © © © © © ©

Fig. 2. Dynamic programming table for the linear constraint 2x1+5x2+4x3+3x4 ≤ 8.
Variables Uln, Dln are shown as •, © resp. The light grey blocks represent the nodes in
the ROBDD and the dark grey blocks represent the redundant nodes in the QOBDD.

optimal if it belongs to those variable orderings for which the size of the ROBDD
is minimal. In the following we will derive a 0/1 integer programm whose solution
gives the optimal variable ordering and the number of minimal nodes needed.

Building a threshold BDD is closely related to solving a knapsack problem. A
knapsack problem can be solved with dynamic programming [13] using a table.
We mimic this approach on a virtual table of size (d + 1)× (b + 1) which we fill
with variables. Figure 2 shows an example of such a table for a fixed variable
ordering. The corresponding BDD is shown in figure 1(a).

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0, and to exclude trivial cases, b ≥ 0
and

∑d
i=1 ai > b. Now we start setting up the 0/1 IP shown in figure 3. The

0/1 variables yli (24) encode a variable ordering in the way that yli = 1 iff the
variable xi lies on level l. To ensure a correct encoding of a variable ordering we
need that each index is on exactly one level (2) and that on each level there is
exactly one index (3).

We simulate a down operation in the dynamic programming table with the
0/1 variables Dln (25). The variable Dln is 1 iff there exists a path from the root
to the level l such that b minus the costs of the path equals n. The variables
in the first row (4) and the right column (5) are fixed. We have to set variable
D(l+1)n to 1 if we followed the 0-edge starting from Dln = 1

Dln = 1 → D(l+1)n = 1 (12)

or according to the variable ordering given by the yli variables, if we followed
the 1-edge starting from Dl(n+ai) = 1

yli = 1 ∧Dl(n+ai) = 1 → D(l+1)n = 1 (15)

In all other cases we have to prevent D(l+1)n from being set to 1

yli = 1 ∧Dln = 0 → D(l+1)n = 0 (16)
yli = 1 ∧Dl(n+ai) = 0 ∧Dln = 0 → D(l+1)n = 0 (17)

In the same way, the up operation is represented by the 0/1 variables Uln (26).
The variable Uln is 1 iff there exists a path upwards from the leaf 1 to the level l

Threshold BDDs and the Optimal Variable Ordering Problem 133

min
P

l∈{1,...,d+1}
n∈{0,...,b}

Cln + 1 (1)

s.t.

∀i ∈ {1, . . . , d}
Pd

l=1 yli = 1 (2)

∀l ∈ {1, . . . , d}
Pd

i=1 yli = 1 (3)

∀n ∈ {0, . . . , b− 1} D1n = 0 (4)

∀l ∈ {1, . . . , d + 1} Dlb = 1 (5)

∀n ∈ {1, . . . , b} U(d+1)n = 0 (6)

∀l ∈ {1, . . . , d + 1} Ul0 = 1 (7)

B(d+1)0 = 1 (8)

∀n ∈ {1, . . . , b} B(d+1)n = 0 (9)

C(d+1)0 = 1 (10)

∀n ∈ {1, . . . , b} C(d+1)n = 0 (11)

∀l ∈ {1, . . . , d} :

∀n ∈ {0, . . . , b− 1} Dln −D(l+1)n ≤ 0 (12)

∀n ∈ {1, . . . , b} U(l+1)n − Uln ≤ 0 (13)

∀n ∈ {0, . . . , b}, j ∈ {1, . . . , n + 1} Dln + Ul(j−1) −
Pn

i=j Uli −Bl(j−1) ≤ 1 (14)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} :

∀n ∈ {0, . . . , b− ai} yli + Dl(n+ai) −D(l+1)n ≤ 1 (15)

∀n ∈ {b− ai + 1, . . . , b− 1} yli −Dln + D(l+1)n ≤ 1 (16)

∀n ∈ {0, . . . , b− ai} yli −Dl(n+ai) −Dln + D(l+1)n ≤ 1 (17)

∀n ∈ {ai, . . . , b} yli + U(l+1)(n−ai) − Uln ≤ 1 (18)

∀n ∈ {1, . . . , ai − 1} yli − U(l+1)n + Uln ≤ 1 (19)

∀n ∈ {ai, . . . , b} yli − U(l+1)(n−ai) − U(l+1)n + Uln ≤ 1(20)

∀n ∈ {0, . . . , ai − 1} yli + Bln − Cln ≤ 1 (21)

∀n ∈ {0, . . . , ai − 1} yli −Bln + Cln ≤ 1 (22)

∀n ∈ {ai, . . . , b}, k ∈ {n− ai + 1, . . . , n} yli + Bln + B(l+1)k − Cln ≤ 2 (23)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} : yli ∈ {0, 1} (24)

∀l ∈ {1, . . . , d + 1}, n ∈ {0, . . . , b} : Dln ∈ {0, 1} (25)

Uln ∈ {0, 1} (26)

Bln ∈ {0, 1} (27)

Cln ∈ {0, 1} (28)

Fig. 3. 0/1 integer program for finding the optimal variable ordering of a threshold
BDD for a linear constraint aT x ≤ b in dimension d.

134 M. Behle

with costs n. The variables in the last row (6) and the left column (7) are fixed.
We have to set Uln = 1 if there is a 0-edge ending in U(l+1)n = 1

U(l+1)n = 1 → Uln = 1 (13)

or according to the variable ordering given by the yli variables, if there is a
1-edge ending in U(l+1)(n−ai) = 1

yli = 1 ∧ U(l+1)(n−ai) = 1 → Uln = 1 (18)

In all other cases we have to prevent Uln from being set to 1

yli = 1 ∧ U(l+1)n = 0 → Uln = 0 (19)
yli = 1 ∧ U(l+1)(n−ai) = 0 ∧ U(l+1)n = 0 → Uln = 0 (20)

Next we introduce the 0/1 variables Bln (27) which mark the beginning of
the blocks in the dynamic programming table that correspond to the nodes in
the QOBDD. These blocks can be identified as follows: start from a variable Dln

set to 1 and look to the left until a variable Uln set to 1 is found

Dln = 1 ∧ Ul(j−1) = 1 ∧
n∧

i=j

Uli = 0 → Bl(j−1) = 1 (14)

We set the last row explicitly (8), (9).
At last we introduce the 0/1 variables Cln (28) which indicate the beginning

of the blocks that correspond to the nodes in the ROBDD. The variables Cln

only depend on the Bln variables and exclude redundant nodes. The first blocks
are never redundant

yli = 1 → Bln = Cln (21), (22)

If the 0-edge leads to a different block than the 1-edge, the block is not redundant

yli = 1 ∧Bln = 1 ∧

(
n∨

k=n−ai+1

B(l+1)k = 1

)
→ Cln = 1 (23)

We set the last row explicitly (10), (11).
The objective function (1) is to minimize the number of variables Cln set

to 1 plus an offset of 1 for counting the leaf 0. An optimal solution to the IP
then gives the minimal number of nodes needed for the ROBDD while the yli

variables encode the best variable ordering.
In practice solving this 0/1 IP is not faster than exact BDD minimiza-

tion algorithms which are based on Friedman and Supowit’s method [8] in
combination with branch & bound (see [7] for an overview). Nevertheless it
is of theoretical interest as the presented 0/1 IP formulation can be used for
the computation of the variable ordering spectrum of a threshold function.
The variable ordering spectrum of a linear constraint aT x ≤ b is the function

Threshold BDDs and the Optimal Variable Ordering Problem 135

spaT x≤b : N → N, where spaT x≤b(k) is the number of variable orderings leading
to a ROBDD for the threshold function aT x ≤ b of size k. In order to com-
pute spaT x≤b(k) we equate the objective function (1) with k and add it as the
constraint

∑
l∈{1,...,d+1}

n∈{0,...,b}
Cln + 1 = k to the formulation given in figure 3. The

number of 0/1 vertices of the polytope corresponding to this formulation then
equals spaT x≤b(k). In [3] we provide a method for counting these 0/1 vertices.

5 Computational results

We developed the tool azove 2.0 which implements the output-sensitive build-
ing of QOBDDs and the parallel AND synthesis as described in sections 2
and 3. It can be downloaded from [2]. In contrast to version 1.1 which uses
CUDD 2.4.1 [14] as BDD manager, the new version 2.0 does not need an exter-
nal library for managing BDDs.

In the following we compare azove 2.0 to azove 1.1 which sequentially uses a
pairwise AND operation [3]. We restrict our comparisson to these two tools since
we are not aware of another software tool specialized in counting 0/1 solutions
for general type of problems. The main space consumption of azove 2.0 is due
to the storage of the signatures of the ROBDD nodes. We restrict the number of
stored signatures to a fixed number. In case more signatures need to be stored
we start overwriting them from the beginning.

Our benchmark set contains different classes of combinatorial optimization
problems. All tests were run on a Linux system with kernel 2.6.15 and gcc 3.3.5
on a 64 bit AMD Opteron CPU with 2.4 GHz and 4 GB memory. Table 1 shows
the comparisson of the runtimes in seconds. We set a time limit of 4 hours. An
asterisk marks the exceedance of the time limit.

In fields like verification and real-time systems specification counting the so-
lutions of SAT instances has many applications. From several SAT competitions
[6, 9] we took the instances aim, hole, ca004 and hfo6, converted them to lin-
ear constraint sets and counted their satisfying solutions. The aim instances are
3-SAT instances and the hole instances encode the pigeonhole principle. There
are 20 satisfiable hfo6 instances for which the results are similiar. For convenience
we only show the first 4 of them.

Counting the number of matchings in a graph is one of the most prominent
counting problems with applications in physics in the field of statistical mechan-
ics. We counted the number of matchings for the urquhart instance, which comes
from a particular family of bipartite graphs [15], and for f2, which is a bipartite
graph encoding a projective plane known as the Fano plane.

The two instance classes OA and TC were taken from a collection of 0/1 poly-
topes that has been compiled in connection with [17]. Starting from the convex
hull of these polytopes as input we counted their 0/1 vertices.

For instances with a large number of constraints azove 2.0 clearly outper-
forms version 1.1. Due to the explosion in size during the sequential AND oper-
ation azove 1.1 is not able to solve some instances within the given time limit.
The parallel AND operation in azove 2.0 successfully overcomes this problem.

136 M. Behle

Name Dim Inequalities 0/1 solutions azove 1.1 azove 2.0

aim-50-3 4-yes1-2 50 270 1 77.26 50.23
aim-50-6 0-yes1-1 50 400 1 43.97 9.59
aim-50-6 0-yes1-2 50 400 1 179.05 1.62
aim-50-6 0-yes1-3 50 400 1 97.24 4.58
aim-50-6 0-yes1-4 50 400 1 164.88 13.08
hole6 42 217 0 0.15 0.09
hole7 56 316 0 4.16 1.57
hole8 72 441 0 5572.74 29.69
ca004.shuffled 60 288 0 53.07 20.38
hfo6.005.1 40 1825 1 * 1399.57
hfo6.006.1 40 1825 4 * 1441.56
hfo6.008.1 40 1825 2 * 1197.91
hfo6.012.1 40 1825 1 * 1391.39
f2 49 546 151200 * 49.50
urquhart2 25.shuffled 60 280 0 * 12052.10
OA:9-33 9 1870 33 0.05 0.03
OA:10-44 10 9708 44 0.51 0.34
TC:9-48 9 6875 48 0.16 0.15
TC:10-83 10 41591 83 1.96 1.24
TC:11-106 11 250279 106 26.41 11.67

Table 1. Comparisson of the tools azove 1.1 and azove 2.0

References

1. B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDs in a branch and cut
framework. In S. Nikoletseas, editor, Proceedings of the 4th International Workshop
on Efficient and Experimental Algorithms (WEA’05), volume 3503 of Lecture Notes
in Computer Science, pages 452–463. Springer, 2005.

2. M. Behle. Another Zero One Vertex Enumeration tool Homepage, 2007.
http://www.mpi-inf.mpg.de/∼behle/azove.html.

3. M. Behle and F. Eisenbrand. 0/1 vertex and facet enumeration with BDDs. In
Workshop on Algorithm Engineering and Experiments (ALENEX’07), New Or-
leans, USA, January 2007. to appear.

4. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers, 45(9):993–1002, 1996.

5. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35:677–691, 1986.

6. M. Buro and H. Kleine Büning. Report on a SAT competition. Bulletin of the
European Association for Theoretical Computer Science, 49:143–151, 1993.

7. R. Ebendt, W. Günther, and R. Drechsler. An improved branch and bound algo-
rithm for exact BDD minimization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(12):1657–1663, 2003.

8. S. Friedman and K. Supowit. Finding the optimal variable ordering for binary
decision diagrams. In Proceedings of the 24th ACM/IEEE Design Automation
Conference, pages 348–356, 1987.

9. H. H. Hoos and T. Stützle. SATLIB: An online resource for research on SAT. In
I. P. Gent and T. Walsh, editors, Satisfiability in the year 2000, pages 283–292.
IOS Press, 2000.

Threshold BDDs and the Optimal Variable Ordering Problem 137

10. K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima. Size of ordered binary decision
diagrams representing threshold functions. Theoretical Computer Science, 180:47–
60, 1997.

11. C. Y. Lee. Representation of switching circuits by binary-decision programs. The
Bell Systems Technical Journal, 38:985 – 999, 1959.

12. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer-Verlag, 1998.

13. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.
14. F. Somenzi. CU Decision Diagram Package Release 2.4.1 Homepage. Department

of Electrical and Computer Engineering, University of Colorado at Boulder, May
2005. http://vlsi.colorado.edu/∼fabio/CUDD.

15. A. Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
1987.

16. I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 2000.

17. G. M. Ziegler. Lectures on Polytopes. Springer, 1995.

