
0/1 vertex and facet enumeration with BDDs∗

Markus Behle† Friedrich Eisenbrand‡

Abstract
In polyhedral studies of 0/1 polytopes two prominent
problems exist. One is the vertex enumeration problem:
Given a system of inequalities, enumerate its feasible
0/1 points. Another one is the convex hull problem:
Given a set of 0/1 points in dimension d, enumerate
the facets of the corresponding polytope. We present
two new approaches for both problems. The novelty of
our algorithms is the incorporation of binary decision
diagrams (BDDs), a datastructure which has become
very popular and effective in hardware verification and
computational logic.
Our computational results show the strength of our
methods. We introduce our new tool azove which is
currently the fastest software for counting and enumer-
ating 0/1 points in a polytope.

1 Introduction
In combinatorial optimization an important part in
understanding and designing algorithms for a certain
problem is the investigation of the polyhedral structure
of the associated polytope. For many problems in this
field the underlying polytope is a 0/1 polytope, i.e. all
vertices are 0/1 points.

One frequently arising problem is the 0/1 vertex
enumeration problem:

Given a set of inequalities Ax ≤ b, A ∈ Z
m×d,

b ∈ Z
m, compute a list of all 0/1 points

satisfying the system.

In other words, if P denotes the polyhedron P ={
x ∈ R

d | Ax ≤ b, 0 ≤ x ≤ 1
}

then one is interested in
the vertices of the integer hull PI of P which generate
the convex hull of all integer points of P .

∗This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See www.avacs.org for more in-
formation.

†Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany, behle@mpi-inf.mpg.de

‡Universität Paderborn, Warburger Str. 100, 33098 Paderborn,
Germany, eisen@math.uni-paderborn.de

The other problem which we consider here is the
0/1 facet enumeration problem:

Given a set S ⊆ {0, 1}d of 0/1 points, enumer-
ate all facets of the convex hull conv(S).

A successful approach to difficult optimization problems
with integer programming often requires some under-
standing of the facets of the integer hull of the solution
space. A software package which computes the inequal-
ity representation A′x ≤ b′ of the integer hull PI of
P , given an inequality representation Ax ≤ b of P can
here become very useful. Such an inequality representa-
tion is currently computed in a two-step approach. In a
first step, one solves the 0/1 vertex enumeration prob-
lem, and then in a second step the 0/1 facet enumera-
tion problem for the previously generated 0/1 points is
solved.

In this paper we present tools to solve the 0/1 vertex
and facet enumeration problems which are based on
binary decision diagrams. Our tool azove [9] which
solves the vertex enumeration problem outperforms the
currently best codes for this task by several orders
of magnitude. Second we report on a gift-wrapping
approach[15] to solve the facet enumeration problem.
Here we use BDDs to rotate a facet-defining inequality
along a ridge to find a new facet. Ridges are computed
with existing codes. We can recommend our approach
for polytopes whose facets contain few vertices.

Related work Bussieck and Lübbecke [14] presented
a backtracking algorithm for solving the 0/1 vertex
enumeration problem. Their algorithm intersects the
given polytope with two opposite facets of the unit
hypercube. If this intersection is not empty it is divided
into two branches which are then treated recursively.
They proved that the vertex set of a 0/1 polytope given
in inequality description is strongly P-enumerable. The
tool zerone [25] is based on this idea.

To describe related work on the convex hull prob-
lem, we first review some definitions. The faces of a
convex polytope P are ∅, P and the intersection of a
supporting hyperplane of P and P itself. The dimen-
sion d of P is the dimension of its affine hull. Faces of
dimension 0, d− 2, and d− 1 are called vertices, ridges,
and facets respectively. A polytope P is called simpli-

1

x(2)

x(3) x(3)

x(1) x(1)

0

(a) BDD

x(1) x(2) x(3)
0 0 1
0 1 0
1 0 0
1 1 0
1 1 1

(b) Truth table

Figure 1: A simple BDD represented as a directed graph. Edges with parity 0 are dashed. The table shows the
represented 0/1 points of the set T.

cial, if every facet contains exactly d vertices. P is called
simple, if every vertex is the intersection of exactly d
facets. The input for the facet enumeration problem is
called nondegenerate if there are no d + 1 points which
lie on a common hyperplane, and degenerate otherwise.
For further definitions on polytopes see [32].

Many algorithms have been developed for the (gen-
eral) convex hull problem, see [28] for an overview. In-
cremental methods like Kallay and Seidel’s beneath and
beyond and the double description method by Motzkin
et. al. successively compute a description for Pi :=
{p1, . . . , pi} from the description for Pi−1 and the point
pi. Bremner [11] showed that incremental convex hull
algorithms are not output sensitive. Note that the so-
called Fourier-Motzkin elimination is dual to the double
description method and also an incremental method.

Algorithms that construct the face lattice of a
polytope are called graph traversal methods. Among
them is Chand and Kapur’s gift wrapping [15] which
has been improved later by many others (see e.g. [26]
and [30]), and in the dual sense pivoting algorithms like
Avis and Fukuda’s reverse search [4]. Another approach
is the primal-dual method by Bremner, Fukuda and
Marzetta [12].

At present no polynomial runtime algorithm for the
convex hull problem for general (degenerate) polytopes
is known. A comparison of the main convex hull
algorithms is given in [3].

BDDs Our approaches are are based on Binary Deci-
sion Diagrams (BDDs for short), a datastructure which
represents a set of 0/1 points in a compact way. We
provide a short definition of BDDs as they are used in
this paper.

A BDD for a set of variables x(1), · · · , x(d) is a
directed acyclic graph G = (V, A), see figure 1. It has

one node with in-degree zero, called the root and two
nodes with out-degree zero, called leaf 0 resp. leaf 1.
There is a labeling function � : V \ {leaf 0, leaf 1} →
{x(1), . . . , x(d)} and a parity function par: A → {0, 1}.
All nodes labelled with x(i) lie on the same level, which
means, we have an ordered BDD (OBDD). In this paper
all BDDs are ordered. If each path from the root to one
of the leafs contains exactly d edges the BDD is called
complete. A path e1, . . . , ed from the root to one of the
leafs represents a variable assignment, where the label
x(i) of the starting node of ej is assigned to the value
par(ej). All paths from the root to leaf 1 represent the
set T ⊆ {0, 1}d of true-assignments, whereas the paths
from the root to leaf 0 represent the set F ⊆ {0, 1}d of
false-assignments. We always have F ∪̇T = {0, 1}d. In
case a BDD is not complete there are long edges that
cross a level with nodes labeled x(k). In that case the
assignment for x(k) is free. Long edges are the key for
very compact representations of a set of boolean vectors.

BDDs were first proposed by Lee in 1959 [23].
Bryant [13] presented efficient algorithms for the syn-
thesis of BDDs. After that, BDDs became very popular
in the area of hardware verification and computational
logics, see e.g. [31].

2 0/1 vertex enumeration
Given a set of inequalities Ax ≤ b, A ∈ Z

m×d, b ∈ Z
m

we want to enumerate all 0/1 points which satisfy this
set of inequalities. This is done as follows. We we
build the BDD of each of the m linear inequalities
aT

i x ≤ bi (see section 2.1). Then we "combine" the
inequalities pairwise by conjuncting the corresponding
pairs of BDDs (see section 2.2). After m conjunctions
we have the final BDD representing the 0/1 solutions.
The enumeration of all paths from the root to the leaf 1
gives then all 0/1 points.

2.1 Building a BDD for a linear constraint
Consider the function f : {0, 1}d → Z with f(x) :=
aT x − b, a ∈ Z

d, b ∈ Z. Algorithm 1 shows how to
build the BDD for the threshold function f(x) ≤ 0.
In fact it is a dynamic programming approach (see e.g.
[27]) which is very similar to the dynamic programming
approach to solve the knapsack problem.

Algorithm 1 Build BDD for f(x) ≤ 0
BuildBDD(f)
(1) if max(f) ≤ 0 return leaf 1
(2) if min(f) > 0 return leaf 0
(3) if f ∈ table return table[f]
(4) x(i) = nextVariable(f)
(5) BDD low = BuildBDD(f |x(i)=0)
(6) BDD high = BuildBDD(f |x(i)=1)
(7) BDD result = xi· high +x̄i· low
(8) table[f] = result
(9) return result

Define a+ :=
∑

ai>0 ai and a− :=
∑

ai<0 ai. We
set up a table of size d × (a+ − a−) in which we save
results (step 8) and look up already computed BDDs in
constant time (step 3). To start building the BDD we
call BuildBDD(aT x−b). First we check for trivial cases
(steps 1 and 2). Note that it is sufficient to compute
the global minimum and maximum for f once. All
other values can be computed in constant time by the
recursive calls. After the selection of a variable x(i)
according to the variable order in the BDD (step 4) we
build the children of the actual node with restriction of
the variable x(i) to 0 resp. 1 (steps 5 - 6). In step 7 a
new node will be inserted on top of both children.

Let ‖a‖∞ be the maximum absolute value of all
components of the vector a. Then d‖a‖∞ ≥ a+ − a−

holds. Thus the runtime and space complexity for
building a BDD for a linear constraint are both pseudo-
polynomial which is stated in the following lemma.

Lemma 2.1. The runtime and the space complexity for
building a BDD for a linear constraint aT x ≤ b are both
O(d2‖a‖∞).

Note that algorithm 1 can easily be adapted to build
the BDD for a linear equation, which means it can also
solve the subset sum problem.

2.2 Conjunction of BDDs Let f and g be two
linear constraints and be Gf = (Vf , Af) resp. Gg =
(Vg, Ag) the corresponding graph respresentations of the
BDDs. The algorithm for the synthesis of two BDDs
via a binary operator like AND (see e.g. algorithm 3.3.5
in [31]) is a straight forward recursive approach. The
synthesis is possible in time and space O(|Vf ||Vg|). In

practice, the typical performance is closer to the size of
the resulting BDD which is smaller than |Vf ||Vg|.
Lemma 2.2. The runtime and the space complexity for
the conjunction of m BDDs defined by the system of
linear inequalities Ax ≤ b are both O((d2‖A‖∞)m).

Let ν be the number of 0/1 vertices of the polytope,
i.e. the cardinality of the output set. In a BDD these
vertices correspond to all paths from the root to the
leaf 1 which can be enumerated in O(νd).

The total runtime of our algorithm for the enumer-
ation of all 0/1 points that are contained in the relex-
ation given by the system of linear inequalities Ax ≤ b
is O((d2‖A‖∞)m + νd). In practice, the typical perfor-
mance is much better as we will describe in the next
section.

2.3 Computational results We developed azove
which is another zero one vertex enumeration tool. It
can be downloaded from [9]. The presented computa-
tional results were achieved with version 1.0. For man-
aging the BDDs we used the CUDD 2.4.1 library [29].

We compare our tool with zerone 1.81 [25], which
we patched to run with CPLEX 9.0 [21] as linear
solver. Table 1 shows the comparisson of the runtimes
in seconds. The time spent building the BDDs and
just counting the 0/1 vertices is given in brackets. The
tests were run on a Linux system with kernel 2.6.13 and
gcc 3.4.4 on a Pentium 4 CPU with 2.6 GHz and 1.5 GB
memory. Our benchmark set contains two instance
classes OA and TC which we took from a collection
of 0/1 polytopes that has been compiled in connection
with [32] and can be found on the polymake [19]
homepage. The convex hull of these polytopes served
as input. The other problems have been taken from the
MIPLIB [10]. They are relaxations of 0/1 polytopes.
Although not necessary the bounds on the variables
0 ≤ xi ≤ 1 are given explicitly and thus included in
the number of inequalities. For the instances p0040 and
stein45 most of the time is spent for the output of the
vertices. Obviously our tool azove outperforms zerone
even on inequality systems that describe 0/1 polytopes
and not only relaxations. We also tried vint from the
porta 1.4.0 package [16] which enumerates all integral
points in a polytope. In nearly all cases it reported
that it could not handle that many inequalities. In case
it succeeded the runtime was not comparable, possibly
because it is not specialized in 0/1 vertices.

2.4 Vertex counting Counting the vertices of a
0/1 polytope is equivalent to counting the number of
paths from the root to leaf 1 in a graph representation
G = (V, A) of a BDD. This can be done in O(|V |) (see

Name Dim Inequalities 0/1 Vertices zerone azove (counting)
OA:8-25 8 524 (ch) 25 0.06 0.02 (0.01)
OA:9-33 9 1870 (ch) 33 0.48 0.11 (0.10)
OA:10-44 10 9708 (ch) 44 11.09 1.06 (0.94)
TC:8-38 8 1675 (ch) 38 0.38 0.06 (0.05)
TC:9-48 9 6875 (ch) 48 3.45 0.46 (0.40)
TC:10-83 10 41591 (ch) 83 89.74 4.51 (4.00)
TC:11-106 11 250279 (ch) 106 5713.19 54.53 (50.98)
bm23 27 74 (rel) 2168 15.48 3.91 (3.72)
p0033 33 81 (rel) 10746 11.41 0.14 (0.01)
p0040 40 103 (rel) 519216 166.84 8.39 (0.01)
stein15 15 66 (rel) 2809 0.41 0.02 (0.01)
stein27 27 172 (rel) 367525 110.47 4.14 (0.22)
stein45 45 421 (rel) 244049633 166115.17 4386.08 (232.95)

Table 1: Comparisson of the 0/1 vertex enumeration tools zerone and azove

e.g. [31]) in the following way. W.l.o.g. be the BDD
complete. Label each node v ∈ V with a number
c(v) in a bottom-up fashion. Set c(leaf 0) = 0 and
c(leaf 1) = 2d. For a node v with its two successors v0

and v1 set c(v) = (c(v0)+ c(v1))/2 since a path starting
from v can choose any of the two edges. c(root) finally
states the number of 0/1 vertices of the polytope. In
table 1 the time given in brackets reflects the time that
we need to build the BDDs and just count the number
of 0/1 vertices with azove. Counting the number
of 0/1 vertices is often desired to decide in advance
whether an enumeration makes sense.

We also tried another tool capable of counting in-
tegral points in polytopes which is latte 1.2 [24]. It
implements Barvinok’s algorithm [7] which is polyno-
mial in fixed dimension. The runtimes are considerably
higher. A comparison however is not fair since latte is
not specialized for the 0/1 case.

3 Facet enumeration
In this section we consider the following problem: Given
a set S of 0/1 points in dimension d, find an inequality
description P =

{
x ∈ R

d | Ax ≤ b, A ∈ Z
m×d, b ∈ Z

m
}

of its convex hull, which means P = conv(S). We
assume here that P = conv(S) is full-dimensional. Then
each inequality of the system corresponds to a facet of
P .

Algorithm 2 incorporates the BDD structure in a
gift-wrapping approach. We build and then traverse a
graph GP = (F, R). The nodes f ∈ F represent the
facets of P and the edges r ∈ R represent the ridges
which are the facets of a facet. Note that a ridge is the
intersection of two facets, i.e. r = (f, f ′). A ridge r is
called open if only one of its incident facets r = (f, ·) is
known.

We start in step 1 with an empty BDD. For every

Algorithm 2 Finding the convex hull with BDDs
ConvexHullBDD(S)
(1) BDD = buildBDD(S)
(2) f1 = findFirstFacet(S)
(3) F = {f1}
(4) R = findRidges(f1)
(5) while (∃ open ridge r = (f, ·) ∈ R) {
(6) f ′ = findNewFacet(f , r, BDD)
(7) F = F ∪ {f ′}
(8) R = R ∪ findRidges(f ′) }
(9) return F

p ∈ S we build a BDD which represents p by its path.
Then we build the synthesis of the BDDs with the OR
operator (see e.g. [31]). In this case the time and space
complexity is naturally bounded by O(|S|d).

In step 2 we have to find the first facet f1 of
P to start with. Facets are represented by their
normalvector and their right hand side as aT x ≤ b.
Be Sc the translation of the set S in such a way that
0 ∈ interior(conv(Sc)). Sc can be computed using the
center of S. Any vertex of the polar set SΔ

c of Sc can
be used as the normalvector of the first facet (see e.g.
[32]). Such a vertex can be computed in polynomial
time in |S| and d. Note that it is sufficient to know the
normalvector a since we can compute the right hand side
b and all 0/1 vertices that lie on the facet by optimizing
over the BDD according to the linear objective function
a. This reduces to a shortest path problem on the BDD,
see also [8]. The value b is given as optimal value and
the shortest paths correspond to the 0/1 points that are
tight at the facet.

Be Sr the set of 0/1 points that lie on a ridge
r. Since a BDD implicitly represents 0/1 points in
a lexicographical order, Sr is lexicographically sorted.
Then the ridge r is uniquely defined by the first d − 1

Name Dim Vertices Facets glrs gchbdd cddr+ gchbddCDD chbdd
MJ:32-33 32 33 33 0.001 0.290 0.230 0.290 0.290
BIR5:16-120 16 120 25 1836.340 5576.010 2.200 27.550 1501.050
CUT6:15-32 15 32 368 5.670 17.290 1.320 28.880 4.100
HC:7-64 7 64 78 0.300 0.250 0.190 0.580 0.070
HC:8-128 8 128 144 4.990 3.720 0.970 2.850 0.910
OA:8-25 8 25 524 0.120 0.540 0.410 1.890 0.180
OA:9-33 9 33 1870 0.850 2.930 2.370 10.220 0.940
OA:10-44 10 44 9708 7.670 21.320 26.680 67.810 6.640
TC:7-30 7 30 432 0.110 0.310 0.350 0.950 0.090
TC:8-38 8 38 1675 0.540 1.710 2.140 5.220 0.530
TC:9-48 9 48 6875 4.870 9.980 17.180 31.100 3.070
TC:10-83 10 83 41591 105.570 129.030 629.120 422.460 39.980
TC:11-106 11 106 250279 979.970 1185.470 24532.110 6852.290 374.440
stein9 9 172 31 25.890 24.180 1.570 5.860 5.990

Table 2: Comparison on instances from the literature

0/1 points that are affinely independent. We use this
fact to store ridges as bit-strings of size (d − 1) · d.

Given a facet f we need to know all of its ridges
in the steps 4 and 8. We optimize according to the
normalvector of f and get the set Sf . If f is simplicial,
i.e. |Sf | = d, all d ridges can be enumerated directly.
Otherwise we compute all normalvectors ar for all ridges
of f with a sub-algorithm (e.g. lexicographical reverse
search or double description method) in dimension
d − 1. For each normalvector ar we calculate Sr via
optimization over the BDD. Solving a system of linear
equations then gives us the d − 1 affinely independent
points that are the smallest regarding lexicographical
order in time O(|Sr|2d).

We keep the open ridges in an additional hash-set to
answer the query in step 5. The number of open ridges
is bounded by the total number of facets of P . Be r a
ridge which has been found by findRidges in step 8. If
r is not contained in the hash-set we add it. Otherwise
we delete r from the hash-set as we know both facets
that are incident to it.

Algorithm 3 Gift-wrapping with BDDs
findNewFacet(f , r, BDD)
(1) define a′ ∈ Z

d, b′ ∈ Z, p ∈ {0, 1}d and
p′ ∈ {0, 1}d

(2) p = 0/1 point contained in f but not
contained in r

(3) a′ = - normalvector of f
(4) (p′, b′) = shortestPath(a′, BDD)
(5) while (a′T p �= b′){
(6) p = p′

(7) a′ = computeNormalvector(r, p)
(8) (p′, b′) = shortestPath(a′, BDD) }
(9) return (a′T x ≤ b′)

The sub-routine findNewFacet in step 6 is explained
in detail in our algorithm 3. We use the fact that all d−1
points contained in the ridge r together with a 0/1 point
p ∈ S which is not contained in r define a hyperplane.
We start with the given facet f and rotate it around
the ridge r until a new facet f ′ is found. A new point p
is found by optimizing over the BDD via shortest path
computation in O(|S|d). We have to rotate at most |S|
times before we find a new facet, but in practice just a
few rotations are needed. Computing a normalvector of
the hyperplane defined by r and p is done by solving a
system of linear equations. It is possible in O(d2) since
r is fixed and we can do a precomputation once which
costs O(d3). So the overall runtime of algorithm 3 is
O(d3 + |S|(|S|d + d2)).

If the polytope is simplicial, all steps of our algo-
rithm 2 can be performed in time polynomial in d, |S|
and |F |, and thus our algorithm 2 is output sensitive.

3.1 Computational results In the following section
we want to compare implementations for the convex
hull problem which compute exact results with arbitrary
precision. We used the same hardware setup as in
section 2.3. The instance MJ32-33 taken from the
polymake website (see section 2.3) serves as a test
instance. It is numerically difficult since the coefficients
of the normalvectors of its facets are extremely large.
In our testbed it is the only simplicial instance.

Neither traf from the porta 1.4.0 package [16]
which implements the Fourier Motzkin elimination
nor the quickhull algorithm [5] implementation in
qhull 2003.1 [6] compute with arbitrary precision.
Therefore we do not take these programs into account.
The runtimes of the primal-dual method implemented in
pd 1.7 [12] are extremely high and thus not comparable.
In higher dimensions the beneath and beyond imple-

50 100 200 300 400 500
Number of vertices

0

100

200

300

400

T
im

e
(s

)

glrs
gchbdd
cddr+
gchbddCDD
chbdd

50 100 200 300 400 500
Number of vertices

0

1000

2000

3000

4000

N
um

be
r

of
 f

ac
et

s

Number of facets

Figure 2: Comparison on randomly generated instances in dimension 9

mentation in polymake 2.2 [19] requires a lot of memory
and the runtimes are very high. Therefore we restrict
the comparison to glrs 4.2 [2] which implements the
reverse search algorithm [1] and cddr+ 0.77 [17] which
is an implementation of the double description method
[18]. Both programs were compiled with the GMP 4.1.4
[20] for arbitrary precision support.

In our implementation chbdd we work with the
datatype long until we catch an integer overflow in
which case we switch to the GMP. This results in a
speed advantage. To be able to compare with glrs and
cddr+ we force the usage of the GMP in our implemen-
tation gchbdd. In chbdd and gchbdd we use lrs as a
subroutine for finding the ridges whereas we use cdd in
gchbddCDD. Our algorithm decomposes the problems in
convex hull problems in one dimension lower. For these
subproblems the input is lexicographically sorted. This
fact might help incremental methods, see e.g. [22].

The input of our test instances is a set of 0/1 points.
All runtimes are given in seconds. The fastest runtime
is printed in bold. The instances presented in table 2
are from the same source as those in section 2.3. For
the HC instances we can speed up glrs with our hybrid
approach. For the higher dimensional TC problems the
performance of cdd can be improved with our algorithm.
The structures of the instances in table 2 do not reveal
much information about the behaviour of all algorithms

in general. Therefore we generated random instances S.
We generate one 0/1 point s ∈ {0, 1}d by a sequence
of d coin flips. If s �∈ S and S does not have the
desired cardinality we add it in such a way that S is
lexicographically sorted.

The figures 2, 3 and 4 show the comparisons on
our randomly generated instances in dimensions 9, 10
and 11. We generated 3 instances per dimension. The
figures show the median of the number of facets and the
median of the runtimes.

The runtime of lrs increases with the number of
vertices of the input whereas cdd’s runtime mainly
depends on the number of facets of the output for larger
instances. The reverse search and the double description
method behave complementary to each other.

If the number of vertices exceeds 100 we can im-
prove glrs with our hybrid approach gchbdd since it
is easy to find all ridges in dimension d − 1. Only
for the instances with up to 300 vertices in dimension
11 we could improve cddr+ with our hybrid approach
gchbddCDD. We guess that this is related to the num-
ber of ridges that arise. For a small number of vertices
our approach chbdd is usually the fastest. In every di-
mension there exists a threshold value for the number
of vertices from which on our approach is inferior to
cddr+. In dimension 9, 10 resp. 11 the crucial number
of vertices lies between 200-300, 300-400 resp. 500-600.

50 100 200 300 400 500 600 700
Number of vertices

0

1000

2000

3000

4000

5000

6000

T
im

e
(s

)

glrs
gchbdd
cddr+
gchbddCDD
chbdd

50 100 200 300 400 500 600 700
Number of vertices

0

5000

10000

15000

20000

25000

30000

N
um

be
r

of
 f

ac
et

s

Number of facets

Figure 3: Comparison on randomly generated instances in dimension 10

Generally speaking our approach can cope better with
polytopes whose facets contain few vertices.

An interesting point of further research could be the
correlation between the number n of vertices of random
0/1 polytopes in dimension d and the expected number
of facets, which we can observe in the figures 2, 3 and
4.

References

[1] D. Avis. lrs: A revised implementation of the reverse
search vertex enumeration algorithm. In G. Kalai and
G. M. Ziegler, editors, Polytopes – Combinatorics and
Computation, pages 177 – 198. Birkhäuser, 2000.

[2] D. Avis. lrslib 4.2 Homepage, 2005.
http://cgm.cs.mcgill.ca/∼avis/C/lrs.html.

[3] D. Avis, D. Bremner, and R. Seidel. How good are
convex hull algorithms? Comput. Geom.: Theory and
Appl., 7(5–6):265 – 301, 1997.

[4] D. Avis and K. Fukuda. A pivoting algorithm for
convex hull and vertex enumeration of arrangements
and polyhedra. Discrete Comput. Geom., 8(3):295 –
313, 1992.

[5] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa.
The quickhull algorithm for convex hulls. ACM Trans-
actions on Mathematical Software, 22(4):469 – 483,
1996.

[6] C. B. Barber and H. T. Huhdanpaa. Qhull 2003.1
Homepage, 2003. http://www.qhull.org.

[7] A. Barvinok. Polynomial time algorithm for counting
integral points in polyhedra when the dimension is
fixed. Math of Operations Research, 19:769–779, 1994.

[8] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer.
BDDs in a branch and cut framework. In S. Niko-
letseas, editor, Experimental and Efficient Algorithms,
Proceedings of the 4th International Workshop on Ef-
ficient and Experimental Algorithms (WEA ’05), vol-
ume 3503 of Lecture Notes in Computer Science, pages
452–463. Springer, 2005.

[9] M. Behle. Another Zero One Vertex Enumeration tool
1.0 Homepage, 2006.
http://www.mpi-inf.mpg.de/∼behle/azove.html.

[10] R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB:
A test set of mixed integer programming problems.
SIAM News, 25(2), 1992.

[11] D. Bremner. Incremental convex hull algorithms are
not output sensitive. In Proceedings of the 7th Inter-
national Symposium on Algorithms and Computation,
volume 1178 of Lecture Notes in Computer Science,
pages 26 – 35. Springer, 1996.

[12] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual
methods for vertex and facet enumeration. Discrete
Comput. Geom., 20(3):333 – 357, 1998.

[13] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-
puters, C-35:677–691, 1986.

[14] M. R. Bussieck and M. E. Lübbecke. The vertex set of a
0/1-polytope is strongly P-enumerable. Computational

50 100 200 300 400 500 600
Number of vertices

0

10000

20000

30000

40000

50000

T
im

e
(s

)

glrs
gchbdd
cddr+
gchbddCDD
chbdd

50 100 200 300 400 500 600
Number of vertices

0

50000

100000

150000

200000

N
um

be
r

of
 f

ac
et

s

Number of facets

Figure 4: Comparison on randomly generated instances in dimension 11

Geometry, 11(2):103 – 109, 1998.
[15] D. R. Chand and S. S. Kapur. An algorithm for convex

polytopes. J. Assoc. Comput. Mach., 17(78):78 – 86,
1970.

[16] T. Christof and A. Löbel. POlyhedron Representa-
tion Transformation Algorithm 1.4.0 Homepage, 1997.
http://www.zib.de/Optimization/Software/Porta/.

[17] K. Fukuda. cdd 0.77 and cdd+ 0.94b Homepage, 2003.
http://www.ifor.math.ethz.ch/∼fukuda/cdd_home.

[18] K. Fukuda and A. Prodon. Double description method
revisited. In Selected papers from the 8th Franco-
Japanese and 4th Franco-Chinese Conference on Com-
binatorics and Computer Science, volume 1120 of Lec-
ture Notes in Computer Science, pages 91 – 111.
Springer, 1995.

[19] E. Gawrilow and M. Joswig. Polymake: A framework
for analyzing convex polytopes. In G. Kalai and
G. M. Ziegler, editors, Polytopes – Combinatorics and
Computation, pages 43 – 74. Birkhäuser, 2000.

[20] T. Granlund. GNU Multiple Precision Arithmetic
Library 4.1.4 Homepage, 2004. http://swox.com/gmp.

[21] ILOG. CPLEX 9.0 Homepage, December 2003.
http://www.ilog.com.

[22] V. Kaibel and R. Mechtel. Revlex-initial 0/1-
polytopes. Preprint. To appear in: J. Comb. Theory,
Ser. A, 2005.

[23] C. Y. Lee. Representation of switching circuits by
binary-decision programs. The Bell Systems Technical
Journal, 38:985 – 999, 1959.

[24] J. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida.
Effective lattice point counting in rational convex poly-
topes. Journal of Symbolic Computation, 38(4):1273 –
1302, 2004.

[25] M. Lübbecke. Zerone 1.81 Homepage, 1999.
http://www.math.tu-bs.de/mo/research/zerone.html.

[26] G. Rote. Degenerate convex hulls in high dimensions
without extra storage. In Proceedings of the 8th annual
Symposium on Computational Geometry, pages 26 – 32,
1992.

[27] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley, 1986.

[28] R. Seidel. Convex hull computations. In J. Good-
man and J. O’Rouke, editors, Handbook of Discrete
and Computational Geometry, chapter 19. CRC Press,
1997.

[29] F. Somenzi. CU Decision Diagram Package Release
2.4.1 Homepage. Department of Electrical and Com-
puter Engineering, University of Colorado at Boulder,
May 2005. http://vlsi.colorado.edu/∼fabio/CUDD.

[30] G. F. Swart. Finding the convex hull facet by facet. J.
Algorithms, 6:17 – 48, 1985.

[31] I. Wegener. Branching Programs and Binary Decision
Diagrams. SIAM Monographs on Discrete Mathemat-
ics and Applications. SIAM, Philadelphia, PA, 2000.

[32] G. M. Ziegler. Lectures on Polytopes. Springer, 1995.

