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Abstract

The increasingly widespread availability of high dynamaage (HDR) technol-
ogy has led to active study of the characteristics of the lmwrgual system (HVS)
in terms of brightness, lightness, contrast, and colorggion and the application
of the results of these studies to computer graphics. Bedhasdevelopment of
HDR technology gives us display devices with much broadeadyic range for
both high and low luminances, it is especially importantgeise the models of
HVS for the luminance ranges which are not covered by clabpgychophysics,
but required by the new HDR technology.

In this dissertation, we focus on the evaluation and enhraeoé of the appear-
ance of HDR images as reproduced on low dynamic range (LDRjamEuist, we
conducted a psychophysical experiment on seven tone ngapperators (TMOS)
to assess how tone mapped images are perceived differgnilyrban observers
and to find out which attributes of image appearance accouttiése differences.
The results show qualitative differences in TMOs, howettelso turned out that
it was hard to choose the consistently best algorithm in $eofrthe fidelity of
tone mapped images to real-world scenes. Based on this,resultonducted
another series of psychophysical experiments with a gerasy to understand
TMO. This experiment focused on three parameters - brigistneontrast, and
color saturation - in order to measure user preference fat,f@elity of, tone
mapped HDR images across several types of emulated limyteaihcic range dis-
plays. The results of this study provide novel guidance featthng more advanced
TMO designs.

To evaluate the enhancement of image appearance, we ceddwuai series of
experiments on contrast and brightness enhancement. Amear-change in per-
ceived contrast with respect to given physical contrastadidferent adaptation
luminance levels were measured by contrast scaling andastrdiscrimination
threshold experiments on HDR displays. These results leadrhodel of just
noticeable difference (JND) unit which provides uniforndiganging perceived
contrast in complex images. Finally, brightness enhano¢caused by the glare
illusion was investigated. We employed two profiles to evtile glare illusion:
a point spread function (PSF) of the human eye and a Gaussiaelk The out-
come of this study shows that the glare illusion increasegénceived luminance
(brightness) by 20 — 35% for both convolution methods of a B&dFa Gaussian
kernel. This means that faithful simulation of the human ep#cs, which has
been proposed before, is not necessary to achieve a strgignass enhance-
ment of the glare illusion because the Gaussian kernel,hwias no theoretical
justification in human perception, evokes the brightnesspeoement at the same



or higher strength than the PSF.



Kurzfassung

Mit der zunehmenden Verbreitung von Bildverarbeitung mhdm Dynamikum-
fang (HDR), wurden auch die Eigenschaften des menschlickaerts in Bezug
auf Helligkeit, Kontrast und Farbwahrnehmung eingehendistt und im Be-
reich der Computergrafik angewandt. Die Entwicklung der HR#eRHhologie hat
den Dynamikumfang von Anzeigeggen sowohl iir hohe als auchif niedrige
Leuchtdichten deutlich erweitert. Deshalb ist es wichdig aktuellen, psycho-
physischen Modelle des menschlichen Sehens auf die Heilligljereiche auszu-
dehnen, die neuerdings von HDR-Technologien angeboterewerd

In dieser Dissertation konzentrieren wir uns auf die Evidmaund Verbesse-
rung der Darstellung von HDR-Bildern auf Géen mit niedrigem Dynamikum-
fang (LDR)E Wir haben psychophysische Experimente mit sielerschiede-
nen Arten der Dynamikkompression durchigji@ft, um herauszufinden, wie un-
terschiedlich dynamikkomprimierte Bilder von Menschen mg@mommen wer-
den und welche Bildeigenschatfteiir fdie Unterschiede maf3geblich sind. Unse-
re Experimente haben nicht nur gezeigt, dal’ es durchausagiwral Unterschie-
de zwischen verschiedenen DynamikkompressionsverfdliM®) gibt, sondern
auch, daf3 es kein durchgehend bestes Verfahren in punctiexyabetreue gibt.
Darauf aufbauend, haben wir eine zweite Reihe von Studieremé&m gene-
rischen, einfach zu verstehenden Dynamikkompressiofswen durchgefhrt.
Unser Hauptaugenmerk lag hierbei darauf, wie die drei Patarhielligkeit, Kon-
trast und Farktigung die allgemeine Bferenz und Wiedergabetreue von HDR
Bildern auf verschiedenen, emulierten Typen von LDR Displageinflussen. Das
Resultat dieser Studien ist eine neue Herangehensweise &ntiicklung von
Dynamikkompressionsverfahren.

Zur Verbesserung der wahrgenommenen Bilddarstellung,rafrezwei Expe-
rimente zur Helligkeits- und Kontrasterhung durchgefhrt. Mit Hilfe von Kon-
trastskalierung und Versuchen zur Kontrastunterschegsithwvelle auf HDR Dis-
plays konnten wir messen, dafl3 der wahrgenommene Kontrashé@m nicht-
linearen Verfltnis zum realen Kontrast steht und daf3 sich die Helligkeliap-
tion des Betrachters mit dem Kontrast &edert. Unsere Ergebnisse resultieren
in einem Modell zum gerade noch wahrnehmbaren UntersciiéD), das einen
sich gleichnal3ig veéndernden, wahrgenommenen Kontrast in komplexen Bil-
dern erniglicht. Aul3erdem haben wir die Helligkeitséhung durch die Blen-
dillusion untersucht. Um eine Blendillusion hervorzurufeetben wir zwei ver-
schiedene Faltungen auf Bilder angewendet: die Point Sgfeadtion (PSF)
des menschlichen Auges und einen Gauss-Kernel. DieseeStedyt, dal3 bei-
de Faltungen die wahrgenommene Helligkeit um 20-35%eeh. Obwohl ange-
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nommen wird, dal? die Blendillusion durch optische Eigenftiehanervorgerufen
wird, ist also eine wirklichkeitsgetreue Simulation dernsehlichen Optik nicht
notig um eine starke Helligkeitsedhung zu erreichen, da der Gauss-Kernel eine
ahnliche oder gar atkere Helligkeitserthung bewirkt als die PSF. Im Gegen-
satz zur PSF hat der Gauss-Kernel aber keinen theoretistineergrund in der
menschlichen Wahrnehmung.
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Summary

As the need for high dynamic range (HDR) technology has irse@aknowl-

edge of the human visual system (HVS) has been activelydated in computer
graphics research. Many characteristics of the HVS in terhisightness, light-

ness, contrast, and color perception have been studied/bliggshysical methods
and used in computer graphics applications. However, Isecaew HDR tech-
nology provides a much broader dynamic range on displaycdsvor both high

and low luminances, it is especially important to reviserttuglels of HVS for the
luminance ranges which are not covered by classical psygtsigs but required
by the new HDR technology.

How to capture or generate an HDR image has been an actisggnehed topic
for many years. An HDR scene can be captured either by newingagnsors
or by conventional LDR cameras with software support, oait be produced by
using 3D renderers. In parallel with the development of HDfage generating
techniques, a variety of compression algorithms and HDRdieats have been
introduced. However, even if an HDR image is created, LDRldis cannot
display it. To solve this problem, many tone mapping opesafbMOs) have been
proposed to adjust the dynamic range of an HDR image to theD& display
devices as a software approach. From the point of hardwar@agh, there exist
dual-modulation HDR displays which can reproduce the digplynamic range
between 0.01 and 3,00d/m?>.

Although a variety of TMOs have been developed, no systematiceptual eval-
uation exists to reveal their strength or weakness. We adadwa psychophysical
experiment based on a direct comparison between the apgeané real-world
scenes and tone mapped images of these scenes. The prinahigf guis psy-
chophysical experiment was to assess how tone mapped irasgpsrceived dif-
ferently by determining find out which attributes of imag@egarance account for
the differences between TMOs. This experiment employedtivibutes of image
appearance: overall brightness, overall contrast, degaibductions in bright and
dark regions, and naturalness. The results show quaditdifferences in TMOs,
however, it also turns out that it is hard to choose one of #igiag algorithms
which will consistently perform the best in terms of the filebf tone mapped
images.

Building on this result, we conducted another series of psghiisical experi-
ments which employed a generic, easy to understand TMO idetparameters:
brightness, contrast, and color saturation. These paesiswere controllable by
human observers, and the goal was to find: a) the most préfenage without

any referencepeferenceiask) and b) the closest image to the real-world scenes
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(fidelitytask). In addition, several types of limited dynamic ranfiéigplays were
emulated in the experiments. The results show that thisrgefMO is strongly
affected by two factors: anchor (reference) white and estrit is also shown
that the parameters can be automatically estimated bas#tkearharacteristics
of an image for providing a reasonable “best-guessing”ltegulditionally, the
outcome from emulating several types of limited dynamigeadisplays indicates
that the best resulting image depends on the purpose of tti: TiM best-looking
(preference task) or the best fidelity task. These resufta fample and funda-
mental TMO will be applicable for more complicated TMO dewsg

We also studied the enhancement of contrast and brightndsBRR images. A
usual way to scale contrast in image processing changessbequally in the
whole image. While this contrast scaling method is suitabtd DR displays, it
leads to a non-uniform perceived change in contrast in HDdfabse of the lower
contrast sensitivity of the human eyes for low luminancesseglaon this non-
uniformity of the perceived contrast change, we conducted gsychophysical
experiments: contrast scaling and contrast discriminatiweshold experiments
for a complex image. The results of these two experiment® wenverted to
just noticeable difference (JND) units to construct a manl&r perceived con-
trast, physical contrast, and adaptation luminance inraae@rovide uniformly
changing perceived contrast in complex images.

Finally, we measured the brightness enhancement whichusedaby the glare
illusion. The glare illusion causes an object in an imageotiklImuch brighter
if it is surrounded by smooth gradient profiles. To evoke tlaagillusion, we
employed two different convolution methods: a point spreadttion (PSF) of
the human eye and a Gaussian kernel. A brightness matchpegiment was
conducted for the upper and lower border of the glare illugip using a modified
version of the increment/decrement method. The outcoméisfstudy shows
that the glare illusion increases the perceived luminabgglitness) by 20 — 35%
for both of the convolution methods PSF and Gaussian kefirtat leads to the
conclusion that, although it is believed the glare illus®related to some optical
system, faithful simulation of the human eye is not necgsseachieve the strong
brightness enhancement caused by the glare illusion betae$saussian kernel,
which has no theoretical justification, in terms of humancpption evokes the
brightness enhancement at same or higher strength as the PSF



Zusammenfassung

Mit der zunehmenden Verwendung von Bildverarbeitung mitédmrDynami-
kumfang (HDR) wurden viele Eigenschaften des menschlichemes in Be-
zug auf Helligkeit, Kontrast und Farbwahrnehmung in Stadeforscht und in
der Computergrafik angewendet. Da jedoch die Entwicklunglanf Gebiet der
HDR-Technologie Géte mit einem deutlich @heren Dynamikbereich, sowohl
bei niedrigen als auch hohen Leuchtdichten hervorgebrathtiissen die beste-
henden Modelle des menschlichen Sehens auf die Helliglezggche hin unter-
sucht werden, die von der HDR-Technologie égiicht werden, von klassischen
psychophysischen Studien aber nicht abgedeckt sind.

Das Aufnehmen oder Erzeugen eines HDR Bildes ist in den fetidéren stark
in den Mittelpunkt der Forschung geakt. Mittlerweile kann eine HDR-Szene
entweder mit Hilfe von speziellen Bildsensoren direkt odér merkdommlichen
Kameras mit geringerem Dynamikumfang (LDR) und dazudgehder Software
aufgenommen werden, oder sie kann mit einem 3D Renderer zisytlwerden.
Parallel dazu wurden auch eine Vielzahl von Kompressiafsieen und Datei-
formaten fir HDR entwickelt. Dennoch kann ein HDR-Bild nicht einfach auf
nem LDR Display dargestellt werden. Um dieses Problendgear wurden einige
Dynamikkompressionsverfahren vorgestellt, die den Dyikamfang eines HDR
Bildes so reduzieren, dal3 es auf einem LDR Display dargestitien kann. Auf
dem Gebiet der Display-Entwicklung gibt es mittlerweile RIDisplays mit dop-
pelter Intensiitsmodulation und einem Kontrastumfang von 0,01 — 3,002,

Trotz der Vielfalt an Dynamikkompressionsverfahren (TM@ibt es keine Wahr-
nehmungsbasierten Studien zu den Vor- und Nachteilen deeleien Verfahren.
Deshalb haben wir eine psychophysische Studie durthgefdie auf dem di-
rekten Vergleich zwischen echten Szenen und tone-mappddrBitler gleichen
Szene basiert. Hauptaugenmerk lag hierbei darauf, wientapped Bilder im
Vergleich wahrgenommen werden und welche Bildattributedie Unterschiede
zwischen verschiedenen tone-mapping Verfahren maRgeddhid. Finf Bildattri-

bute wurden hieiir herangezogen: Gesamthelligkeit, Gesamtkontrastjliveta

dergabe in hellen und dunklen Bereichen undidathkeit des Bildes. Die Er-
gebnisse zeigen qualitative Unterschiede zwischen tam@pmg Verfahren auf,
aber auch, daf3 kein einzelner TMO stets die wirklichkegdtststen Bilder liefert.

Darauf aufbauend haben wir eine weitere Studie mit einenerigehen, einfach
zu verstehenden TMO mit 3 Parametern durctigdf Helligkeit, Kontrast und
Farbs&ttigung. Diese Parameter konnten von den Benutzedndert werden um
1. ohne Referenzbild das bevorzugteste Bild und 2. das whikdicstreueste Bild
verglichen mit der echten Szene zu finden.&abch haben wir in der Studie ver-



schiedene Typen von LDR Displays emuliert. Die Ergebissgere dal3 dieser
generische TMO stark von zwei Faktoren beeinflu3t wird: derfefRaz-Weil3
und dem Kontrast. Wir konnten auf3erdem zeigen, dal3 die R&zafmasierend
auf Bildcharakteristika automatisch bestimmt werdénrken. Die Emulation ver-
schiedener LDR Displays hat gezeigt, daf? die Ergebnighidi@& Anwendungs-
zweck des TMO akdngig sind, je nachdem ob das 8okte Bild oder das wirk-
lichkeitsgetreuste Bild gefordert ist. Unsere Erkenn@meshand eines einfachen
und grundlegenden TMO sind auch auf das Design von komgkzen TMO
anwendbar.

Wir haben ebenfalls studiert, wie Kontrast und HelligkeiHDR Bildern verbes-
sert werden &nnen. In der Bildverarbeitung wird der Kontrast ggwilich einfach
skaliert, was eine konstanfenderung des Kontrasts im gesamten Bild bewirkt.
Wahrend diese Art der Kontrastéthung fir LDR Displays geeignet ist, bewirkt
sie in HDR eine uneinheitlichanderung des wahrgenommen Kontrasts, weil das
menschliche Auge in dunkleren Bereichen weniger empfindlictiKontraste ist.
Basierend auf dieser Beobachtung haben wir zwei psychopimgsiStudien zur
Kontrastskalierung und zur Kontrastunterscheidungsstiavdurchgeiiihrt. Die
Ergebnisse der beiden Experimente wurden in Einheiterdgerach wahrnehm-
baren Unterschieds konvertiert um wahrgenommenen Kdnfpagsikalischen
Kontrast und Adaption zu modellieren. Das Modell égficht letztendlich einen
sich gleichnaRig veéndernden Kontrast in komplexen Bildern.

Abschlie3end haben wir noch die Bitung der wahrgenommenen Helligkeit, wie
sie durch die Blendillusion hervorgerufen wird. Die Blendilion, die ein Objekt
heller im Bild erscheinenalsst, wird hervorgerufen, wenn das Objekt von einem
glatten Helligkeitsgradienten umgeben ist. Um diese opé&slauschung herbei-
zufuhren, haben wir zwei verschiedene Faltungsmethoden weletredie Point
Spread Function (PSF) des menschlichen Auges und einers@&ausel. In einer
Studie mussten Probanden die Helligkeit von Bildern ohne d@lieision an ein
Referenzbild mit der lllusion anpassen. Dabei hat sich gézdald die wahrge-
nommene Helligkeit durch die Blendillusion um 20-35%d@rhwird, und zwar
sowohl bei Verwendung der PSF als auch mittels Gauss-Ke@i®i/ohl bisher
angenommen wurde, daf3 die menschliche Optikife Blendillusion verantwort-
lich ist, lasst sich daraus schliel3en, dal3 eine genaue Simulatioretssimichen
Auges nicht #tig ist, um eine starke Edtung der Helligkeit zu bewirken. Der
Gauss-Kernel, der keinen theoretischen Hintergrund imarschlichen Wahr-
nehmung hat, bewirkt eine ebenso starke, wenn nicht gakese Erlbhung der
wahrgenommenen Helligkeit.
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Chapter 1

Introduction

Significant progress in developing image and video recgrdievices has seen
the advent of a variety of techniques such as down-sizirggeasing resolution,
compression algorithms, and image stabilizers. Howevestrof the today’s
common recording devices capture only a part of the scem@mbhnce range that
the human eyes can perceive at once. If an image of a scene Wimagance
range is broader than the capability of a camera is taken &ty cameras, darker
and brighter areas in an image are under- and over-saturaspéctively, and
details in those regions are not very visible in the imagehSmages that contain
much broader dynamic range than conventional recordingdisplay devices
can handle are calledigh dynamic range (HDR)mages. On the other hand,
conventional recording, display devices, and images eettodJPEG and MPEG
formats are refereed &»w dynamic range (LDR)

With the increasing the need for HDR technology, the develemt speed of HDR
technology has been surprisingly rapid. How to capture odpce an HDR image
has been actively researched so that an HDR scene can be pioweckeither with

the new imaging sensors or by LDR cameras with some softwg@ost, or it can

be produced by using 3D renderers. In addition to the existefh many ways to
produce HDR scenes, there are also many compression teelsrand HDR file

formats available, for example, OpenEXR is a widely used HiERormat.

Yet, even if an HDR image is created, it cannot be displayexhd3DR image on
an LDR display device. As shown in Figutel, the capabilities of LDR displays
(CRT and LCD) are very limited compared to the real-world luamce ranges.
To conquer this problem, we can take both software and haeda@proaches. In
the software approach, a numbertohe mapping operators (TMO&gave been
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Figure 1.1: Comparison of the luminance ranges of the naturbenvironments
and the capabilities of display devices (CRT, LCD, and HDR fron bottom to

top).

presented to adjust the dynamic range of an HDR image to fitahan LDR
display device. On the other hand, new HDR display techrsdna®e been intro-
duced. The basic idea behind these devices is to mount acséghhmodulator

to enable even stronger backlight, while still maintainprgper reproduction of
black levels. Figurd.1lshows a comparison of luminance ranges reproduced by
LDR and HDR displays. Note that HDR display technology expaat only the
upper limit of the dynamic range of the display but also itgdolimit. The newest
HDR display has a luminance range between 0.01 to 3;@00.> while modern
LCD and plasma displays are capable of 1.0 to 500 or even 1@00? which

is much more than has been possible until recently using C&ilajis.

As increasing the need of HDR technology, another issue tagaied to play an
important role in computer graphics: human visual peroeptA variety of char-
acteristics inhuman visual system (HV8ave been studied on brightness, light-
ness, contrast, and color perception by psychophysicdiestpyand they are well
applied into computer graphics applications.

This dissertation is dedicated to evaluation and enhanceofehe appearance
of HDR images. We first conducted a perceptual evaluationhd®$ which are
not directly compared to each other but compared to theiresponding real-
world views. There had been conducted a number of psychagahgxperiments
comparing image-to-image, however, there existed no syate perceptual eval-
uation to reveal the strength or weakness of the TMOs. Istout that it is hard
to choose one of the existing algorithms to perform consiltéhe best in terms
of the fidelity of tone mapped images.

Based on the outcome above, we employed a generic TMO whosmetars are
the three most important factors: brightness, contrastcator saturation instead
of using complicated TMO algorithms. These parameters w@n&olled by users
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for both image preference and fidelity experiments. In aolditan HDR display
emulated several types of display devices with limited ayicaange.

We also took into account the enhancement of contrast aghtbhess of an image.
For contrast perception, there have been presented maokqsyysical studies,
however, they were conducted on very simple patterns oiiteind did not con-
sider the cases of HDR. Additionally, it was already knowrt tihe perceived
contrast changes are not same for all adaptation luminaiée<onducted sub-
jective experiments to observe a relationship of perceagdrast change, given
physical contrast, and different adaptation luminanceomulex images so that
the outcome of the experiment proposes a model to keep aromperceived
contrast change for different adaptation levels.

Finally, brightness boosts caused by the glare illusioretbamn a point spread
function of the human eye and a simple Gaussian kernel wastigated. There
are several types of glare effects such as disability glaceveiling glare. The
glare illusion is the one which increases the brightnessajlgect in an image
when the object is surrounded by smooth gradient profilesuber of render-
ing methods have been proposed for disability glare. Thetbads are based on
some characteristics of HVS which are roughly equivalerddsigning a point
spread function of the eye optics; therefore, although these meant to render
disability glare, they are actually used to model the gllusion. A simple Gaus-
sian convolution, which has no strong justification as a psjmead function of
the eye, was also employed to compare its performance ofdheifusion to that
of the optic-based algorithms.

1.1 Main Contributions

The ideas discussed in this dissertation have been alradalisiped in interna-
tional journals and presented at conferences. In this det&m, they are com-
bined under the common concept of evaluation and enhandeshémage ap-
pearance in HDR images by using displays with varying dycarange from
LDR to HDR. With respect to these publications, we revise gmésd methods
and demonstrate improved results. The key contributionsbeasummarized in
four parts.

e Perceptual evaluation of TMOs with human-perceived reality[ Yoshida
et al. 2007 We conducted a psychophysical experiment based on a direc
comparison between the appearance of real-world scendd[2Rdmages
of these scenes displayed on an LDR monitor. In our expetimw@a HDR
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scenes were tone mapped by seven existing tone mappinganserdhe
primary interest of this psychophysical experiment is teeas the differ-
ences in how tone mapped images are perceived by human etssand to
find out which attributes of image appearance account faetliferences
when tone mapped images are compared directly with theiesponding
real-world scenes rather than with each other. The humgedsbrate im-
age naturalness, overall contrast, overall brightneskdatail reproduction
in dark and bright image regions with respect to the corredpg real-
world scene (Chaptet).

Analysis of reproducing real-world appearance on HDR dispays
[Yoshida et al. 2006 We proposed a novel approach to the tone mapping
problem, in which the tone mapping parameters are detethiased on
the data from subjective experiments, rather than an imegeepsing algo-
rithm or a visual model. A series of experiments was conaltevhich
the subjects adjusted three generic TMO parameters: beghi contrast
and color saturation. They are to find a) the most preferredjgwithout a
reference image (preference task) and b) the closest iroage teal-world
scene which the subjects are confronted with (fidelity tadkle analyze
subjects’ choice of parameters to provide more intuitivetia over the pa-
rameters of a TMO. Unlike most of the researched TMOs thatd@n ren-
dering for standard low dynamic range monitors, we consad#oad range
of potential displays, each offering different dynamicgarand brightness.
We simulate capabilities of such displays on an HDR displays allows
us to address the question of how tone mapping needs to betedijo ac-
commodate displays with drastically different dynamicgas (Chapteb).

Perception-based contrast enhancement model for complerages in
HDR [Yoshida et al. 2008b Contrast in image processing is typically
scaled using a power function (gamma) where its exponertifggethe
amount of the physical contrast change. While the exponembrisally
constant for the whole image, we observe that such scalats® percep-
tual nonuniformity in the context of HDR images. This effexcimostly due
to lower contrast sensitivity of the human eyes for the lomilance levels.
Such levels can be reproduced by an HDR display while theyncérbe
reproduced by standard display technology. We conductedpewceptual
experiments on a complex image: contrast scaling and &irdiscrimina-
tion threshold, then we derived a model which relates chaewogehysical
and perceived contrasts at different adaptation lumireand&e used the
model to adjust the exponent value such that we obtain betereptual
uniformity of global and local contrast scaling in complexages (Chap-
ter6).
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e Brightness of the glare illusion[Yoshida et al. 200§a We measured the
perceived luminance of the glare illusion in a psychoplaisexperiment.
To evoke the illusion, an image is convolved with either anpspread func-
tion (PSF) of the eye or a Gaussian kernel. It is found thahé&)Gaussian
kernel evokes an illusion of the same or higher strength thanproduced
by the PSF while being computationally much less expen&yé&ie glare
illusion can raise the perceived luminancedty— 35%, 3) some convolu-
tion kernels can produce undesirable Mach-band effectsteamdby reduce
the brightness boost of the glare illusion. The reporteditetave practical
implications for glare rendering in computer graphics (Gaap).

1.2 Chapter Overview

This dissertation is structured as follows. Cha@eeviews the human visual
system (HVS) and several characteristics of HVS: humanaVisensitivities on
contrast and brightness and temporal visual adaptatioGhapter3, we give an
overview of the high dynamic range imaging (HDRI) and its tedetechniques.
Perceptual evaluation of recent TMOs is described in Chaptend an analysis
of reproducing real-world appearance on HDR displays isnted in Chapteb.
Then, two enhancement models are presented in Chaptard7 as perception-
based contrast enhancement model for complex images in &l&aind bright-
ness of the glare illusion in Chaptér Finally, ChapteB concludes this disserta-
tion and gives an outlook for future work.
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Chapter 2
The Human Visual System (HVS)

2.1 The Eye

The human visual system (HVIS)a part of the nervous systems which makes it
possible to see external objects by interpreting inforamatiia incoming lights
into the human eye. The human eye has a very complex strumusgsting of a
number of small organic parts including the cornea, pupd, iens, and retina as
its main parts (see Figuizl). The cornea provides most of the eye’s refractive
power, the iris controls the entry of an incoming light inkee teye, and the vari-
able opening within the iris is called the pupil. The pupitetenines the amount
of light which can reach the retina. The lens changes itseslaaping the act
of accommodation in order to provide focal control. Incoglight which goes
through the cornea and lens are projected onto the retinghvaointains photore-
ceptor cells and neural tissues. The retina is an import@amponent of the eye
for considering sensitivity in HVS. Two major photorecaptells of the retina
are calledodsandcones(see Figure.2), which cover the wavelengths of lights
between 400 to 700 nm. The rods are sensitive at low illunanag¢vels (scotopic
vision) whose peak of the sensitivity is at 498 nm while theeare sensitive at
high illumination levels (photopic vision) with the highesensitivities at 420 nm
for the short wavelength (blue), at 534 nm for the medium \ength (green), and
at 564 nm for the long wavelength (redigrwerda 200{L Vision models of sco-
topic, mesopic, and photopic visions are illustrated whté luminance range of
the natural environments in FiguPe3. Once incoming lights reach the retina, the
projected light is transferred to the brain via optic nexwaterpret information.
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Figure 2.2: The structure of the retina. Two major photorecegors are num-
bered as 1) cones and 2) rods. AfterAtkinson 1988).
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Figure 2.3: The luminance range for scotopic, mesopic, and mtopic vision.
After [ Spillman et al. 199Q.

This whole mechanism of the optic system in the human eye ®iodnation

retrieving process in the brain is called HVS. In this chaptee firstly review
several fundamental characteristics of HW&ual adaptationSection2.2) and

visual sensitivity tocontrast(Section2.3) andbrightnesqSection2.4). Refer to

[Graham 1965Spillman et al. 1990Wandell 1995Barten 1999Ferwerda 200{L
for more details on the other characteristics of HVS. Nex,give an overview
of psychometic scalingvhich are often used in HVS research (Secfdp).

2.2 Visual Adaptation

As shown in Figure2.3 the luminance dynamic range of the natural environ-
ments is quite broad. HVS are processed on this broad ranlyena@iances by
adaptation. Adaptation is achieved through the coordthattion of mechanical,
photochemical, and neural processes in H#8rverda 200[L For example, the
human eyes cannot be adapted to a quick change of illummetstantaneously.
Detection threshold of time for HVS can be measured by suaxpariment that
a subject is seated in a room under a certain ambient illumoiméor long enough
time to be adapted to its intensity. Next, the illuminatisnchanged suddenly,
and then the ability of the subject for detecting a small hemice difference on
a stimuli is examined. The length of time until he/she sthamg able to de-
tect the luminance difference is measured. Figireshows the time course of
dark adaptation which HVS adjusts from bright to dark illumination levelh&
crossing point of the rod and cone curves is knowrPaskinje breakwhich in-
dicates the transition from detection by the cones to detetty the rodsKling
and Riggs 197]L

The inverse case of dark adaptation, which HVS adjust frork ttabright illu-
mination level, is calledight adaptation Figure?2.5 shows the time course of
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light adaptation for the rods and cones. As shown in the fidiglet adaptation is
more rapid than dark adaptation. This characteristic of HMSemporal visual
adaptation is applied to design time-dependent tone mgmumaratorsfferwerda
et al. 1996 Pattanaik et al. 20Q@urand and Dorsey 200&einhard et al. 2005

Log threshold luminance (cd/mz)

0 2 4 6 8 10 12 14 16 18 20
Time (minutes)

Figure 2.4: The time course of dark adaptation for the rods andcones. Image
after [Ferwerda 200]. Original data was measured by Hecht in Murchison
1934.

2.3 Visual Sensitivity to Contrast

2.3.1 What is Contrast?

Contrast is the difference in visual properties which makesrépresentation of
an object distinguishable from the others or from the bawlgd. There have
been presented a number of ways to define contrast for theo€asaple stimuli
which contain two extreme intensities such as sinewavepeator Gabor patches.
The simplest way to calculate contrast is to take their @imple Contragtas

C, = Limax (2_1)
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Figure 2.5: The time course of light adaptation for the rods (eft) and cones
(right). Images after Adelson [Adelson 1982 (left) and Baker [Baker 1949

(right).

where Lnax and Ly, are the maximum and minimum luminances. Simple con-
trast is often used for photography to specify the ratio leetwbright and dark
areas in an image, bdt; is not practical to use for psychophysias, is some-
times calculated in logarithmic domaiog Cy = log%: (Logarithmic Ratig
which actually denotes the logarithmic difference betv{/éagk and L. Signal

to Noise Ratio (SNR3% similar to the Logarithmic Ratio:

L
SNR =20 -log,, Lmax (2.2)

min
which is given in the unit of decibel€ ).

In psychophysics experiment/eber’s fractiorandMichelson contrasare often
used contrast definitions. They are formulated as

¢, = Lmax = Luin (2.3)
Lmin
Lmax - Lmin
Cp=——"-—— 2.4
Lmax+ Lmin ( )

for Weber’s fractionC,, and Michelson contrast,,,, respectively. The ranges of
values in contrast are 1.0 to oo for Weber’s fraction and to 1.0 for Michelson
contrast. Weber’s fraction is commonly used for measutregacal contrast of a
single stimulus of uniform luminance on a uniform backgrduvhile Michelson
contrast is used for periodic patterns such as sigmoidéhgsa Weber's fraction
is reviewed in Sectio2.3.5
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All of the definitions presented above can be applied onlsiiople patterns. On
the other hand, defining contrast in complex images is nobag as the above
definitions. Peli proposed a way to define contrast in comiteages by using
quasi-local definition of contrasPgli 199Q. This definition is based on an idea
that, because human contrast sensitivity highly dependsgpatial frequency, es-
pecially near thresholds, contrast for each spatial frequérand is calculated
separately to address the variation of contrast across agemPeli’s contrast is
given in a 2D array for each band of spatial frequencies as

b(z,y)
D =)
whereb(z, y) is the band-pass filtered version of an original image,landy) is
the low-pass filtered version which includes all energy Wwettte band (Note that
l(x,y) > 0). x andy represent the coordinate of a pixel. In this method, Ganssia
pyramid L and Laplacian pyrami@ [Adelson and Burt 198lare constructed for
a given image. The band-pass imdge, y) is taken from the pyramid3, and
the low-pass imag#z, y) is taken from two levels below in the pyramid(see
Figure2.6). Refer to Peli 1990 for the details of his contrast definition and its
applications.

(2.5)

Gaussian pyramid L Laplacian pyramid B

_ E \ VA
Input image : >
] :D\ﬁ/ i
I(x.y) 5 ox.y)

Figure 2.6: An illustration of the contrast definition in [ Peli 199Q.

The definitions of contrast reviewed above deal vpilttysicalcontrast. However,
contrast has another sidgpparentcontrast which denotes the perceived phenom-
ena of contrast by HVS. Even if the same physical contrasiudtare given, they
can be sometimes judged to be stronger or weaker dependisgcbnfactors as
image contents, adaptation luminance, and display devigssause it is difficult

to manipulate physical contrast due to display device &tronhs, considering ap-
parent contrast based on HVS can be benefitical to enhanpertbeived contrast.

In the following sections, we review several factors of cast perceptioncon-
trast detection and discrimination threshoJ@entrast sensitivity function (CSF)
threshold versus intensity (TVI) functicemdWeber’s law
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2.3.2 Contrast Detection and Discrimination Thresholds

Before describing perceptual theories of contrast, it isartgnt to clarify the dif-
ference betweenontrast detectiomndcontrast discriminatiorthresholds. Both
of them are often used in psychophysical studies to measuceptual character-
istics of the human eyadjarten 1999 The contrast detectiothreshold measures
the smallest visible contrast of a given stimulus on a unifimackground (see
Figure2.7 left). On the other hand;ontrast discriminatiorthreshold is a mea-
surement of the smallest visible difference at a given dtiswwith given pedestal
contrast (see Figur.7 right). Contrast detections a special case afontrast
discriminationwhen its pedestal contrast (green part of the discrimingtiot in
Figure2.7) is zero. For measuring contrast detection and discrinunahresh-
olds, there are a number of psychophysical methods suclei@snent/decrement
method, staircase method, Parameter Estimation by Segu&esting (PEST)
[Taylor and Creelman 19§ 7and QUEST YWatson and Pelli 1983

Discrimination

Threshold
Detection Pedestal
IThreshoId contrast

Figure 2.7: lllustration of contrast detection and discrimination thresholds.

When a stimulus is 1) significantly above the detection orrdigoation thresh-
old or 2) very close or equal to the threshold, they are callesuprathreshold
and 2)subthresholdr threshold respectivelyContrast detectiomeasures a per-
formance of the human eye stibthresholdvhile contrast discriminatiormea-
surement deals witbuprathresholatharacteristicsContrast detectiothresholds
have been modeled such @sntrast Sensitivity Function (CSFJhreshold ver-
sus Intensity (TVIjunction, andWeber’s law which are briefly reviewed in the
following sections.

2.3.3 Contrast Sensitivity Function (CSF)

Contrast sensitivity function (CSK one of the well-known HVS characteristics
in contrast perception. It describes the sensitivity of ltkenan eye as a func-
tion of spatial frequencies. As shown in Figw2e8, although the amplitude of
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signals are decreasing uniformly, the perceived signaispgtiear non-uniformly.
The sensitivity of the human eyes for spatial frequency isdgaass type, i.e.,
our eyes are the most sensitive at the medium spatial fretpgearound 4 — 10
cycles per degree of visual angle. From the concept of imageeption on the
display, this means that tli@&SFdepends on the viewing distance. Additionally, it
is also affected by adaptation luminances (see Figue Several models of the
CSFhave been used in computer graphics fidMdpnos and Sakrison 19,/aly
1993.

Figure 2.8: Contrast sensitivity function (CSF) over spatal frequencies (hor-
izontal axis). The amplitude of signals decreases uniformlglong the vertical
axis for all frequencies, but the signals disappear non-uformly for the hu-
man eyes. Our eyes are the most sensitive at the medium spatigequencies.
After [ Campbell and Robson 1968
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Figure 2.9: Family of contrast sensitivity functions (CSF$ with different
adaptation luminances. Those CSFs are plotted based obély 1993.

2.3.4 Threshold versus Intensity (TVI) Function

A measurement of visual adaptation can be obtained by trextitat threshold
mtehod and then given d$reshold versus Intensity (TMDnction. Such an ex-
periment is conducted as follows: a subject has been seafeaht of a big dark
screen for long enough time to be adapted to the illuminatfahe screen. In each
trial, a disk of light at the center of the screen flashes favaliundred millisec-
onds. The subject must answer whether the disk appeared.olfiibe answer
is yes, the intensity of the disk is decreased or vice versarepgating those
steps, the detection thresholds against the correspoibdickground luminance
are given in thél'VI function (see Figur2.10. The formulation of the'VI func-
tion in computer graphics has been modeled in several vigly [L993 Ferwerda
et al. 1996 Ashikhmin 2002. The relation between CSF and TVI can be given
by considering the maximum spatial frequency for a giverptataon luminance
level (refer to Mantiuk et al. 2009.

Based on th@ VI function, Contrast versus Intensity (CVignction can be intro-
duced asvi(Ladap) = % which indicatesontrast detectiomhresholds at a
given adaptation luminanBsgap:
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Log threshold luminance (cd[mz)
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Figure 2.10: Threshold versus intensity (TVI) functions for the rods and
cones. After [Ferwerda 2001.

2.3.5 Weber's Law

It is observed that the curve of th/I function for rods is almost flat below
—4log cd/m? as seen in Figurg.1Q After this point, the curve becomes nonlin-
ear, then it becomes linear afte log cd/m?. For the cones, the curve is almost
flat below Olog cd/m?, nonlinear below 2 — 3og cd/m?, and then linear for the
rest. This linear relationship is call&teber’s lawwhich can be formulated as

AL = kL (2.6)

whereL is a luminance value anklis a constant factor which is experimentally
defined Kling and Riggs 197]L Weber’s law describes the change in stimulus
luminance that can just be discriminatefN/{) is a constant fractionk{ of the
starting luminance of the stimulug). It indicates that HVS have constant con-
trast sensitivity because the increase in thresholds veittkdround luminance is
corresponding to luminance with constant contrast. Asudised in Sectio.3.],
this law can be also used as one of the definitions of contrbshwW = L,
andAL = Lmax — Lmin in Equation 2.3). Note that Weber’s law holds for the
luminance range greater than 5@0'm?2. Within the luminance range of the con-
ventional displays (1 — 500d/m?), Weber's law is not an accurate model of
luminance masking.
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2.4 Visual Sensitivity to Brightness

2.4.1 What is Brightness?

The term “brightness” (or “darkness” as its opponent) isfised to describe the
sensation of light for subjective or relative measurememterthe absolute mea-
surement of light is given by luminance in the unitcaf/m?. It is very important
to point out that brightness perception depends on mangriastich as spatial and
temporal distribution of light in the visual field. A numbef effects can occur
in brightness perception, for exampkmultaneous contrasGelb effectMach
bands andCraik-O’Brien-Cornsweet illusion They are briefly reviewed in the
following sections.

2.4.2 Simultaneous Contrast

An object is perceived brighter or darker according to whethreflects a higher
or lower percentage of the incident light under natural emment. However, an
object of moderate reflectance appears relatively brightelarker according to
whether spatially adjacent areas are considerably darkeighter than the object
itself. This dependence on adjacent areas for brightnesiaminess is called

simultaneous contrasFigure2.11lillustrates a classical example of simultaneous

contrast. All of the inner squares have the same luminandethkir brightness
varies according to their surroundings.

Figure 2.11: An example of simultaneous contrast. The innermy squares
can be perceived differently in brightness, although all othem are the same
in luminance.
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2.4.3 Anchoring Theory and Gelb Effect

Another example of how HVS depend on relative luminanceas3alb effect If
an object of low reflectance (Object A) in a dark environmeantluminated by
a light source which is not directly visible for a subject,jétt A looks medium
gray or white. Then, if another object of higher reflectarobjéct B) is placed
next to Object A, Object A now looks black while Object B lookkite. The per-
ceived blackness of Object A depends on the relative refieetaf Object B. The
Gelb effecsupports théAnchoring Theorpresented by Gilchrist et alGjichrist
et al. 1999. Krawczyk et al. extended th&nchoring Theoryf lightness percep-
tion for complex images and applied as a tone mapping op€iatawczyk et al.
20085.

2.4.4 Mach Bands and Craik-O’Brien-Cornsweet lllusion

Brightness perception also causes border contrast efigdtsasMach bandsand
Craik-O’Brien-Cornsweet illusion The illusion ofMach bandss illustrated in
Figure2.12 Mach bands are observed as over- and under-shoots of feghif
two uniform objects of high and low reflectance are connebted gradient. The
ramp should be neither too shallow nor too steep to nhd&eh bandsrisible. In
the meaningful range of gradients to prodiMach bandsit is known that the
steeper gradient causes stronger effedflath bandgLotto et al. 1999

Luminance

’\_JA

Brightness

Figure 2.12: Left: An example of Mach bands. Right: Profiles of uminance
and brightness of Mach bands. The actual profile in luminance ishown in
the pink line while it is perceived as in the black line (brightness).

Similar to Mach bands Craik-O’Brien-Cornsweet illusioms also a well-known
border contrast effect}’'Brien 1959 Craik 1964. If the parts of over- and under-
shoots are given in an object of a uniform reflectance, thevpi#ln over-shoots
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starts looking brighter, and the other side looks darkee {Sgure2.13. While
Mach bandsappear only in the areas which are close to the given gradieaik-
O’Brien-Cornsweet illusiomffects the perception of large areas. Purves et al. pre-
sented that this illusion still has a strong effect in 3D algdPurves et al. 1999

and it was extended for 3D unsharp masking model by Ritshcal gRitschel

et al. 2008.

’ Luminance

e

Brightness 17

Figure 2.13: Left: An example of Craik-O’Brien-Cornsweet illusion. Right:
Profiles of luminance and brightness of Craik-O’Brien-Cornsweet illusion.
Pink line indicates the actual luminance profile while it is perceived as in the
dashed black line.

2.5 Psychometric Scaling

Psychophysigsvhich is a part of experimental psychology, is a way to sty

characteristics of HVS. It is the scientific study of the tiela between physical
stimulus and sensation which is observed by human subjdete, psychophysics
can be a bridge between HVS and computer graphics becausmputer graph-

ics it is important to determine what factors of an image dbate to visual expe-
rience and to assess what method produces effective vispatience if several
different methods are proposed for the same purpose.

Two important changes have recently occurred in psychogstydevelopment of
the theory of signal detection and the refinements of metfaddirectly scal-
ing sensory magnitudéjescheider 1997 These two improvements lead a wide
applicability of psychophysics. As broadening the capighif psychophysics in
research, there have been a number of experimental metraskgyround theories
of statistics, and ways of analyzing or scaling data dep®nalin the purpose of an
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experiment. In this section, we briefly review the experitatmethods and ana-
lyzes which are used in this dissertation. Refer@Gegcheider 1997FEngeldrum
200Q Coolican 2004 for the other theories and applications in psychophysics,
and [Torgerson 1958for scaling methods.

2.5.1 Two-Alternative Forced Choice (2AFC)
for 1D Scaling

If a limited number of stimuli are given and one wants to kndwe scaling or
ranking between those stimutiyo-alternative forced choice (2AF@3ometimes
called pairwise comparisonor ranking methodare commonly used. Assume
n stimuli are prepared. All possible combinationsmo$timuli are presented to a
subject, and he/she must answer a question which stimususttanger (or weaker
for some cases) intensity for each pair of stimuli, for exEmpwhich stimulus

is brighter?”. In the end of the experiment with a large erfrongmber of human
subjects, an x n square matrix)\/ is constructed to determine the number of
times which each stimulus was chosen. Each elemgntat theith row andjth
column in the matrix\/ denotes the observed number of times which stimglus
was chosen when it was compared to stimuluBhe diagonal cells o/ are left
vacant. Next, the elements of the mathik are normalized between 0 — 1. Then,
based on the normalized matrix, a basic transformationixnatris constructed
such that the element ; is the unit normal deviate corresponding to each element
of the normalized matrix and can be obtained by referringtedoe of areas under
the unit normal curve. The diagonal cells ¥fare filled with zeros. Finally, the
elements of each column in the mattk are summed up to obtain the scalings
between given stimuli. Resulting scalings are given by dista between the
stimuli.

This analysis is called Thurstone’s law of comparative judgt [Thurstone 1927
Thurstone 196]7 This is very simple method to achieve scalings betweentsij

but a big drawback is that the number of comparisons is gigen(a — 1)/2
which exponentially grows by increasing There have been presented several
ways to reduce the number of comparison in 2AFC experimes [Rrgerson
1958 Chapters 8 — 9] for the details). An alternative approach isseranking
methodwhich gives part or all of the stimuli to a subject instead i@&g@nting one
pair after another and then asks them to order the given ktitiican be also
analyzed in the same way by using Thurstone’s law. 2AFC andstbne’s law
are used in Chapte for giving a scaling of perceived contrast with respect to
given physical contrast.
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2.5.2 Threshold Measurement

If one wants to measure detection or discrimination thrielsh@robably the sim-
plest approach is themcrement/decrememhethod. In the experiment by incre-
ment/decrement method, a pair of the reference and taigailsare presented
to a human subject. The target stimulus is set either at tme satensity of the
reference stimulus (Case 1) or at the level which is signitlgatifferent from the
reference (Case2). Then, a subject is asked to start chatigingtensity of the
target stimulus until he/she starts seeing the differeftsedasel) or starts seeing
the stimuli same (for Case 2).

The increment/decrement method is simple, however, itaracy is sometimes
doubtful. In theStaircasemethod, a pair of the reference and the target stimuli
are presented as same as increment/decrement method. rgéistantensity is
increased whenever the different between the referenctaayet is not discrimi-
nated or decreased when there is no difference perceived.

For both increment/decrement method and staircase meatrsuhject is allowed
to change the intensity of the target stimulus. PFarameter Estimation by Se-
guential Testing (PEST}he intensity of the target stimulus is changed by the
experimental prograniThylor and Creelman 19¢.7Again, a pair of the reference
and target stimuli are presented to a subject. The targetikis is set significantly
different from the reference. At each step, a subject musivana question “do
you see difference?”. If the answer is yes, the intensityheftarget stimulus is
jumped close the the reference (commonly the width of thejtirap is same as
the difference between the reference and the intensity evtiner target started).
An experiment is basically conducted by repeating thegesstevery time a sub-
ject answers in the different way as the previous time, thection of changing
the target’s intensity is inversed and the width of a jumpgtuced to its half size,
while the target’s intensity is changed to the same diractiith the same width of

a jJump as far as being answered yes. One trial can be finislieel iesponse of a
subject start being constant enou@UEST a refinement of PEST, has also been
presented\Vatson and Pelli 19§3PEST is employed in Chaptéifor measuring
contrast detection thresholds.

2.5.3 Rating Experiments and Multivariate Statistics

If one wants to know some ratings by human observers for e@hlss, it is
necessary to ask them to score each stimulus for a givennyopéis approach
is, of course, much harder than just asking yes/no questiong provides much
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more possibilities in its results. There are a variety of sveyyanalyze data in rat-

ing experiments depending on how many variables exist arad thie purpose of

an experiment is. There are briefly four categories of theearpental purposes
such that one wants to know 1) the degree of relationship gmanables, 2) sig-
nificance of group differences, 3) prediction of group mersbip, or 4) structure

of given variables. For each group of the purposes, thermatiple possibilities

to analyze data. It depends on many factors which are, fanphkag the number of
dependent variables (DV,shat are measured and depend on subjects’ response
and the number ahdependent variables (IVghat are manipulated or controlled.

For 1) the degree of relationship among variables, we caly &pariater, mul-
tiple R, hierarchical multipleR, canonicalR, or multi-way frequency analysis.
For 2) significance of group differences, there exis¢st, analysis of variance
(ANOVA), analysis of covariance (ANCOVA), multivariate dpsis of variance
(MANOVA), Hotelling’s T' square, multivariate analysis of covariance (MAN-
COVA), and profile analysis. For 3) prediction of group mensbgs, we may
choose between one-way, hierarchical one-way, fact@ral, hierarchical facto-
rial discriminant functions. For 4) structure of given \aiies, principle compo-
nent analysis (PCA) or factor analysis are recommended. Refdabachnick
1989 how to choose among multivariate statistical techniques.

In this dissertation, we use statistical analyzes to kngmicance of group dif-
ferences (Purpose 2) in Chaptersb, and7. For this purpose, one important
concept isnull hypothesisvhich assumes that all of the population means of the
given data are equal as

Hoy:pn=po == py (2.7)

wherey; is each population mean aids the number of populations. A null hy-
pothesis is commonly used to obtain the reverse of what agrempnt is actually
believed.

To examine a null hypothesissanificancdest is used, for example, the simplest
way ist-test for the case with one DV and one IV. If there is one DV vdither
one or multiple 1Vs, ANOVA is applied to a set of data in oneywa factorial
way. If there are multiple DVs with either one or multiple IMBANOVA can

be used. A null hypothesis is tested by comparing two estisnat variance with
the given population mean and the population size. In, fangle, ANOVA and
MANOVA, degrees of freedorare calculated, statisti€’ value is manipulated,
then finally a significance level is shown irpavalue which is the probability to
accept a null hypothesis. Itis usually concerned the diffee between IVs over a
given DV is significant ifp is below 0.05, i.e., a null hypothesis is rejected with a
probability over 95%. A significance level pf< 0.01 is sometimes used for very
strict case of analyzes. Refer ftapachnick 1985for more details of significance
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tests and the details of the other categories of multivastatistics. In addition
to examining significances, it is also possible to constautiodel over given 1Vs
and DVs by usingnultidimensional scalingBorg and Groenen 1997
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Chapter 3

High Dynamic Range Imaging
(HDRI)

As shown in Figurel.l in Chapterl, neither conventional display devices nor
conventional cameras are capable of covering the lumindyieamic range that
the human eyes perceive. If we takdigh dynamic range (HDR3hot by alow
dynamic range (LDRgamera, the areas which are out of the dynamic range of
the camera are over- or under-saturated as seen in F3glur&Ve can use short
exposure to capture details in bright parts of a scene, buth® other hand, the
dark parts are completely invisible with a short exposuresice versa for long
exposures.

As increasing the need of HDR techniques, there exist thaissgories of the so-
lutions to capture HDR scenes: 1) shooting an HDR scene g usghest-end
imaging sensors, 2) employing multi-exposure techniquiéis avseries of LDR
images, or 3) using 3D rendering programs. In Solution Irethave been intro-
duced several types of new imaging sensors, however, tighichsts now prevent
them from the wide-spread use. Solution 2 is probably theestaand the most
practical way to produce an HDR image of the natural enviremis nowadays,
and there have been introduced several methods of multisexp techniques. So-
lution 3 provides more practical algorithms and appliaagito make HDR scenes
by using 3D renderers. However, some of them require us te éagugh experi-
ence and even the sense of art.

Even if an HDR image is created and stored in some HDR formats as floating
point TIFF, LogLov, OpenEXR, Radiance RGBE, or PFS, it is obvithat LDR
display devices cannot display HDR images on them as HDResafp conquer
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P

Figure 3.1: A series of low dynamic range (LDR) images with dilerent ex-
posures. Because the scene contains much broader luminan@nge than the
dynamic range which the camera can take in one shot, the areasut of the
dynamic range of the camera are either over- or under-saturged in each im-
age. Images taken by the Canon EF 50mm lens mounted on the Can&®S
5D.

this problem, a number done Mapping Operators (TMOBgave been introduced
for compressing the dynamic range of an HDR image to fit thi®f. DR display
devices. Using TMOs is a software approach to deal with HDRgies on LDR
displays. From the point of hardware view, there exist HDBoldiys by using
projector- and LED-based dual-modulation technologi¢ésoduced by Seetzen
et al. [Seetzen et al. 2004 In the following sections, we review HDR images
acquisition, tone mapping operators (TMOs), and dual-rfadaiun HDR display
technologies.

3.1 HDR Image Acquisition

3.1.1 HDR Imaging Sensors

In this section, we discuss two prominent examples of nevgingasensors which
can take an HDR scene in one shalgital Pixel Sensors (DPSandhigh dy-
namic range CMOS (HDRCPPS mount more transistors to pixels so that each
pixel has its own analog-to-digital converter and its owgndaircuits. Since DPS
are capable of 10,000 frames per second, we can run themtariigme rate
than the actual image generation. After taking picture$ weveral exposures
for each capture, they are combined into an HDR image at thedblevels in
each pixel signal. Another new imaging sensohigh dynamic range CMOS
(HDRC), a CMOS-based sensor with per-pixel readout logic. HDRC can ca
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ture each frame with up to four differently exposes captiioesreate an HDR
image Bloch 2007. Simply speaking, both approaches depend on how many
transistors can be mounted on a chip. The cameras with suclmmeging sen-
sors are already available in consumers’ market, howe\mg, @awback of those
highest-end sensors is their cost.

3.1.2 Multi-Exposure Techniques

luminance,

World [N I

Family of
LDR Images
with different

exposures

An HDR Image I |

Figure 3.2: A principle idea of multi-exposure techniques.A series of LDR
images are taken with different exposures to cover broader ghamic range
than that of an LDR camera, then they are combined into an HDR inage.

A basic idea oimulti-exposure techniqués that an HDR image is reconstructed
from a series of LDR images with different exposures takethleysame camera
from the same position (refer to FiguBe?2). Several multi-exposure algorithms
have been introduced such &8gnn and Picard 199®ebevec and Malik 1997
Robertson et al. 199WNayar and Mitsunaga 2008Vard 2003. Each algorithm
has a different strategy for recovering the response cuinzecamera which is
needed to express pixel values for each LDR image in the saimesity space.
The method of Mann and Picard uses a relatively dark pixel wtkan image
as a reference, then a nonlinear response curve is recowgtfedespect to the
selected dark pixelNlann and Picard 1995 Debevec and Malik employed a
physical property of imaging systems for recovering camesponse curve and
pixel weighting function Pebevec and Malik 1997 Robertson et al.’s method
[Robertson et al. 1999s similar to Debevec and Malik method, but it takes all
pixels of an image while Debevec and Malik method deals vatidomly selected
pixels. Robertson et al.'s method also produces a weightingtion based on the
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fact that longer exposures tend to produce a better sigraditse ratio. Nayar and
Mitsunaga’s method uses a flexible parametric model andhiguestimates the
ratios of exposures instead of requiring precise estintdtesposure timedyayar
and Mitsunaga 20Q0 For all methods, once the response curve of a camera and
its weighting function are reconstructed, the recoveretttions are applied to
combine a series of LDR images taken with different amouhexposure. An
example of the response curve and its weighting functiohdsve in Figure3.4
which is extracted from a series of LDR images in Fig8r&using Robertson et
al.'s method.

B S =
s =

Figure 3.3: A series of LDR images with different exposures. Tay were
used to extract the response curve and weighting function dhe camera (see
Figure 3.4). Images taken by the Canon EF 50mm lens mounted on the Canon
EOS 5D.

The four algorithms reviewed above have a strict requireitiert all LDR images
must be taken from the exactly same position and orientéian, using a tripod),
and, in addition, no single movement of objects in an imagall®ved. Ward
presented a method to create an HDR image by combining & s#ti®R images
taken by a hand-held came&/grd 2003. His method arbitrarily selects one of
the given LDR images as a reference, then it outputs a seteagen offsets for
the rest of images. After calculating offsets, an HDR imagereated by using a
known recovering function for a camera response curve.
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Figure 3.4: An example of weighting function and camera respnse curve
extracted from Figure 3.3 by Robertson et al.'s method for the Canon EF
50mm lens mounted on the Canon EOS 5D.

3.1.3 3D Renderers for HDR Images

There are a number of 3D rendering methods to produce HDResgralassical
photorealistic renderingphysically based rendering@ndimage-based lighting
The classical photorealistic rendering approaches suskasineor raytracing
use the lighting model of direct illumination. We can plaa&d objects to make
the final result as HDR, for example, negative lights, shad@appmg, textures,
and ramps. These approaches are the simplest and fastbstis&i render HDR
scenes, however, they require the users to have experiadaatsstic skills.

On the other handglobal illumination simulates the behavior of lights strictly
according to the physics laws. In this category of the phallsidbased rendering
approaches, one may fimddiosity andMonte Carlomethod as its applications.
Physically based rendering methods can produce more ljsacdurate results
than the classical approaches, however, they still recpainee talent and experi-
ence for the users.

Using another option, an image-based lighting method sedbebevec 1998

is more intuitive and has a huge potential to make use of HD&yary. Image-
based lighting firstly records environmental lighting dweristics in an image of
a dome or a sphere, then the recorded characteristics aftoaiadings are taken
into account with the rendered scene by using global illatdm technique. The
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details and usage of these applications are summariz&laot 2007 [Reinhard
et al. 2007 Chapter 13].

3.2 Tone Mapping Operators (TMOSs)

3.2.1 Overview

There were several early research papers about photogriapi@ reproduction.
Jones and Condit researched the relationship of brightmessamera exposure
with a number of exterior pictures and proposed predicti@thods of a me-
ter constant of an imagelgnes and Condit 1941 Bartleson and Breneman
showed theoretical predictions of the optimum tone repctdao functions for
prints and transparencies and proved it by experimental[Battleson and Bren-
eman 196} Additionally, Miller et al. proposed an idea of tone mapgin the
field of lighting engineeringililler and Hoffman 1984

In 1993, the idea of tone reproduction was firstly introdubgdTumblin and

Rushmeier into the computer graphics communityriblin and Rushmeier
1993. The main goal of tone reproduction is to adjust the dynaraitge of

an image to the range that can be displayed on physical dewiben the lumi-

nance range of the images does not fit that of the physicate®vilhe dynamic
range must be compressed for very bright images, and it neusikpanded for
very dark images. However, not only should@ne Mapping Operator (TMO)
adjust the dynamic range, but it should also preserve detad global contrast of
animage. Itis a hard and contradicting requirement. Uguétverall contrast is

simply preserved, details of an image may be lost or viceavef®w to preserve
them at the same time is always a difficult problem to solveltdOs.

There have been presented a number of TMOs which are revievleelfollowing
sections in terms of different scopes of TMO domains (ref¢bevlin et al. 2002
[Reinhard et al. 20Q7Chapters 6 — 8] for the details), and Fig#:® shows an
example of tone mapped images by different TMOs. Some of thkeEmsed in
the perceptual evaluation of TMOs with respect to theiregponding real-world
scenes in Chaptet.

3.2.2 Luminance Domain TMOs

The simplest way to adjust the dynamic range of an HDR imagédbof the
display devices isinear TMO which scales luminance range of an HDR image
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linearly. Linear TMO is also employed in logarithmic dom@iogarithmic linear
TMO). Without gamma correction, most of conventional disysl follow approx-
imately log-linear response.

The first TMO in computer graphics field, Tumblin and Rushm&MO, employs

the characteristics of HVS for transforming the luminantehe real-world to

that of a display device in order to preserve brightnd@ssrblin and Rushmeier
1993. This method works only on grayscale images, then it isseyito a new
TMO which incorporates a linear scaling factor based on &dim luminance
[Tumblin et al. 1998

Ward Larson et al. introducedistogram adjustmentMO [Ward Larson et al.
1997 based onWard 1994 Ferwerda et al. 1996 This TMO leads to a mono-
tonic tone reconstruction curve, and then it applies theecglobally to all pixels
in an image.

Pattanaik et al. extended an early wofkimblin and Rushmeier 199and pre-
sented a TMO which employs the idea of temporal visual adiaptaf HVS
[Pattanaik et al. 20Q0 This method is constructed by two models: the visual
adaptation model and the visual appearance model to taieagtount thresh-
old visibility, color appearance, visual acuity, and sawisy change over time for
average luminance.

PhotographicTMO is also a luminance domain operat&€inhard et al. 2042
This method is inspired by photographic film development ésgrinting pro-
cess. The luminance of an HDR image is firstly adjusted byguia same func-
tion to all pixels, then photographic “dodging and burnitgthnique is applied
to enhance the quality of an image. This method is extend@@eamhard 2008
to be operated automatically.

Ashikhmin introduced a multi-pass approaching TMO to de#hiwo character-
istics of HVS: signaling absolute brightness and local csttAshikhmin 2002.
This TMO firstly calculates the local adaptation luminaniten applies the ca-
pacity function which is based on the linearly approximai&d function. The
final tone mapped image is produced by multiplying a detaiteatye given by the
ratio of pixel luminance to the corresponding local adaptat

Adaptive logarithmic mappinig based on logarithmic compression of luminance
[Drago et al. 2008 A family of different logarithmic functions are applied t
preserve details of an image, for exampde;,, is applied for the high luminance
levels. In the end, Perlin and Hoffert's bias power functi®mised to interpolate
between the images modified by different logarithmic bageslin and Hoffert
1989.
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Lightness perceptio@MO was presented by Krawczyk et alKrpwczyk et al.
2003. This method de-composites an HDR image into several arkasnsis-
tent luminance and local lightness values. It is inspirecbyanchoring theory
[Gilchrist et al. 199Pand emphasizes the importance of luminance by using it.

Photoreceptor-basedMO provides a sigmoidal compression for the dynamic
range of an imageReinhard and Devlin 20Q5 This method is based on the
behavior of photoreceptors and employs an idea of “seraraadn” by linearly
interpolating the geometric average and each pixel’'s lamie by applying user-
set parameters.

3.2.3 Contrast Domain TMOs

Gradient domainTMO identifies gradients at various scales in order to reduce
the magnitudes of large luminance gradients while presgrsimall changes for
high frequency details of an imageédttal et al. 200R This TMO compresses low
frequency details strongly but keeps high frequency detmcompressed. They
also employ the gradient attenuation function, which isliaggfor each band of
frequencies, in order to avoid halo artifacts.

A fast bilateral filteringconsiders two different spatial frequency layers of an
image: a base layer and a detail layBufand and Dorsey 2002The base layer
preserves high contrast edges and removes high spatiakimey details of lower
contrast. The detail layer stores the difference betweerotiginal image and
the base layer. The final tone mapped image is produced by sgrup these
two layers. This method is extendedTnlateral filtering which applies bilateral
filtering twice in different domainsGhoudhury and Tumblin 2003

Mantiuk et al. presented two TMOs in their perceptual framewfor contrast
processing¥antiuk et al. 2006 Their contrast mappingnethod is similar to that
of gradient domain methodrattal et al. 200pbut is entirely based on the percep-
tual characteristic of human eyes. This method succeedsotd bw-frequency
artifacts in an image. Additionally, thetiontrast equalizatiomethod equalizes a
histogram of contrast responses in order to produce a shdmisually appealing
tone-mapped image.
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Figure 3.5: An example of tone mapped images by different TMOs.
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3.3 Dual-Modulation HDR Displays

As a hardware approach to deal with HDR images, Seetzen eprasented
two techniques of HDR displaygrojector-basecandLED-basedHDR displays
[Seetzen et al. 2004 Their basic idea is to employ a second light modulator
which, through multiplicative effect with the originallysed modulator, enables
to achieve strong improvement of the admissible contrastden the darker and
brighter pixels. This is, in particular, apparent for bldekels. Even very strong
light source used as backlight can be attenuated for alneofqi black levels by
such dual modulators (see Figla®).

~ Dual-modulation HDR displays

Conventional LCD displays
| |,

| I I 1 -
-4 -3 -2 -1 0 +1 +2  +3 +4
[log, cd/m?]

Figure 3.6: Dynamic range of conventional LDR displays and dal-
modulation HDR displays. Note that HDR displays not only incease their
maximum possible luminance level but also produce extremegldark states.

The projector-basedHDR display contains a Digital Light Projector (DLP) with
a Digital Mirror Device, an LCD panel, and the optics to con&BLP and LCD
(see Figure.7). Its dynamic range in luminance depends on an LCD panel.rThei
prototype which mounts 15” XGA color LCD (Sharp LQ150X1DG@&sHumi-
nance range between 1 and 27@0m?>. Because it is difficult to keep the pro-
jector and the LCD panel always aligned perfectly at the dexed|, the projector
intentionally introduce a blurred image which is then comgaged in the LCD
sandwich. The pixel values of the LCD are chosen to compelfisatbose ef-
fects. Theprojector-basedHDR display can cover much broader dynamic range
in luminance compared to today’s conventional display, év@v, it has several
drawbacks such as optical length requirement, its high peaesumption, cost,
thermal management, and video bandwidth.

Another technique, theED-basedHDR display, employs an array of white LEDs
as a backlight instead of a projector. Each of the 760 LED4.8rLCD panel
can be individually controlled with 1024 addressable stépsninimum possible
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Figure 3.7: Scheme of a projector-based HDR display.

luminance value is below 0.03//m? and it is 8,500cd/m? at the maximum.
The rendering algorithm on theED-basedHDR display is basically similar to
that of theprojector-basedlisplay, but it employs a better supporigaint spread
function (PSF)for LEDs which are arranged on a hexagonal grid instead of a
rectangular grid (refer toJeetzen et al. 2004or their details). This prototype
with 18” LCD panel is now extended to the 37" HDTV resolutior€d-igure3.9)
whose luminance range is between 0.01 and 3¢d06:? (confirmed by our mea-
surement with MINOLTA LS-100 light metéy.

lht tp:// www. koni cami nol ta. con i nstrunments/ products/|ight/lum nance-neter/|s100-1s110/index. ht m
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Figure 3.8: Scheme of an LED-based HDR display.

Figure 3.9: A 37" LED-based HDR display.



Chapter 4

Testing Tone Maping Operators
with Human-Perceived Reality

4.1 Introduction

As the need of high dynamic range (HDR) images has greatlgasad, how to
produce and display HDR images has been one of the imporsntss$ions. To
represent HDR images on low dynamic range (LDR) display @svia number
of successful tone mapping operators (TMOs) have beenmssbéefer to Sec-
tion 3.2). They are useful not only for HDR photography but also fghting
simulation in realistic rendering and global illuminatitechniques, which pro-
vide real-world luminance ranges.

Because a variety of tone mapping operators have been paypmdg a system-
atic perceptual evaluation can reveal the strengths an#nesaes of the wide
range of approaches presented in recent years. We condugggthophysical
experiment of a direct comparison between the appearanaabivorld scenes
and tone mapped images of these scenes. The primary inbéthg experiment
is to investigate the differences in perception of tone nedpmages when they
are directly compared with their corresponding real-waiilelvs and indirectly
compared with each other. To our knowledge, this work waditsedirect com-
parison of tone mapped images with corresponding realdrsménes at the time
it was performed.

In this chapter, Sectiod.2 reviews an overview of previous work, SectidrB
describes our psychophysical experiment, Sectddsand 4.5 show its results
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and discuss about them, and then Sedlidisummarizes this project. This work
is a follow-up extention of Yoshida’'s Master thes¥ofhida 200 Our main
contribution is to domonstrate that qualitative differeadetween TMOs have
a systematic effects on the perception by human’s eye wtaahbe a basis for
selecting an appropriate TMO for a given purpose and alsarassessment of
further approaches in TMO¥¢shida et al. 2005Yoshida et al. 2007a

4.2 Previous Work

Image comparison techniques can be roughly classifiedwdatajor categories:
subjectiveand objectivemethods. Subjective methods obtain data from human
observers and the data are usually analyzed by statistichhiques lewsham

et al. 2002 Nijenhuis et al. 199/Watson et al. 2001while objective methods
are based on theoretical models. The work with the similalgyto ours about
perceptual evaluation of tone reproductions has beentiggrrblished in Kuang

et al. 2004 Kuang et al. 2005_edda et al. 200b

Kuang et al. conducted two paired comparison experimentsigiit TMOs
[Kuang et al. 200§ Tone mapped images were displayed on an LDR monitor
without reference for observing overall rendering perfance and grayscale tone
mapping performance respectively. They also conducteandasi experiment
with six TMOs (two poorly scored ones iiK{iang et al. 200@were eliminated)
[Kuang et al. 200p They asked subjects to examine overall preference and sev
eral image attributes (highlight details, shadow detailgyall contrast, sharpness,
colorfulness, and artifacts) over tone mapped color imaggsayed on an LCD
monitor. As in Kuang et al. 2004 they did not provide reference for subjects.

Ledda et al. also conducted psychophysical experiments @\Os. They asked
subjects to make paired comparison of tone mapped imagaayks on an LDR
monitor with an HDR image as their referenteflda et al. 200k0n a Brightside
HDR display Beetzen et al. 20Q4In their experiment, the subjects actually never
saw the real-world scenes measured by an HDR display. Thegumed over-
all similarity and detail reproduction of tone mapped ingmgEirst, they studied
overall similarity of TMOs and clarified that their selectEMOs can be ranked.
They asked subjects to compare a pair of tone mapped imagehanse the one
which appeared closer to the reference displayed on an HDitonoFollowing
the first experiment, detail reproduction of TMOs in bothghtiand dark regions
of an image were studied in the second experiment. It showdiffesient result
from that of Kuang et al. Kuang et al. 2004for fast bilateral filtering[Durand
and Dorsey 2002 As Ledda et al. wrotehilateral filtering generates images with
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higher contrast and more detail visibility than in the refegze images. Therefore,
it had poor scores in the experiment with reference on an HDRItor [Ledda
et al. 2003 while it performed quite well without referenceslang et al. 2004

This observation is also confirmed by Yoshida et #bghida et al. 2006 The ex-
periments over the same HDR monitor as that of Ledda et ak e@nducted with
and without references of the corresponding real-worlavvighe result shows
that subjects behaved differently with and without refeeernThey enhanced con-
trast proportionally to the dynamic range of an HDR disp&sgn more than that
of an original image, if they had no reference. However, dytihad reference,
they adjusted contrast almost same as that of an origingleraad kept it approx-
imately on the same level even for different dynamic randesdisplay [Yoshida
et al. 2006.

In parallel to our experiments, Ashikhmin and Gorashikhmin and Goral 2046
andCadk et al. [Cadk et al. 200§ conducted subjective experiments to evaluate
TMOs with respect to their corresponding real-world viewéey are discussed
in details and compared to our results in Sectidn

4.3 Perceptual Evaluation

Our experiment is different from those which are reviewedhia previous sec-
tion in several ways. First, we provide corresponding reatld views of a tone
mapped image for subjects as reference. HDR monitors calupeamuch wider
dynamic range of luminance than that of today’s common displevices, but
they still have their own limitations concerning the regmstion of high con-
trast in high frequency areas of an HDR image and their lumieaange can
not match that of the real-worl®Sgetzen et al. 20Q4Additionally, as shown in
[Yoshida et al. 200K subjects may behave in different ways for observing their
preference or archiving the fidelity of an image and an HDR itoortan even
provide more contrast than an original image. Because we wwaneasure how
close tone mapped images are to the real-world view, we deelett an HDR
monitor as reference.

Second, we select the ranking method using a slider. Thegaomparison
method is very simple and powerful for observing intervalles of given algo-
rithms (TMOs in this case) along a given dimension. Thums®baw of compar-
ative judgementThurstone 192J7is the most common used analysis for paired
comparison. However, the paired comparison analyzed bysidne’s Law has
two problems; A paired comparison experiment nee@s — 1)/2 experimen-
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tal trials for n stimuli. The total number of trials increase very rapidlyths
number of stimuli. Additionally, Thurstone’s Law relies t¢ime assumption of
uni-dimensional scaling. It is quite useful if we want to quame the performance
of one specific attribute, but in our experiment, we want teeh@ore insight in
multi-dimensional scaling than in uni-dimension. Therefave select the rating-
scale method instead of the paired comparison. The detailthbse methods
and analysis can be found in a book by Bartleson and GRartleson and Grum
1984.

4.3.1 HDR Image Acquisition

Figure4.1shows the scenes for our experiment. To acquire HDR imagesufo
perceptual evaluation, we used a multi-exposure techriggier to Sectior3.1
about HDR image acquisition). Kodak Professional DCS56@aligamera and
Canon EF 24mm and 14mm were used to shoot 15 LDR images witreliff
shutter speeds ranging from 1/2,000 to 8.0 seconds. Botaddres/e big enough
field of view to cover the view of human eyes. Because thosea@sagre saved

in a raw format of Kodak, they were converted to 36-bit TIFFat by using the
programr aw2i mage included in the Kodak DCS Photo Desk Package. To re-
cover the camera response curve function, we employed Rolnegt al.'s method
[Robertson et al. 1999The HDR images were constructed with the recovered re-
sponse curve and saved in the Radiance RGBE forwiatd 1991.

4.3.2 Tone Mapping Operators

Apart from the domain categorization of TMOs (see Sec8d), there is a clas-
sical way to categorize TMOs either if it applies the samedfarmation onto
all pixels @lobal TMO) or it adapts its scales to different areas of an imdge (
cal TMO). By this global/local categorization, it is obvious tlggobal TMOs are
much simpler and more easily implemented than local TMOsibse they need
to prepare only one function to apply for every pixel, howegkobal TMOs tend
to lose the visibilities of details. On the other hand, |IocE®IOs tend to lose an
impression of global contrast compared to global TMOs. Addally, one well-
known problem which easily appears with local TMOs is halifasts (inverse
gradient) which can manifest as a dark aura around a verjattmegion.

In this chapter, we mainly use the global/local groupingve®ecommonly used
TMOs are chosen for our perceptual evaluation as shown ifotlosving list with
labels of “global” or “local” by this categorization:
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(@) Scene 1. 13,630 and 0.024/m? for the maximum and minimum lumi-
nances respectively.

=
|

ARREEEY =

o

(b) Scene 2. 506 and 0.0£8/m? for the maximum and minimum luminances
respectively.

Figure 4.1: View of the scenes for our experiment. Both are tom mapped by
[Drago et al. 2003 for their presentation.
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e Log-linear TMO (global)

Histogram adjustment TMO (globalard Larson et al. 1997

Pattanaik et al. (globalPattanaik et al. 20Q0
Ashikhmin (local) Ashikhmin 2002

Fast bilateral filtering (local)lpurand and Dorsey 2002
Photographic TMO (local)Reinhard et al. 2002

e Adaptive logarithmic mapping (globalPfago et al. 20013

Refer to Sectior8.2for the characteristics of TMOs used in our experiment.

4.3.3 Experimental Procedure

Prior to the main experiment, we conducted a pilot study wkperienced sub-
jects to fine tune the parameter settings for each tone mgppierator. We asked
subjects to choose the best image for each tone reprodunétrod from a selec-
tion of multiple tone mapped images. Additional post-pssieg, such as gamma
correction, was performed according to the suggestionach eespective paper
of the TMOs. All of the images used in our experiment are shiwkfigures4.2

— 4.3 All of the HDR images and our implementations of the TMOsduisethe
experiment are available at our website

The main part of the experiment was performed with the pagton of 14 sub-
jects. They were graduate students and researchers of theuBemGraphics
group in the Max-Planck-Institutif Informatik. Two of them are female, and the
rest are male. The range of their age is 24 — 34, and all of thene wéve for
the goal of the experiment and TMOs. Additionally, everytiggrant reported
normal or corrected to normal vision.

Each subject was asked to stay in the same position as eabh BICIR images
had been taken (Figuse1) and view seven images one after another for each of
the two scenes. An sRGB-calibrated monitor (DELL UltraSha8pQFP) dis-
playing images of resolutioi, 280 x 1,024 at 60.0 Hz was used. The subjects
compared each image with its corresponding real-world daed/gave ratings for
image appearance and realism. Image appearance attrjibd¢esl in our exper-
iment are overall brightness, contrast, detail reproduastiin dark regions, and
detail reproductions in bright regions. The subjects rétaa well each of those
attributes was reproduced in tone mapped images with regpéae real-world

Ihttp: // www. npi - sb. npg. de/ resour ces/ t no_and._r eal /
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(g) Drago

Figure 4.2: The tone mapped images for Scene 1.
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(a) Linear (b) Bilateral filtering

(c) Pattanaik (d) Ashikhmin

(e) Ward () Reinhard

(g) Drago

Figure 4.3: The tone mapped images for Scene 2.
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view. Additionally, the subjects were asked to rate imageinaness in terms
of reproducing the overall appearance of the real-worlavsieAll of the ratings
were done by moving scroll bars. The subjects were allowaddee back and
forth among images for one scene (see Figudfor screenshots of our experi-
ment and its user interface part). The whole procedure ferparticipant took
approximately 20 to 30 minutes.

4.4 Results

Our experiment is a seven (TMOSs) two (scenes) within-subjects design (see
Tabachnick Tabachnick 198Bfor the details of the design types in multivariate
analysis). This experiment has twalependent variable@Vs): the TMOs and
the scenes and fivdependent variable€DVs): overall brightness, overall con-
trast, detail reproductions in dark regions, detail repaidns in bright regions,
and naturalness (see Sectidrb about DVs and 1Vs). Our primary interest is
whether the images produced by different TMOs are percediféerently when
they are compared to their corresponding real-world vidves.analyzing a set of
data, the Statistics Toolbox of MATLAB was usddathWorks, Inc.].

As preliminary data processing, all obtained scores wermalized over each of
the attributes and each of the subjects in order to scalddhdard deviations 1.0
aswy; — “t= wherew; is a score angl, ando, are respectively the mean and
the standard deviation over an attribute of a subject.

4.4.1 Main Effects

Because two scenes were used in the experiment, we examimedhboh in-
fluence comes from the difference of two scenes. iftaén effectof the scenes
was first tested by usingnalysis of variance (ANOVAYhedegrees of freedom
F distribution and a probability valug, which is derived fromF', are used to
determine whether there is a statistically significantedldhce between popula-
tions of samples (see Secti@rb about significance test). The highevalue, the
more we can believe that the populations of samples are auttgtally different
(refer to TabachnickTabachnick 198Pfor more details of the main effect and
ANOVA). In our experiment, the scene difference is not statally significant
and small enough to be ignoregd £ > 0.05 for all attributes). It follows our goal
to investigate the tone mapping performance for indooritectural scenes.
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Scene 1 (7 images)

Image 1

Overall brightness: less
Contrast: less

Datails in Dark regions: less
Datails in Bright regions: less more

Naturalness: less T orc

TS 1 T LT e
Owverall brightness: less e

Contrast: less O 1o

Datails m Dark regions: less e
Datails in Bright regzions: less e
Naturalness: less [ 1o v

Figure 4.4: Screenshots of our perceptual experiment andstuser interface
part.
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Overall Brightness

Figure 4.5 shows the main effect of the TMOs for overall brightness. @de
ing to the significance values, overall brightness is thetmiderently perceived
attribute. As seen in the figure, it is manifested that imggesluced by the lin-
ear, Pattanaik, Ward, and Drago methods (i.e., global nde)imave substantially
higher overall brightness than the others. These TMOs ameped the most
differently when compared to their corresponding realtdieiews. Figuret.5(b)
shows the estimated differences of means. The top and bdtdosnshow 95%
confidence interval, and the middle bar shows the mean véldiéference. Note
that a pair containing O difference (the red line in plots)t;n95% confidence
interval indicates that they are not significantly diffexen

The same result is shown in Tablel as significance values calculated Btest
(see Sectio.5aboutt-test). As shown in Figuré.5(b)and Tabled.1, the pair of
the linear TMO and bilateral filtering has the biggest popatedifference. On the
other hand, the pairs of bilateral filtering and AshikhmihPattanaik and Ward,
of Pattanaik and Drago, of Ashikhmin and Reinhard, and of Véadi Drago are
not significantly different for overall brightness.

Bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
Linear | 0.0000 0.0012 0.0000 0.0037 0.0000 0.0140
Bilateral 0.0000 0.0546 0.0000 0.0002 0.0000
Pattanaik 0.0000 0.9507 0.0000 0.5444
Ashikhmin 0.0000 0.0873 0.0000
Ward 0.0000 0.5580
Reinhard 0.0000

Table 4.1: p-values computed byt-test for overall brightness.

Overall Contrast

The main effect for overall contrast is shown in Figdté. The linear, Pattanaik,
and Ward methods have higher overall contrast than thetikdobal operators
have stronger contrast than local ones as shown in Figgé(@) It corresponds
to the expectations because global methods require higlalbeentrast to retain
details in low-contrast regions. The estimated mean d@iffee and-test result
are shown in Figurd.6(b)and Table4.2 The result of ANOVA (Figured.6(a)
shows significant difference between all TMOs, however, éf mvake pairwise
comparisons for each TMO, a number of pairs are not considgigmificantly
different (Figure4.6(b)and Tablet.2).
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(a) Overall brightnesst’ = 46.14, p = 0.0.
A box shows the lower quartile, median, and upper quartilees The whiskers are
lines extending from each end of the box to show the exterttefdst of the data.
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(b) Estimated mean difference. The middle bar shows the w&ae of estimated
difference. The top and bottom bars show 95% confidencevaiter

Figure 4.5: Distributions and F' and p values of overall brightness for the
main effect of the TMOs. The TMOs are labeled as linear (L), bilaterafilter-
ing (B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R), and Drago
(D) methods.



4.4 Results

49

1 1 =
A
LE ]
s
1
LT

(a) Overall contrastF' = 8.74, p = 2.1058 E' — 08.
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(b) Estimated mean difference.

Figure 4.6: Distributions and F' and p values of overall contrast for the main
effect of the TMOs. The TMOs are labeled as linear (L), bilateral filtering
(B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R), and Drago (D)
methods.
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Bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
Linear| 0.0010 0.3531 0.0001 0.2713 0.0121 0.0260
Bilateral 0.0161 0.4003 0.0000 0.2197 0.1132
Pattanaik 0.0017 0.0326 0.1323 0.2305
Ashikhmin 0.0000 0.0322 0.0125
Ward 0.0000 0.0001
Reinhard 0.6942

Table 4.2: p-values computed byt-test for overall contrast.

Details in Dark Regions

Detail reproduction in dark regions (Figuter) show the least significance among
the attributes, but it is still highly significanp (= 0.0054). The Ashikhmin and
Drago methods are perceived to have the most details repeddn dark regions.
The linear, Pattanaik, Ward, and Reinhard methods have akmaoal scores, and
the bilateral filtering has slightly less detail reprodans than those four. Al-
though ANOVA shows that TMOs are significantly different fibgtail reproduc-
tion in dark regionsy{ = 0.0054 in Figure4.7(a), estimated difference of means
andi-test show that a number of TMOs are not significantly diffieiéthey are
compared pairwise.

Bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
Linear| 0.4869 0.6613 0.0252 0.9355 0.6131 0.0087
Bilateral 0.7400 0.0884 0.3572 0.8153 0.0311
Pattanaik 0.0308 0.5240 0.9247 0.0096
Ashikhmin 0.0057 0.0453 0.5508
Ward 0.4793 0.0017
Reinhard 0.0147

Table 4.3: p-values computed byi-test for detail reproduction in dark re-
gions.

Details in Bright Regions

Detail reproduction in bright regions is the second modedkintly perceived at-
tribute as shown in Figurd.8. The bilateral filtering, Ashikhmin, and Reinhard
methods provide significantly more detail reproductionsright regions than the
others. According to Figurd.8(a) all of the local operators are perceived with
more detail reproductions than global ones. This resultesofrom the fact that
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(a) Detail reproductions in dark regiois= 3.18, p = 0.0054.
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(b) Estimated mean difference.

Figure 4.7: Distributions and F' and p values of detail reproductions in dark
regions for the main effect of the TMOs. The TMOs are labeled as linar (L),
bilateral filtering (B), Pattanaik (P), Ashikhmin (A), Ward ( W), Reinhard
(R), and Drago (D) methods.
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local operators use different scales for small regions ofreage while global op-
erators use only one scale for the whole image and tend toasatoright parts of
an image. Figurd.8(b)and Table4.4 also show the distances between local and
global TMOs.

Bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
Linear| 0.0000 0.0001 0.0000 0.0003 0.0000 0.0000
Bilateral 0.0000 0.3665 0.0000 0.8794 0.4011
Pattanaik 0.0000 0.8670 0.0000 0.0001
Ashikhmin 0.0000 0.2044 0.0653
Ward 0.0000 0.0001
Reinhard 0.4053

Table 4.4: p-values computed byt-test for detail reproduction in bright re-
gions.

Naturalness

Figure 4.9 shows the main effect for naturalness. As can be seen in theefig
the Ward, Reinhard, and Drago methods are perceived to havaaist natural

appearance. As same as detail reproduction in dark regddt®VA shows that

all TMOs are significantly differenty( = 8.3877FE — 08), however, each pair-
wise comparison does not show significant difference foroalrhalf of pairs for

naturalness.

Bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
Linear | 0.0305 0.1845 0.0864 0.0000 0.0000 0.0000
Bilateral 0.3282 0.6094 0.0329 0.0644 0.0049
Pattanaik 0.6420 0.0012 0.0017 0.0000
Ashikhmin 0.0069 0.0124 0.0004
Ward 0.5603 0.7800
Reinhard 0.2608

Table 4.5: p-values computed byt-test for naturalness.

4.4.2 Mahalanobis Distances

Multivariate analysis of variance (MANOVAyas run to estimat®ahalanobis
distancedbetween TMOs (see Secti@rbabout MANOVA). Mathematically, Ma-
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Figure 4.8: Distributions and F' and p values of detail reproductions in bright
regions for the main effect of the TMOs. The TMOs are labeled as linar (L),
bilateral filtering (B), Pattanaik (P), Ashikhmin (A), Ward ( W), Reinhard
(R), and Drago (D) methods.
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(b) Estimated mean difference.

Figure 4.9: Distributions and F' and p values of naturalness for the main
effect of the TMOs. The TMOs are labeled as linear (L), bilateral filtering
(B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R), and Drago (D)
methods.
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halanobis distancé(x1, z5) betweenz; andz, is formulated as

d(xq,29) =< 11 — T2, S_1($17$2) >, (4.1)
1
n—1

n

Z(ZL‘l — l’z)t(xl — .1'2) (42)

i=1

S(ZL’l, l’g) =

whereX is a data matrixx; is thei-th row of X, X is a row vector of means,
andn is the number of rows. Mahalanobis distance is a measurevheimilarity
of data points relative to the probability distribution adtd, which has different
variances along different dimensions. Referfaljachnick 198for more details
of Mahalanobis distances.

Table4.6 shows the Mahalanobis distances among the TMOs given afteirg
MANOVA. According to Tabled.6, the linear tone mapping and bilateral filtering
are perceived the most differently when compared with tb@iresponding real-
world views. The second and the third most different comiigdma come from the
combination of the linear tone mapping and Ashikhmin metaod of the linear
tone mapping and Reinhard method. All of the three biggefaréifices are found
with respect to the linear tone mapping. On the other harel|ethst difference
is provided between bilateral filtering and the Ashikhmintiogl. This result
is visualized in Figuret.10as a dendrogram plot of a hierarchical binary tree.
An interesting result shown in Figuke10is that those seven TMOs are divided
into global and local methods by Mahalanobis distances.ef twcal operators
(bilateral, Ashikhmin, and Reinhard) are similar to eacheothnd four global
operators (linear, Pattanaik, Ward, and Drago) are sinolaach other, but both
categories of global and local operators are separateddrga dlistance.

bilateral Pattanaik Ashikhmin  Ward Reinhard Drago
linear 15.4530 1.6541 14.2361 2.7122 10.6089 6.6940
bilateral 7.4749 0.6674 9.2726 1.3353 8.8120
Pattanaik 6.4395 1.1613 3.9887 2.8066
Ashikhmin 8.9709 1.2405 6.2989
Ward 4.5301 2.9536
Reinhard 3.7406

Table 4.6: Mahalanobis distances amoung the TMOs calculated & run-
ning MANOVA. The three biggest distances are colored in red andhe three
smallest distances are colored in blue. All of the biggest flerences are from
the linear tone mapping. Those Mahalanobis distances are vislized by a
hierarchical binary tree in Figure 4.10
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.| local methods global methods
8
2’——£|1 B 1 3 5 7
B A R:L P W D
TMO

Figure 4.10: Tree-structured Mahalanobis distances to detenine similarity

among the TMOs given by MANOVA. As in Figure 4.5, the TMOs are labeled
as linear (L), bilateral filtering (B), Pattanaik (P), Ashikhmin (A), Ward (W),

Reinhard (R), and Drago (D) methods.

Note that those TMOs are divided into global and local methodsdr human
perception.
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4.5 Discussion

In this Section, we discuss the results obtained in our éxygerits and whenever
possible we compare them with the results obtained in otttlgdendent studies
[Kuang et al. 2005Ledda et al. 200b It is worth nothing that Kuang et al.
[Kuang et al. 2005Kuang et al. 2004have not used any reference scenes in their
experiment. Ledda et alLgdda et al. 200showed HDR images to their subjects
as the reference, but the subjects have actually never Beaerdl-world scenes
captured in the HDR images.

In parallel to our experiment, two other sets of experimemése presented.
Ashikhmin and Goral Ashikhmin and Goral 20J6conducted two experiments
consisting of three parts: image preference, image nagesalwith absence of a
given real-scene reference, and comparison with the cegles. In their experi-
ments, they employed five TMOs

e Histogram adjustment TMOWNard Larson et al. 1997
e Gradient domain TMOHattal et al. 200R

e Photographic TMOReinhard et al. 2092

e Trilateral filtering [Choudhury and Tumblin 2003

e Adaptive logarithmic TMO Drago et al. 2008

and four scenes for the one involving the real-world viewseylpresented all tone
mapped images to subjects and asked them a question “whageim the closest
to the real scene in front of you?”. The results in the expents about preference
and naturalness without real-scene views are randomljesedt However, once
the real-scenes are given as references, the results besoreeconsistent such
thatGradient domairmfMO performed well whildrilateral filtering did not obtain
good scores when compared to the real-views.

Another set of experiments was conducteddadk et al. [Cadk et al. 2004. 14
TMOs are employed in their experiments:

e linear TMO

Ashikhmin [Ashikhmin 2002

Chiu et al. Chiu et al. 1998

Trilateral filtering [Choudhury and Tumblin 2003

Adaptive logarithmic TMO Drago et al. 200B
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¢ Bilateral filtering [Durand and Dorsey 2002

e Gradient domain TMOHattal et al. 200p

e Low curvature image simplifiers (LCIST{mblin and Turk 199p
¢ Pattanaik and Yedattanaik and Yee 2002

e Photographic TMOReinhard et al. 2092

e Schlick [Schlick 1994

e Tumblin and RushmeieMumblin et al. 1999

e Ward [Ward 1994

e Histogram adjustment TMO/N/ard Larson et al. 1997

Their experiments contain two parts: 1) rating each tonepedgmage for overall
image quality, brightness, contrast, reproduction of itletand reproduction of
colors with given real-world views (rating experiment) ajdordering printouts
of all tone mapped images for overall image quality, overatitrast, brightness,
color and detail reproduction with no given reference vielugheir conclusions,
the best overall quality is exhibited birginhard et al. 20d2and [Ward Larson

et al. 1997 in this order while the worst wasJhiu et al. 1998

For our experiment, the result of the multivariate analysée Sectiod.4) shows
that the seven TMOs were perceived very differently in teohsll of the at-
tributes when compared to their corresponding real-wodd/s.

Overall Brightness  Observer assessments of overall brightness shows the
most significant differences among the TMOs, and global atpes (the linear,
Pattanaik, Ward, and Drago methods) have more brightnassldical ones (the
bilateral filtering, Ashikhmin, and Reinhard methods). Thesult has a strong
agreement witltCadk et al.’s results. They also reported the methods of Wadd an
Drago with relatively good ratings about overall brighthesmpared to bilateral
filtering and Ashikhmin TMO. Only a difference is Reinhard TM@hich was
rated low as same as the other local TMOs in our experimenblimained quite
good score irCadk et al.’s experiment.

Overall Contrast  Regarding overall contrast, global operators have more con-
trast than local ones, but the difference is less pronouti@dfor overall bright-
ness. Since overall brightness and contrast are correlstesthida et al. 2006

this result is expected. The linear, Pattanaik, and Wartioastshow more overall
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contrast reproduction than the others. However, it was sftbat the bilateral fil-
tering and photographic TMOs (i.e., local operators) hadhilghest rating scales
in overall contrast when no reference is provided for subjf<uang et al. 200b
Compared tcCadk et al.’s results, there is the same tendency as overghbiri
ness. Both of their and our results agree with each other eR=phard TMO.

Detail Reproduction in Dark Regions Detail reproduction in dark regions
is the least significant of the attributes, but it is still tlig significant. The
Ashikhmin and Drago methods are perceived as providing tbst metails in
dark regions. The bilateral filtering exhibits slightly teetdetail reproduction
than the linear, Pattanaik, Ward, and Reinhard methods. dthanindependent
study Kuang et al. 200p(performed without the reference scenes), the bilateral
filtering and Reinhard methods have been reported to havescigtes in detalil
reproductions in dark regions. It is similar to our findin@n the other hand, if
an HDR image was provided as the reference on an HDR monitdda et al.
[Ledda et al. 2009, the bilateral filtering reproduced the poorest detailslark
regions.

Detail Reproduction in Bright Regions Perceptual variation is the second
highest for detail reproduction in bright regions. Counteoverall brightness,
local operators are perceived with significantly more detgiroductions in bright
regions than global ones. Even when no reference was pihuide local TMOs
were considered to be better operators for detail repramtuat bright regions
[Kuang et al. 200pb In the study with the HDR referencelsddda et al. 2005 it
can also be seen that the Reinhard TMO reproduced detailgyimt begions quite
well. However, the fast bilateral filtering, Ward, and DragdOs were reported
as having the opposite effect compared to our results.

Similar results to those of our experiments with respectet@itireproduction in
dark and bright regions, have been also recently reporteginogh et al. Emith
et al. 2006 who proposed objective local and global contrast metridgey con-
sidered 18 HDR images which have been compared to their tapp®ad counter-
parts using their objective contrast distortion metrics.

Naturalness  Concerning the naturalness attribute, the Ward, Reinhamdl, an
Drago methods obtain highest scores. The Ward and Reinharidseare also
ranked as the second and the third preferred TMOs resplyativihe research of
Kuang et al., however, the fast bilateral filtering is notkeehin our experiments
as high as in the experiments without referer€egng et al. 2004 Ashikhmin
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and Goral asked the subjects “which image is the closesetoetll scene in front
of you?”, and then their results show that the methods of ®agd Reinhard
performed well as same as our results.Cadk et al.’s experiment, they asked
their subjects about “overall image quality” with respextcbrresponding real-
world views. Their question can be interpreted “how closediven image is to
the reference view in front of you?”, i.e., naturalness. Témults ofCadk et al.
also have a strong agreement with ours about the methodsrafaid Reinhard.

For all attributes of TMOs, while the results of our expenmseshow some
similarities to the results of other studieKuyang et al. 2005Ledda et al.
2005 Ashikhmin and Goral 2006Cadk et al. 2006, a number of difference are
observed as well. This may come from the difference betwaexperiment with
or without reference. Even when a reference is provided lbjests, the results
differ with an HDR image reference or with the correspondieal-world scene.
Parameter setting for TMO matters as showrvioghida et al. 2008wvhich is also
presented in Chaptéx

Similarity between TMOs In terms of the similarity of the tone mapping op-
erators computed by Mahalanobis distances, the biggdstelites are between
the linear tone mapping and each of the fast bilateral filtggrthe Ashikhmin
method, and the photographic tone reproduction by Reinhaal. e (i.e., lo-
cal methods). The least differences are between fast taldittering and the
Ashikhmin method, between the methods of Pattanaik and Ward between
the Ashikhmin method and the photographic reproductiore Mahalanobis dis-
tances are visualized in a dendrogram plot (FigduE), which shows that all
studied tone mapping operators are divided into global andllcategories in
terms of similarity.

4.6 Summary

We conducted a psychophysical experiment over seven topgintpoperators
and two scenes with 14 human observers. We asked subjedts/tatdhe point

where an HDR image was taken by camera and compare tone miamgges and

their corresponding real-world views. Tone mapped imaga®\whown one after
another and subjects rated overall brightness, overattasin detail reproduction
in bright and dark regions, and naturalness for each tongethjmnage by using
a slider. Our principal goal of this work was to study how pegperceive tone
mapped images when they are compared with the real-wonsvie
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Our results demonstrate that qualitative differences imetmapping operators
have a systematic effect on the perception of scenes by holrservers. They
provide a solid basis for selecting the appropriate algoritor a given application
and for assessment of new approaches to tone mapping teekniq
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Chapter 5

Analysis of Reproducing
Real-World Appearance on HDR
Displays

5.1 Introduction

A great variety of tone mapping operators have been developescent years
(refer to Reinhard et al. 20Q5or a detailed survey) in response to accessible
and simple high dynamic range (HDR) image acquisition teldgyo A major-
ity of existing operators are designed to produce imagesjtisa “look good”.
Some operators, especially those designed specificalhg&distic image synthe-
sis applications, use models of brightness or contrasepéom to achieve a good
match between the image’s appearance and the correspaedirgiorld scene.
In practice, each operator boils down to an image procesdggayithm that trans-
forms HDR pixels into their low dynamic range (LDR) countatpaising either
a monotonic function with respect to the HDR pixel intengjobal operators)
or a more complex relation that involves local pixel neigtitamd considerations
(local operators). While new tone mapping operators areqeeg, there is little
understanding whether their improvements and additiomaptexity really lead
to better images. It turns out that it is difficult to selecteoexisting operator
that consistently performs the best in terms of user prate® or fidelity to the
original scene appearance for all HDR imag@sihhard et al. 2005

In the following sections, we review previous work in Sent®?2, describe our
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psychophysical experiments in Sectibr8. Results of our experiments are dis-
cussed in Sectioh.4, followed by Sectiorb.6to summarize this work.

5.2 Previous Work

Evaluation of tone mapping operators (TMOSs) is an activeassh arealjrago
et al. 2002Kuang et al. 2004Ledda et al. 2005voshida et al. 2005 which at the
current stage is more focused on choosing correct psyclsggaiyechniques than
on providing any clear guidance as to how existing operatioosild be improved
to produce consistently high quality images. All existivgleation methods treat
each tested TMO as a “black box” and its performance is coatpaith respect
to other operators, without explaining the reasons unggyliiuman judgments.
While some evaluation methods go one step further and atteargotalyze the
reproduction quality of overall brightness, global costraand details (in dark
and bright image regions).gdda et al. 2005vYoshida et al. 2005 but again they
are focused on comparing which operator is better for eathesie tasks. Those
studies do not provide any deeper analysis as to how pixels BIDR image have
been transformed and what the impact of such a transformition desired tone
mapped image characteristié3dlahunt et al. 2005 Another important question
is how the outcome of the transformation depends on thecpéatiHDR image
content.

In all discussed evaluation experiments only one set ofrparars per TMO and
per HDR image is considered in order to reduce the number afé@s that must
be compared by subjects. The choice of the parameters mmatically affect
the appearance of tone mapped images and thus the perfembad MO. Ex-
perimenters commonly set such parameters based on théeatroa small pilot
study, which may lead to the results that are biased by theebof a limited
number of subjects. Sometimes the original authors of TM@saaked to pre-
pare images according to their preference, since “theyldhmithe best qualified
to get the best results”. However, different people may Ithiferent ideas con-
cerning the preferred image appearance and the meaningeobést results” can
be fuzzy. Even the calibration of the display used for imageng and the actual
experiment can affect the results. A limited number of TM@eroa method of
an automatic parameter estimation (eReinhard 2003Reinhard et al. 200%h
However, these estimation methods rely mostly on the asitbbservation for a
small set of images or the practices borrowed from photdyramther than a
study with a large number of images and subjects.

A standard pool of HDR images for tone mapping evaluationbdeen recently
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proposedJohnson 2005but a common practice for every experimenter is to rely
on his own version of tone mapped images, which makes casparison of the
results for independent evaluations difficult.

Another common problem is averaging the experimental tesdross subjects
based on low-cross subject variability. This lack of vaitigbcan often be caused
by the choices imposed on the subjects by the experimengrdesihich does
not offer any possibility of adjusting the image appearatacthe subject’s real
preferences within available range of parameters of thiedeEMOs. The net
result of published studies is that they often present edittory results even if
the same HDR images are used. Some operators shown as pegdhe worst
in one experiment obtain the top scores in another expetimdémns suggests that
the TMO evaluation methodology should be improved.

In this work, instead of proposing a new TMO and then runnimg subjective
evaluation to show that it performs better than the otheraipes, we take the op-
posite approach. We want to first identify the output toneatizristics that lead
to perceptually attractive images. Therefore, we starhfroeasuring the subjec-
tive preference and the perception of fidelity for imagesdpoed by a generic
TMO, whose characteristic and parameters are well undstst®ur goal is to
find some universal rules that facilitate a design of the TM& tonsistently pro-
duces preferred image appearance.

In this respect, there are some similarities of our apprgaeths with more funda-
mental research in psychophysics, which raises the issumage appearance
preferences as a function of various image characteristtésr example, Fe-
dorovskaya et al Hedorovskaya et al. 199ieport that the relation between pref-
erence and colorfulness has a shape of invertéavith the maximum preference
achieved for color saturation increased by 10%—-20% in dpehe original im-
age. Similar results are obtained for contrast and brigistn@anipulationJobson
et al. 2002 Higher color saturation is needed to compensate for redlicight-
ness of a display in order to achieve more natural image appea fleRidder
1994. The preferred mean luminance levels are found for imaggiscontain hu-
man facesDelahunt et al. 2005 Image preferences with respect to colorfulness,
contrast and brightness are studied in digital photogrgfhyakis et al. 2090

What makes our study different from this fundamental reseantich is moti-
vated by the applications of color reproduction in teleuisand photography, is
that we focus on the particular problem of tone mapping HDRges for a broad
range of display devices. For this purpose we use in our erpets HDR im-
ages, which are displayed on an HDR display with fully coltafde minimum
and maximum display luminance values. Therefore, we caesiiyate much
wider dynamic range than is possible using traditional LD$plhys and neutral
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density filters.

5.3 Experiments

5.3.1 Introduction

We conducted two experiments on an HDR display to assess boplgadjust

the settings of a TMO. In Experiment I, the subjects weremibhe task of adjust-
ing an HDR image shown on the HDR display so that it looked t& in their

opinion. In Experiment Il, the subjects sat in front of an HORplay showing

an image and the corresponding real-world scene. Theirviaskto adjust the
image to achieve the closest reproduction of the real-wsz&he on the display.
Additionally, in Experiment Il, we simulated several paiahdisplay devices by
limiting the lowest and highest luminance outputs of the Hidéplay.

5.3.2 Subjects

There were in total 24 individual participants in two expeents. Four of them
were female and the rest were male. The range of their age4vad@ years and
the average was 28. All of them reported normal or correct@dtmal vision. All
but two subjects were not aware of the purpose of the expatgn&ight subjects
took part in both experiments, the others in only one of thExperiment | was
completed by 15 subjects. Experiment Il involved a sepasatap for each of
three real-word scenes, therefore 13, 7, and 6 subjectsletadExperiment I
for each scene respectively. A single session took appteiy20 — 30 minutes
for both experiments.

5.3.3 Stimuli and Apparatus

Experiment | employed 25 HDR images commonly used for tgsiimOs (see
Figures5.1—-5.3). There were 14 outdoor scenes, 9 indoor scenes, and 2 CG-
rendered scenes. We did not include images of people or &imthe test set,
since these are rare for HDR images. Some of the images ddgiaytime scenes,

the others night or evening scenes. The images were displayt@eir original
resolution or scaled to the resolution of the HDR displajpét were too large.



5.3 Experiments 67

(a) Image 1 (3.08) (b) Image 2 (3.93) (c) Image 3 (2.57)

(d) Image 4 (6.21) (e) Image 5 (4.06) (f) Image 6 (4.51)

(9) Image 7 (2.85) (h) Image 8 (4.88) (i) Image 9 (3.50)
Figure 5.1: Images 1 — 9 for Experiment |. Their dynamic rangesm decimal-

logarithmic units are shown in parentheses. All images aredne mapped by
using [Drago et al. 2003.
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(b) Image 11 (2.69) (c) Image 12 (3.46)

il

(e) Image 14 (3.96)

() Image 15 (3.43)

; ! -
(g) Image 16 (2.99) (h) Image 17 (3.03) (i) Image 18 (4.68)
Figure 5.2: Images 10 — 18 for Experiment |. Their dynamic rangs in
decimal-logarithmic units are shown in parentheses. All inages are tone
mapped by using Prago et al. 2003.
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(c) Image 21 (2.98)
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(d) Image 22 (4.25) (e) Image 23 (3.84) () Image 24 (3.16)

(g) Image 25 (3.48)

Figure 5.3: Images 19 — 25 for Experiment |. Their dynamic rangs in
decimal-logarithmic units are shown in parentheses. All inages are tone
mapped by using Prago et al. 2003.
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Figure 5.4 shows the HDR images used for Experiment Il. These are the HDR
photographs of our experimental scenes that we set up néix¢ tdDR display.
Each of the three HDR images was created using the multiplesexe technique
from 15 low dynamic range images taken with a Kodak Profesgi®@ CS560
mounted on a tripod. We used Robertson’s mettoblertson et al. 1999m-
plemented in thé®FScalibratior to calibrate a camera and create the HDR im-
ages. We selected the lens (Canon EF 50mm) and the positidre afaimera,
so that the image displayed on the monitor closely matcheaehl scene. The
subject’s viewpoint was not restricted and the setup altbthem to have com-
fortable viewing of both the real scene and the display froendistance of about
1.5 times screen height from the HDR display. Images 26 an(th#7left and
the middle images in Figurg.4) contain the same object layout but differ in the
lighting condition. Both scenes were lit with the 800 Watt Hdinp (JOKER-
BUG 800), which gave approximately daylight illuminatioRor Image 27, the
lamp was covered by the diffuser (Lightbank) to decreasatieasity of the light
source. As shown in Figurg.4, the absolute luminance values were very differ-
ent with or without a diffuser for the HMI lamp. The table setin Images 26
and 27 included a MacBeth Color ChecRéran 18% reflective gray card and
several objects ranging in their reflectance from black titeviThe experimen-
tal sessions for all images except Image 28 were conductédteinoom whose
lighting condition could be fully controlled and was set toypical dark office
illumination (64 lux). In the pilot study we verified that thevel of ambient light
does not have a significant influence on the results. For IrB8gthe experiment
was conducted with natural light and completed within twardsan the afternoon
under stable weather conditions.

The images were shown on the Brightsid® LED-based HDR displayJeetzen
et al. 2004 which consists of an LCD panel (280 x 1,024 pixels) and a matrix
of 760 separately controlled white LEDs, acting as a badhktlig’he minimum
and maximum luminance levels of the display we used for tipeements were
0.2 and 3,000 cd/m?, which gave the maximum dynamic range4ofs log-10
units. The HDR monitor was calibrated by measuring its llance response for
a range of input values using the MINOLTA LS-100 luminancdeneThen, the
measured values were used to create an inverse lookup wabtdy was used by
the display driver. The display driver was implemented iapirics hardware as a
fragment program to allow for real-time interaction withages.

Although tone mapping of images for the HDR display may seém a futile
exercise, we found several reasons for this approachlyi-inst wanted to check
if tone mapping is necessary for HDR displays, and if it isvgbat kind of tone

Ihttp:// www. npi -i nf. npg. de/ resour ces/ hdr/cal i brati on/ pfs. htni
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12. 71cd/m~2 129. 5cd/m~2 2, 171cd/m"2 19, 23cd/m™2

1,341 cd/m~2 3,193 cd/m”™2 3148, 7cd/m~2 387. 2cd/m”™2
(a) Image 26 (b) Image 27
173, 3cd/m~2

90. 17cd/m~2 9. 623cd/m~2
(c) Image 28

Figure 5.4: Three HDR images and several measurements of lumance of
the real scenes. Their dynamic ranges itbg,, unit are also shown after each
number of the images. These images were shown to the subjectgiwtheir

corresponding real-world views in Experiment Il and without reference as
done in Experiment |. The Drago TMO is applied for the convenienceof view.
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mapping. For this reason, we included several images whgsantic range ex-
ceeded the dynamic range of the display (refer to Figbires 5.3). Secondly, we
in fact artificially limited minimum and maximum luminancétbe display in the
experiments as described later (although most of the datédxn collected for
the full dynamic range). We also did not want to use diffedigplays of different
color characteristic in the experiments.

5.3.4 Generic Tone Mapping

The purpose of our psychophysical experiments is to collath from human
observers to determine what are the desired or importamepties of a TMO.
This knowledge should help in the design of new TMOs or autangearameter
estimation for the existing TMOs. Since examining all pbsirMOs is not fea-
sible in an experimental setup, we consider only a global TthtDinvolves linear
scaling and shifting of color values in the logarithmic dam&ven though this is
probably the simplest TMO that is practically used, it camicithe behavior of
many global TMOs, such a3{imblin 1999 or [Ferwerda et al. 1996and is in
fact a part of any TMO that requires “gamma correction”, sasliReinhard et al.
2009 (since a power function that is used in gamma correctioresponds to lin-
ear scaling in the logarithmic domain). Many TMOs productpatipixel values
in an arbitrary range, which must be linearly scaled or sHitb fit the dynamic
range of a display (e.gFpttal et al. 2002Durand and Dorsey 200Reinhard
et al. 200%). For these and other TMOs such scaling (contrast adjustinaad
shifting (brightness adjustment) operations are esddntighe final appearance
of a tone mapped image and are therefore analyzed in thisiwonkre detail.

The generic TMO we use in the experiments is described witetparameters:
brightness, contrast, and saturation of color. Brightnesscantrast parameters
are considered as an offset of luminance and as a differertaebn the maximum
and minimum luminance values, respectively. To adjustrceéduration, color
coordinates are interpolated or extrapolated betweenrigaal pixel color and
its corresponding luminance value for the D65 white poinli. adljustments are
performed in the logarithmic domain to approximate nomdinresponse of the
human visual system to light. Formally, the TMO can be madiele

log,o R = ¢-logyy R + b, (5.1)
log,, Y’ = 0.2126 log;, R’ + 0.7152log,, G’
+0.072210g,, B, (5.2)

log,y R" = logyo Y’ + s(logyy ' — logyy Y7) (5.3)
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whereb, ¢, ands are brightness, contrast, and color saturation parameispgec-
tively, Y is the new luminance value, arfel’ is the output red channel value.
Equations %.1) and 6.3) are applied for green and blue channels in the same way
as for the red channel. Note thet is an approximation of luminance, which is
used for our convenience (luminance should be a weightedo$dimear instead

of logarithmic R, G and B coordinates). To assure that the adjustment of con-
trast has a minimum impact on the perceived brightness oéaesthe pixels of
each HDR image were multiplied by a constant factor, so tmatedian lumi-
nance value of each image wWEs= log,,(1) = 0. This way the multiplication

by the contrast parameter in Equatidnlj “stretched”, but did not shift image
histogram. This is illustrated in Figu&e5s.

3 |
ib'ﬂrﬂ - .\‘IJ"'l -‘“E‘ . -{-}.'.r!:LH'
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Figure 5.5: lllustration how the generic tone mapping modifes the image
histogram (see Equation 5.1)).

5.3.5 Experimental Procedure

The two psychophysical experiments were conducted withnatitbut reference
scenes, respectively. For both experiments, each HDR imwageshown on the
HDR monitor one after another with a user interface thawaid the subjects to
interactively adjust parameters of brightness, conteasd, color saturation using
a mouse. The first two parameters were adjusted using a 2&r ghietrface and
color saturation was adjusted using a 1D slider as showngoréb.6. Since
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we found in the pilot study that brightness and contrast #feeult to control
separately, we decided to use a 2D slider that would allowsaajent of both
parameters at the same time. In Experiment I, the subjeats asked to adjust
these parameters until the most preferred reproductiorac €IDR image was
achieved in their own opinion without reference imagesf@ence). In Experi-
ment 11, their task was to achieve the closest reproductfdheoreal-world view
(fidelity). They were asked to reproduce the details of ajéots in an HDR im-
age as seen in the real scene and, if possible, to adjust tReitdBge brightness
to match the real scene (see Figbréfor the settings of Experiment Il).

\ <+Color Saturatior

‘_—Contrast

4

—Brightness

Figure 5.6: A screenshot of the user interface used in our exg@iments. The
horizontal and vertical axes of the 2D slider (bottom right)adjust brightness
and contrast, respectively. The 1D slider above changes coleaturation.

The parameters of brightness, contrast, and color satarafithe generic TMO
(refer to Sectiorb.3.4 were allowed to be adjusted within the range-3f0 — 5.0,
0.1 - 4.0, and 0.1 — 4.0 respectively. Before starting the iaxgats, the ranges
were checked to be large enough to reproduce everythingfesyndark/low con-

(a) Setup for Images 26 and 27 (b) Setup for Image 28

Figure 5.7: Setup used for Experiment Il.
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trast images to extremely bright/high contrast images waitlor settings ranging
from grayscale to color-saturated image.

While Experiment | was conducted using the full dynamic ranfehe HDR
monitor (0.2 — 3,00@d/m?), in Experiment II, we restricted the minimum and the
maximum luminance of the HDR display to simulate a range ¢éipital display
devices as listed in Tab1 Additionally, for each simulated display, the subjects
were given a questionnaire sheet to mark the score of itedeption, which could
be “good” (3), “average” (2), or “poor” (1). The subjects wardve as to what
technically differs in each of the 14 dynamic range and linghs settings.

# Dmm - Dmax # szn B Dmam

1 0.2 - 3,000/ 8 1.0 - 3,000
2 0.2 - 80| 9 80.0 - 1,000
3 0.2 - 200]| 10 80.0 - 3,000
4 0.2 - 1,000/ 11| 200.0 - 1,000
5 1.0 - 80 12| 200.0 - 3,000
6 1.0 - 200/ 13| 1,000.0 - 3,000
7 1.0 - 1,000( 14 0.2 - 3,000

Table 5.1: The range of the minimum and maximum luminance vales of the
HDR display that simulates potential displays (given incd/m?). Note that

the dynamic range between 0.2 and 3,000/ /m?* was used twice in the test to
validate consistency of the results.

Finally, another experiment was conducted with Images 28 a2l four subjects
using the same procedure as in Experiment Il but the taskaadjst parameters
to their preference (as in Experiment |) and no referenceese@s given.

5.4 Results

The results for both experiments are summarized in Fi§uBeThe plot shows a
large variance in the preferred TMO parameters, which atég that the subjects
used a broad range of possible parameters. There is alsorgy storrelation
between brightness and contrast parameters. The conaesheter is biased
toward an enhanced contrast¥ 1 in Equation b.1) indicates that the contrast
was higher in a tone mapped image than in an original image).

Preliminary screening indicates that the results for Stli@ are significantly
different than for the other participants (probably duenipioper use of the user
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Figure 5.8: The results for all images, all subjects and for tle full dynamic
range of the display (red '+’). One subject regarded as an ouier is marked
with blue’ x’es.

interface) and therefore this data is removed from the &urémalysis (marked as
blue 'x’es in Figure5.8).

We ran the multivariate analysis of variance (MANOVA) tottasain effectof
subjects’ gender and expertise on measured parametersF distribution and

a probability valuep, which is derived fromF’, are used to determine whether
there is a statistically significant difference betweenyatons of samples. The
higherp value, the more we can believe that the populations of savgie not
statistically different. In our experiment, the gendefealiénce is not significant
(F(3,496) = 1.187, p > 0.05 and F'(3, 360) = 1.970, p > 0.05 for Experiments

1 and 2, respectively) as> 0.05 shows that the difference between populations
of samples (male and female in this case) is not statisfisaghificant. Two peo-
ple were aware of the experiment purpose, and thereforewleeg considered
as experts. The population means of experts and non-exgrertsowever not
significantly different ¢(3,496) = 0.3237, p > 0.05 and F'(3,360) = 2.2304,

p > 0.05 for Experiments 1 and 2, respectively). Therefore, we a@abll col-
lected data together in the following sections.

To better understand the source of large parameter vargtwe plot brightness
and contrast parameter settings separately for severaited| subjects and im-
ages in Figures.9. Similar plots for all subjects and images can be found in
Figures5.10and5.11 The left pane of Figur®.9 shows that the settings can
significantly differ between subjects, ranging from thef@rence for high con-
trast and low brightness (Subject 6) to the opposite praterdor low contrast
but bright images (Subject 2). The significant differenceswibjects’ settings is
statistically established by MANOVAK(52, 1872.8) = 10.7864, p < 0.05 and
F(64,1349.0) = 7.6678, p < 0.05 for Experiments 1 and 2). We can expect
that two different individuals have different notions of erfect image, therefore
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the TMO settings must be affected by the subject’s tastess i$kan important

observation with several consequences. Firstly, a TMOgdesi to render the
best looking images should account for the user’s tastegx@ample by offering

user adjustable parameters. Secondly, when ranking ossasgeperformance of
TMOs in subjective experiments (e.glLeldda et al. 2009, the subjective influ-

ence should be taken as a factor in the analysis since twereiiff subjects are
likely to propose two different TMO rankings if they differ their tastes. Finally,
we cannot average parameter settings across all subjettstieer analysis, since
those parameters significantly differ across individuals.

Image 1 Image 10

sssssssss 0 ~ =
Brightness Brightness

Figure 5.9: The contrast—brightness relation for three seleted subjects (left)
and images (center — Image 1; right — Image 13). Both contrastral bright-

ness settings differ significantly from subject to subject ad from image to
image.

More consistency in the parameter settings can be obsecredsaimages. The
center and right panes of Figuse9 show that both parameters follow a similar
line of decreasing contrast and increasing brightness. a\thé images follow
the similar pattern of parameter settings, the populatieams of the parameters
are significantly differentf(72,1414.4) = 7.6420, p < 0.05 and F'(6, 718) =
17.1307, p < 0.05 for Experiments 1 and 2). This indicates that the TMO sesting
are affected by image characteristics.

5.5 Discussion

5.5.1 Contrast and Brightness Preference

To understand what the subjects’ motivation for the chofamoatrast and bright-
ness parameters was, we plot the histograms of the resinttages in Figur®.12
Although each subject adjusted the same image in differagsywhe or she also
followed a similar scheme when choosing TMO parameters lfdha images.
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For example, the histograms resulting from the adjustmeh&ubject 6 are al-
ways more spread out than for the other subjects. This wawlitate that the
magnitude of contrast enhancement is correlated with stegsaf an individual.
Additionally, there is another interesting observationahlitseems to be consistent
across both all images and all subjects: the display maxitommmance, above
which pixels are clipped, falls into approximately the sgmaet of the histogram
(see the blue vertical lines on the right of each plot in Fegud2). This indicates
that people tend to “anchor” the brighter part of an imagéeodisplay maximum
luminance, and then they extend or compress contrast initbetion of lower
luminance to get the best looking image.

It is interesting to see whether the same observation caemerglized to a broad
range of displays or if it is applicable only to an HDR displsye plot histograms
in Figure5.13for a single subject and single tone mapped image but forakeve
simulated displays of different brightness and dynamigesn The figure clearly
indicates that subjects adjust images for the capabibfi@sdisplay, but they also
follow the same scheme as for the HDR display (0.2-3&06r*) — they map
approximately the same part of the histogram to the maximumnance of the
display and then adjust contrast.

|

A “\ \
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u Jd\ i

-2 0 2 4 6 -4 -2 0 2 4 6 -4 -2 0 2 4 6 -4 -2 0 2 4 6

Figure 5.13: The histograms of Image 1 after Subject 1 brightess and con-
trast adjustments — data from Experiment 2. The blue vertical Ines denote
display minimum and maximum luminance. The horizontal axis s scaled in
log luminance units.

5.5.2 Improved Tone Mapping Algorithm

The motivation for remodelling a TMO is to provide new paraeng that would
be more intuitive to use. As mentioned earlier, the settiogsontrast and bright-
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ness are strongly correlated. An average correlation ceeitifor all images and
both experiments if2 = —0.7217 + 0.1622. This suggests that both contrast
and brightness could be replaced with parameters that dexiabit such strong
correlation and are therefore easier to control by the usetbe case of contrast
and brightness, the 2D slider is usually adjusted alongraesddine (refer to Fig-
ure 5.9 center and right), which is neither intuitive nor conveniet better user
interface would use decorrelated parameters, so that tects could either use
a simpler 1D sliders or move the 2D slider along the axesauaisté a slanted line.

In Section5.5.1, we analyzed and identified the strategy that the subjeet$aus
adjusting TMO settings. Now, we show that this strategy camiodelled. We
rewrite Equation.1) as

log,g R = ¢ -10g,0(R/Yimaz) +10810(Dinaz) (5.4)

whereY,, ... is the maximum luminance value in an image that we want toorepr
duce on a display, which we call “anchor white”. The same idams used for the
blue and green channels. The above equation mimics thetapeperformed by
the subjects in our experiments. Firstly, the formula eatssor compresses the im-
age histogram by the scale factdo the left side of the anchor whi,,... Then,
the anchor white is shifted to the display’s maximum lumeep,, ... Note that
we use the same contrast parametas in Equation§.1), but we replace the
brightness parametémwith the anchor whité&;,, ..

To better understand how Equatidn4) relates to the original contrast and bright-
ness parameters, we plot a functiorc@ssuming constant,,.... Firstly, we find
the relation betweehandD,,,,, from Equations%.1) and 6.4) as

b =10810(Dmaz) — ¢ - 10810 (YVinaz)- (5.5)

Secondly, we choose two images (Images 1 and 10 in this exgr@apé find the
median percentage of the clipped pixélgsee the third row of Figurs.14) in
order to compute’,, ...

Ynae = percentile(Y, 100 — C) (5.6)

whereY is a set of luminance (or luminance factor) values of thelpixean im-
age. Note that the above formula gives the location on thtedriam for a given
percentage of clipped pixels. We use the computed,,..., the maximum lumi-
nance of the displap, .. = 3,000 cd/m?* and Equationg.5) to plot the function
of ¢ as a continuous magenta line in Figir® (center and right). The impor-
tant observation is that the plotted functions for both issgpproximate well the
correlation between contrast and brightness parametdrs ifidicates that the
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largest variations between subjects in the resulting image due to different se-
lections of contrast parametewhile the anchor whité’,,,, does not vary much
between subjects.

We intentionally named the parameiéy, . as “anchor white” to refer to the light-
ness perception theorgjichrist et al. 1999 According to this theory, the human
visual system assesses the lightness of an object baseé an¢hor luminance
value, which acts as a reference for a white reflective sarf&ich anchor lumi-
nance does not need to be the highest luminance in an imageisTdspecially
true for the scenes that contain self-luminous surfaced) as lights or the sun.
The theory postulates that a “common denominator” for hglss estimation is
a white reflectance, instead of gray, often used in photdgra@ur experiment
confirms this since “anchoring” reflectance white to the nraxn luminance of a
display was a dominant strategy for adjusting the TMO sgstin

The linear TMO we obtain in Equatio®{) is easier to control than our original
one, since both parameters of the contrastd the clipping leveY,,.. modify in-
dependent aspects of image appearance. Moreover, if weddranEquation%.4)
from the logarithmic to the linear domain, we have the follogvformula:

R = Dz (R)Yimas )" (5.7)

This re-parameterized form of the original TMO formula frdbquation b6.1)

is similar to a global contrast adjustment operatfpremployed as a final-cut
in many TMOs and as enhancement operation in image editiftyaa@. The
importance of Equation5(7) comes from the fact that we derived this formula
based only on the analysis of the data we collected in ourrerpat without any
prior assumptions on the parameters of the tone reproduttirection. We have
shown that the users try to adjust the TMO parameters al@angahameter, even

if they have a non-standard user interface as used in ouriexg&s. Moreover,
we have shown that the same formula is valid for a broad rahdisplay devices,
ranging from dark CRT monitors to HDR displays.

5.5.3 Image and Subject Influence on TMO Parameters

We analyze how contrast, color saturation and the percertadipped pixels in
dark and bright regions (dependent variables — DV) diffdmieen subjects and

2The operation from Equatiors(7) is sometimes confusingly calleghmma-correctionHow-
ever, since the original meaning ghmma-correctiordenotes compensating the non-lineary of
CRT monitors, using this term in the context of image enhareze may not be appropriate.
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Figure 5.14: The variation of the DVs (contrast, color saturdion and the
percentage of clipped pixels in bright and dark regions) wih respect to the
IVs (images and subjects) — data from the experiments in whitfull dynamic
range of the HDR display was used. Only 15 subjects particigad in these
experiments. Images are numbered as in Figur6.1—5.4. The Notation: red
lines — median; blue boxes — spanning from 25th to 75th percéite; whiskers
— minimum and maximum values without outliers; red crosses -eutliers.
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images (independent variables — V). We want to find out wioitthe two DVs
is responsible for the large variance in the IV.

The variations of the DVs with respect to the 1Vs are sumnearin Figure5.14
Note that we do not include the brightness parameter in thisdi This is because
brightness is strongly correlated with contrast and it sodully determined by
contrast and anchor white as described in Secii@dn2 Anchor white, on the
other hand, is related to the percentage of pixels clippédigiht regions (refer to
Equation 6.6)).

From afirst look at Figur&.14we can conclude that all four DVs are significantly
different between images and subjects. This is confirmetd®wio-way analysis
of variance (ANOVA) for the main effects of the subjects ahe images, which
are run separately for each DV.(7 < F' < 74.21, p < 0.001). Contrast varies
more between subjects than images (see the first row if Figd# and is prob-
ably determined mostly by subjects’ personal tastes asisbgcl in Sectiob.5.1
Color saturation and the percentage of clipped pixels in #r& tegions (rows 2
and 4 in Figures.14) do not show any consistency between the subjects and the
images and therefore it is not possible to draw any conatuiio these param-
eters. The third and the fourth rows of Figusel4 (note the difference in the
scale used for these plots) show that there are significamihg pixels saturated
in dark regions than in bright regions. This suggests thastibjects prefer sac-
rificing a significant portion of the dark part of an HDR imagegbably in order
to improve contrast. The same tendency can be observed umebglL2, which
shows that Subjects 6 and 13 decided to push a large part bistogiram below
the minimum luminance of the display, while preserving thghtest pixels. This
observation suggests that TMOs should follow a similargsatind saturate more
pixels in the dark regions. This is contrary to the most comrapproach em-
ployed in many TMOs where the same number of the darkest aglitést pixels
are clipped. Such TMOs do not produce the best results ifdloayot provide an
adjustment for the number of pixels clipped in dark regions.

Conclusions on the measured values of clipped pixels in briggions can be
drawn directly from the actual images. We observed that tbstmixels are
clipped for the images that contain large bright objectsciishould appear self
luminous in the reproduction, like the sky in Images 1, 7, 2%.and 28, or the
sun in Image 24 (refer to Figurésl1 — 5.3 for images and Figur&.14 for the
magnitude of clipping). Then, follow the images that comt&inall self-luminous
objects, such as Christmas lights in Image 15 and the imagesdépict dark
scenes without self-luminous objects (Images 12 and 27reTis also less clip-
ping for the images of low dynamic range (Images 3, 11 and 20).
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5.5.4 Choosing Default TMO Parameters

User adjusted TMO parameters are not desirable in manycappins and it
would be helpful if their values could be automatically fduat least to render
a “best guess” image. We want to check if there is any corogldietween the
DVs (the TMO parameters) and the IVs, so that, for examplein@yge char-
acteristic can predict the values of contrast and the p&agerof clipped pixels
in the bright regions (needed to compute anchor whijtg,). If we find such a
correlation, we can propose a method to automatically ahdd40 parameters.

Although an algorithm cannot predict a user’s tastes, it maypossible to guess
some TMO parameters based on the characteristics of an imfageerify this
hypothesis, we compute a set of variables characterizio B®R image; the
dynamic range of an image, which is a difference betweenddarithm of the
highest and the lowest luminance in an image; the key valuand L .. «
and L. are used for the automatic parameter estimation in the ghapbic
TMO [Reinhard 200B All these variables require the value of the maximum
and the minimum luminance in an image, which can be calallatex variety
of ways. We compute the minimum and the maximum as percenti®1, 0.1,
1, 10, 20, 30 (of brightest and darkest pixels), and as thénmim or maximum
value of a low-pass filtered image, where the filter is the Giamswith different
values ofo (1, 2, 5, 10, and 20). This gives in total 30 different varesbthat
could characterize an image (3 variables times 10 estinedté® minimum and
the maximum luminance).

We compute the correlation matrix to check if there is a datien between any
of the computed 30 variables and the median values of the Tkl@npeters for
the subjects: contrast, color saturation and the percergaglipped pixels. We
use this matrix to find the variable that is the most corretatvith each TMO
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parameter. The relations between the most correlatedolesiand the TMO pa-
rameters, together with the results of the robust linearesegon, are plotted in
Figure5.15 The highest correlation is found for the dynamic range oinaage
computed using low-pass filtered images= 1) and the contrast parameter (the
first plot in Figure5.15. The negative slope of this relationship is intuitive —
the images of higher dynamic range must be stronger congurdsdit into the
dynamic range of a display. A weaker correlation and lesstiné relation is
found for color saturation and the percentage of clippedlpii the dark regions.
These TMO parameters probably cannot be predicted usingitka set of im-
age characteristic variables. The prediction of the peaggnof pixels clipped
in bright regions is more reliable. It correlates with theage key coefficiend
(computed using the 10-th percentile for the minimum andntlagimum values
in an HDR image). We observed that this prediction is lesaiate for the images
that contain large self-luminous objects.

The plots in Figuré.15show that both the contrast parameter and the number of
clipped pixels in the bright regions are correlated with gm&ontent, and there-
fore they can be predicted. Such predictions can be usedfangeter estimation

in TMOs. Although the predicted values will not be optimal foany images and
subjects, they could be used as the “best guess” for the TM@npeter setting.
Our experiments did not include a sufficient number of imases subjects to
build a reliable model for such a parameter estimation, lioey proved that such
estimation is possible and can be an interesting directofufther research.

5.5.5 Influence of a Display

It is interesting to know how the dynamic range and brighdradsa display influ-
ences the parameters of a TMO. Fig&.é6illustrates how the contrast setting
increases as the dynamic range of a display increases. dfytheemic range of a
display is too low, the subjects compress contrast. On ther dtand, they expand
contrast even above the contrast of an original image () when a display offers
higher dynamic range. However, this behavior differs dlighetween both ex-
periments: if the subjects adjust the HDR images to thefepeace, they enhance
contrast proportionally to the dynamic range of a displagFe5.16top), but if
their goal is to achieve the fidelity to the real-world scetfiey adjust contrast
slightly abovel .0 and keep it approximately on the same level even for the HDR
displays (Figureb.16 bottom). This suggests that the TMO profiled for fidelity
should not enhance contrast above the contrast of an driggeae, and the TMO
profiled for preference should take full advantage of theldisdynamic range.
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Figure 5.16: The relation between the dynamic range of a simaked display
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The subjects tend to enhance contrast more if their goal is theost preferred
image. Notation is the same as in Figuré.14
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5.5.6 Preferred Display Device

We examine how the minimum and maximum luminance values a@ay can
affect subjective preferences for displayed images. Wehesdata from the ques-
tionnaire used in Experiment 2. The preference scores fur siamulated display
are averaged over three scenes and over all subjects. Fditdlustrates the
ranking of potential display devices simulated on the HDBpléiy. The figure
clearly shows that the subjects prefer brighter displaysigiier dynamic range.
A typical LCD display (1 — 20Q:d/m?) is in the middle of the preference scale.
Interestingly, the brighter display but of lower dynamiaga (80 — 3,000d/m?)
has higher preference score than the typical LCD. The disp&the broadest dy-
namic range top the ranking, but the broadest dynamic raisgéag (0.1 — 3,000
cd/m?*) comes unexpectedly lower than the 1 — 3,6d0m? model. However,
the rankings in the top group (1 — 3,000, 0.2 — 1,000, 1 — 1,806,0.2 — 3,000
cd/m?* models) are not significantly different from each othB(g, 126) = 0.82,

p > 0.05). The high scores for the brightest displays of the highgsachic range
indicate that both high luminance and high contrast are napofor reproducing
digital images.

To better understand the relation between the minimum amdnéximum lumi-
nance of a display and the preference score, we fit the datetbnear model
using multiple linear regression. The averaged prefersncees is given by

S=a- loglO(Dmin) + 5 . lOglO<Dmax) -7 (58)

where D,,;,, and D,,,, are the display minimum and maximum luminance val-
ues,a = —0.47 (£0.05), § = 0.87 (£0.11) and~y = 0.25 (4+0.31). The model
accounts for nearly 60% of the datB3 = 0.57). The negativey indicated that
“darker” displays are more preferred (i.e., lower minimwminance) and pos-
itive [ indicates that also “brighter” displays (i.e., higher nmaxim luminance)
are preferred. However, since the trend is strongepfave can assume that the
maximum luminance is more important than the minimum lumaeeof a display.
The percentages of oversaturated pixels are far smalleithiaa of undersaturated
pixels (see the third and fourth rows in Fig&rd.4). This indicates that people are
more sensitive for oversaturation than undersaturatimeshey carefully avoided
oversaturated pixels but did not pay much attention to wsatarated pixels com-
pared to oversaturation.
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5.6 Summary

The major outcome of this work is a better understanding of ligers adjust tone
mapping operator (TMO) parameters to achieve either thelbeking images
(preference task) or the images that are the closest tov@dd scenes (fidelity
task). Based on this knowledge, we propose a better pardradien of a lin-

ear TMO in logarithmic domain, in which parameters are mateitive and can
be partly estimated from image characteristics. The TMCQoistrolled by two

parametersanchor whiteand contrast The anchor whiteparameter is approx-
imately consistent across subjects and depends on imagéss-set to a lower
value if an image contains large self-luminous objects. dtwtrastparameter
is more subjective, and therefore users should be allowedljigst it. We have
shown that the parameters can be automatically estimateal T&10 based on
an image characteristic to obtain a “best guess” result. chmerastparameter
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can be predicted from the dynamic range of an image (imagegbér dynamic
range must be reproduced with lower contrast), andati@hor whiteparameter
is related to the image key value (although the predictiontmaunreliable if an
image contains large self-luminous objects). We beliewa the results of our
analysis are also applicable to complex TMO, which can befriefn both a bet-
ter selection of user adjusted parameters and an autonaatimeter estimation.

The second main subject of this work is an investigation Hmevdynamic range
and brightness of a display affects the preference for tepeoduction. For 14
simulated monitors of varying brightness and dynamic ramgelo not find any

major difference in the strategy the subjects use to adjpages for LDR and

HDR displays. We notice however that the resulting imagesedd on a given

task. If the goal is to find the best looking image (prefergénsabjects tend to
strongly enhance contrast (up to four times that of the palgimage contrast),
even at the cost of clipping a large portion of the darkeselgix On the other

hand, when the task is to achieve the best fidelity with aneald scene, the sub-
jects avoid clipping both in the dark and bright parts of aag®and they do not
extend contrast much above the contrast of an original imiageoth tasks, there
is a tendency towards brighter images, which are achievex/éssaturating the
brightest pixels belonging to self-luminous objects. Timalfinvestigation com-

pares user’s preference for displays of varying capadslitiThe subjects prefer
in the first order the displays that are bright, and in the sdander, the displays
that have low minimum luminance.
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Chapter 6

Perception-Based Contrast
Enhancement Model for
Complex Images in HDR

6.1 Introduction

In the recent years, we witness significant progress in thglaly technology in
terms of expanded color gamut, luminance dynamic rangephysical contrast.
For example, specialized HDR displays can reproduce lumsmdevels ranging
from 0.015 to 3,00Q:d/m?, but even modern LCD TV sets feature remarkable
luminance ranges of 0.1 — 8@d/m? [Seetzen et al. 2004This results in much
better visibility of details in deep shadows and bright higjtts; it makes the
reproduced images more plausible with respect to the redBwbservation con-
ditions. In particular, the black level in such displays gudees that the darkest
image regions appear black in contrast to the grey appeacrsuch regions on
older displays with the minimum luminance higher than 2ed fim?.

The dynamic range and contrast expansion of display devespsre revisiting
well-established image processing techniques which des déilored for 8-bit
color depths and luminance ranges typical for the once pireyaRT displays.
For example, image contrast manipulation is often basecherassumption of
contrast constancy, i.e. invariance of perceived contnest variations of display
dynamic range. However, as increasing possible dynamuerahdisplays, the
need of studying HVS for the luminance levels which used todiecovered by
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display devices is highly required. Additionally, the cheteristics of HVS have
been researched on simple stimuli such as sinewave gratmty&abor patches
but not on complex images.

In this work, we consider this problem in the context of coexpimages and for
luminance ranges typical for HDR displays. Our goal is towdes model relating
physical and apparent contrast, which can be applied toaweprisual uniformity
of contrast changes resulting from image contrast martipnla The main con-
tribution of this research is to parameterizan such a way, that a specified con-
trast change is perceived as a uniform modification of theganadependently of
luminance levels and contrasts existing in the given looshaFurthermore, we
apply the parameterized model for arbitrary images in adimlgenerate a contrast-
enhanced version of thenYgshida et al. 2007bvoshida et al. 2008b

In the following sections, we first conduct perceptual expents to establish the
relation between physical and apparent contrast changexamplex image in

Chapter6.4. Then, we derive a model encapsulating this relation, dstle ob-

served relations, and propose a method for perceptualfgramicontrast scaling
in images displayed over high dynamic range in Chaptér We conclude the
paper and outline future work in Sectiérb.

6.2 Previous Work

A number of research have been proposed on contrast detaatidiscrimination
for simple patterns (see Secti@i3.2for contrast detection and discrimination
thresholds). Legge proposed power laws for increment ashttiscrimination
threshold with exponents 0.6 — 0.7 by conducting psychdphlexperiments on
sine wave gratings stimuli at 2 and 8 cycles per degtegde 1980 Whittle’s
law does not hold for contrast discimination under any ofrthases. Based on
this work, they also presented a contraansducer functiorwhich models the
behavior of HVS for a given physical contrakegge and Foley 1980

Two sets of psychophysical experiments on contrast werdwmiad in parallel.
Foley and Legge conducted another forced-choice expetitoatetermine con-
trast detection and near-threshold discrimination thokeshfor sine-wave gratings
at 0.5, 2, and 8 cycles per degrémley and Legge 1981S-shaped models were
presented for detection threshold while discriminatioresholds were formed
linearly. Gottesman et al. employed magnitude estimatitehod for measuring
perceived contrast on sine-wave gratin@oftesman et al. 1981 Their results
proposed a power function with its exponent 0.7 which dog¢shange accord-
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ing to both luminance levels and spatial frequencies ofwdtim

Whittle measured contrast discrimination thresholds oriiamce for both incre-
ment and decrement with the stimulus of 1 visual degree scarad then discov-
ered that threshold is proportional to pedestal contia4tiftle 1984. Based on
Whittle’s measurement, Mantiuk et al. proposed a transdiucetion [Mantiuk
et al. 2006. Whittle’s law only covers the cases that contrast is smé#tian 50%.
Kingdom and Whittle extended this work by conducting experits for the cases
of contrasts greater than 50% and proposed U-shaped modehtrast discrimi-
nation Kingdom and Whittle 1996

Peli et al. investigated the contrast constancy problemgnous luminance adap-
tation values and simple stimuli such as the Gabor patchessed on background
with different mean luminancePkli et al. 1991 In two independent contrast
matching and contrast magnitude estimation studies, tbefirmed that contrast
sensitivity is significantly reduced for low luminance atijon values below 3 —
8 cd/m?. The lower the physical contrast of the Gabor patches, toager the
sensitivity reduction observed, with a typical contragsus intensity (cvi) char-
acteristic observed for near threshold contrast valudectifely, this means that,
on modern displays, simple contrast rescaling may lead agé@wistortions man-
ifesting in changing apparent contrast relations with eespo the original image
through weakening perceived contrast in dark image regidbhs work was ex-
tended by including other factors such as stimulus sizéhagitic presentation,
and length of adaptatiorPpli 1993 and spatial frequencyPeli et al. 199%

6.3 Contrastin Complex Images

As we reviewed in Chapte2.3.1, contrast is the relationship between the lumi-
nance values at the peakis.{;,) and that at troughs/,,), and there are a num-
ber of definitions to represent contrast in literature sughimple contrast, SNR,
Weber’s fraction and Michelson contrast. However, thedaitiens can be ap-
plied for simple patterns such as Gabor patch or sinewauwingsa For com-
plex images, Peli proposed a definition of local band-lichitentrast (refer to
Chapter2.3.7) [Peli 199Q. This method employs theontrast sensitivity function
(CSF)and represents a contrast value at every pixel of an imagefascdon
of the spatial frequency band. Since CSF works at threshalchaar threshold,
Peli’s contrast definition cannot be directly applied fa tases of suprathreshold
contrast.

No method has been developed to represent contrast in a eomphge by one
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numerical number not only for threshold and near-thresholtrast but also for
suprathreshold contrast. We investigate the standardiequar contrast scaling
in image processindgratt 1991

L(e) =L (%) 6.1)

where L denotes the luminance of a pixdl,is a luminance reference, andle-
notes thecontrast factor The luminance referende defines the brightness level
which remains unchanged during contrast scaling and ysaglials the mini-
mum or maximum luminance in an image, what gives normalizsghn Equa-
tion (6.1). To test the perception of contrast scaling in areas oédfit luminance,
we set thel, value to the mean luminance in the analyzed area.cbh&rast factor
defines physical change to contrast in such a sense thateofalu= 2 increases
while ¢ = 1/2 decreases the physical contrast twice in logarithmic dor(sge
Figure 6.1 for examples). Furthermore, tloentrast factoris a relative measure
of contrast which is convenient to use and interpret withmscope of presented
applications. It also allows to analyze the contrast chamggerms of one number
without measuring actual contrasts, which is particulariportant since a single
number physical contrast measure for complex images isuliftio be quantized.

nnnnnnnnnnn o gfireccs o, e

Figure 6.1: Examples of changing contrast factorg: = 0.5, 1.0, and 2.0 from
left to right respectively. The histograms are shown in logaithmic domain
with the red bars indicating the mean luminance of an imagel.
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6.4 Experiments on Measuring Contrast
Scaling of a Complex Image in JIND

6.4.1 Introduction

We conducted two psychophysical experimentsp@trast scalingand acontrast
discrimination thresholdasks, to assess how thaman Visual Systems (HVS)
perceive physical contrast changes. The goal ofcth@rast scalingexperiment
is to obtain uniform scalings of perceived contrast for thenan observers with
respect to given physical contrast for various luminan@pgation conditions. In
this experiment, we employedTavo-Alternative Forced Choice (2AF@yoce-
dure for image pairs with differemontrast factorand the same luminance levels
and analyzed the obtained data using Thurstone’s Law of Catypa Judgment
for contrast scalingexperiment (refer to Secticd5.1for 2AFC and Thurstone’s
law) [Thurstone 192]7

Thurstone’s Law of Comparative Judgment gives arbitrarfoum scaling for
each set of stimuli at different luminance levels. We can gare distances be-
tween stimuli, i.e., perceived contrast magnitude, witthie same set but can-
not compare different sets of stimuli to each other. Foraksg the results of
Thurstone’s scaling to a contrast space compatible fottiatiudi sets, acontrast
discrimination thresholexperiment was conducted using fPerameter Estima-
tion by Sequential Testing (PES{Fefer to SectiorR.5.2for PEST) [Taylor and
Creelman 196J7

In this experiment, each subject was shown pairs of stin@itie pair of stimuli
contains reference and target images shown one after arratiomly, and we
asked a subject to report if they saw any difference betw@smgwo images.
The details for both experiments are described in the foligwgections.

6.4.2 Stimuli and Apparatus

We selected a black-and-white image of the resoluiiithx 600 (see Figuré.2).

This is a typical landscape image with luminance and conpaiserns which we
can observe in natural images. This image was segmented bademinance
levels into three different regions: “dark”, “medium?”, aftatight” and our exper-
iments were conducted on two displays: the Westinghouderegplution digital
television (HDTV) and the BrightSide DR37-P HDR displ&etzen et al. 2004
We used the Westinghouse display, one of the commercial LCB, B¥cause it
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(a) “Very dark” and “dark”. (b) “Medium”. (c) “Bright”.

Figure 6.2: Our test image (top) and its masks (Bottom). The avage lu-
minance levels are 0.3, 4.5, 28.8, and 158:8/m? for “very dark”, “dark”,
“medium”, and “bright” regions respectively.



6.4 Experiments on Measuring Contrast Scaling of a Complex Imge in JIND 99

has better uniformity of its back-light but obviously cart reproduce very low lu-
minance levels. Therefore, we also employed the BrightSiOR ldisplay which
makes it possible to reproduce very low luminance levels gmtially varying
LED-based dimming technology. Both displays use the same La@idwsich type
and were carefully calibrated by measuring its luminanspaoase for a range of
input values using the MINOLTA LS-100 light meteiExcept their reproducible
dynamic ranges, both displays have similar characteristic

In order to reproduce very low luminance level, we uniformdguced the power
of LED back-lights of the BrightSide HDR display, and the femtdark” be-
came “very dark” region. The mean luminance levels are 0.3, 28.8, and
158.5cd /m? for “very dark”, “dark”, “medium”, and “bright” areas, resgtively.

Each display was placed approximately 1.5 times of its diagsize away from
a participant and viewed binocularly for both experime#té experimental ses-
sions were conducted in a room whose lighting conditionliy ftontrollable and
under dim illumination (65 lux).

6.4.3 Experiment I Contrast Scaling

Contrast scalingexperiment was conducted for estimating perceived candtas
physical contrast change at different luminance levels eWployed a 2AFC an-
alyzed by Thurstone’s Law of Comparative Judgméimirstone 192JAvhich are
commonly used for measuring distances between stimuli ifoum continuous
scaling.

In each trial ofcontrast scalingexperiment, a pair of stimuli was displayed next
to each other randomly and the region of interest was spédtimugh colored
contours (see Figuré.3). In each stimulus, a differemontrast factorhas been
applied only to the selected image region. The other regioren image are
present but slightly blurred (Gaussian blar= 10) not only to maintain similar
local luminance adaptation in an image but also to reducgstghdistraction to
non-selected areas. Subjects were asked to switch theurasffoand judge in
which image they were able to see more contrast in the spd@fieas. Every
participant took approximately 20 — 30 minutes to complkeie éxperiment.

Before the main part of the experiment, we conducted a pilatysto prepare a
set of stimuli so that contrast differences are right beloev\isibility threshold.
We prepared several different sets of stimuli in the form ef 1.11", ¢ = 1.13",

andc = 1.15" wheren = —5,—4,...,5 and selected = 1.13". Since 2AFC

1vwwv. koni cami nol ta. conti nstrunents/ products/|ight/|um nance-neter/|s100-1s110/i ndex. htm
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Figure 6.3: A screenshot of contrast scaling experiment. Theelected areas
are surrounded by colored contours to let a subject know to with areas they

have to pay attention. The rest of an image is blurred to reduce subject’s

distraction and to maintain luminance local adaptation.

increases the number of trials extremely, we used only oragénfor our ex-
periments. Although we used only one image for our experimeme still had
220 pairs to compare, which is too many to judge for subje@iserefore, we
removed 68 obvious pairs and conducted the experiments aamgpl52 pairs
(see forgerson 195pfor details how to reduce experimental labor).

11 subjects between 28 — 47 years old (31 in average) patidpn this ex-
periment. Four of them were female and the rest were maleryBpagticipant
reported normal or corrected to normal vision, and everyheds néve for the
goal of the experiment.

6.4.4 Experiment Il: Contrast Discrimination Threshold

Another subjective experiment was conducted for measwangrast discrimina-
tion thresholdsso that we can rescale the resultscohtrast scalingexperiment
from arbitrary units toJust Noticeable Difference (JNnit. We employed the
PEST [faylor and Creelman 19¢at three reference points @bntrast factors
(c = 0.69,1.00,1.44) for all four regions. At each reference contrast, its targe
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contrast was started at significantly different point. Oh#éhe reference and tar-
get images was shown with colored contour surrounding tlectesl areas, the
contour disappeared, and then another image was shown.jécswas allowed
to repeat displaying each trial as many times as they warhetthis experiment,
the task of a subject was to report if there was visible diffiee between two im-
ages in a specified region. One trial was ended when the réeerthresholds
were constant enough, i.e, a trial is finished if the standaxdiation of the recent

five thresholds became below 0.05.

Six people participated in the@iscrimination thresholdexperiment, which took
20-30 minutes for each subject. Everybody had participatéae contrast scal-
ing experiment first, because we were interested in meascoinigast discrimina-
tion thresholdfor the same series of images as fortatrast scalingexperiment.

6.5 Results

6.5.1 Experiment |: Contrast Scaling

Labels | cf01 c¢f02 cfO3 cf04 cfO5 cf06 cf0O7 cf08 cf09 cfl0 cfll

c 054 061 069 0.78 0.89 100 1.13 1.28 144 1.63

1.84

Verydark| O 0.02 033 097 115 134 192 239 294 331
Dark 0 005 079 1.01 147 196 225 299 280 3.64
Medium | O 0.04 0.72 148 167 246 3.04 358 4.12 436
Bright 0 066 067 155 186 225 2.65 3.38 4.30 4.33

Table 6.1: Results of contrast scaling experiment analyzedy Thurstone’s
Law of Comparative Judgment. The labels for contrast factors orrespond

to those in Figure6.4.

Two-alternative forced choice (2AFC) was employed in thigezkment. A set of
11 stimuli were compared in a pair and then analyzed by usmgstone’s law
of comparative judgmentThurstone 1927 The results of Thurstone’s scaling
are shown in Figuré.4 and Table6.1 Thurstone’s scaling of 2AFC experiment
is very simple and intuitive analysis, however, it returnsna&dimension scaling
in arbitrary unit. Therefore, if we analyze data for diffierduminance levels
separately, we can not compare the results of Thurstonaimgdo each other. To
convert the results into a meaningful scale, we conductedéicond experiment,
contrast discrimination threshold

4.09
4.10
4.38
5.08
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Very Dark
cf0l cf03 cfo4 cfo6 cfo7 cf08  cf09 cfl0 cfll
—& 0-0-& —0—0—& " g
cfo2 cfo5
L L L L L L J
-1 0 1 2 3 4 5 6
Dark
cf02 cf03 cfo4 cfoe cf07 cf08  cf10 cfll
o—@
cfol cf05 cf09
1 1 1 1 1 1 |
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Medium
cfol cf03 cfo4 cf06 cf07  cf08 cf10
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Bright
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Figure 6.4: Results of contrast scaling experiment analyzeby Thurstone’s
Law of Comparative Judgment. The labelscf01,...,cf11 denote the con-
trast factors ordered from the smallest to the biggest valug (see Table6.1
for the details). Note that we can not compare them directly & each other
because they are given in arbitrary units. We have to rescalthem to JNDs
by using the results ofcontrast discrimination threshold experiment (see Sec-
tion 6.6).
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6.5.2 Experiment Il: Contrast Discrimination Threshold

After the contrast scalingexperiment, there was a need to measure The results

of the discrimination thresholdexperiment for contrast increments are shown in
Table6.2 Inter-observer variability was tested by one-way analydivariance
(ANOVA) before calculatingontrast discrimination thresholith order to remove
outliers. There were a few cases with outliers, but afterorgng them, allp-
values are much higher than the significant level (0.05), they statistically be-
haved in the same way.

Referenceontrast factors| ¢ = 0.69 ¢=1.00 c=1.44
Very dark 0.14 0.14 0.16

Dark 0.09 0.09 0.07

Medium 0.07 0.07 0.07

Bright 0.09 0.08 0.10

Table 6.2: Contrast discrimination thresholds Ac at three reference contrast
factors as measured for contrast increments.

6.6 A Model of Uniform Contrast
Enhancement for Complex Images

In this section, we derive a model which adjusts tbatrast factorfor a desired
perceptual contrast change as a function of luminance.|&e results oton-
trast scalingexperiment (Figures.4) are rescaled to just noticeable difference
(JND) units by using the results obntrast discrimination thresholdxperiment
(Table6.2) using the following procedure:

1. Setting the origins to theontrast detection thresholdemputed byontrast
sensitivity functiorfor each luminance level.

2. Rescaling the outcome of tlsentrast scalingexperiment to match the re-
sult of thecontrast discrimination thresholdxperiment. The distance be-
tween reference contrast and the threshold obtained lpotiteast discrim-
ination thresholdexperiment is considered as 1 JND.

3. Fitting the points obtained in St&bto power functions. Note that every
point is rescaled irmbsoluteJND units now. For practical use, we simply
change thabsoluteJNDs torelative INDs by setting the point of “medium”
curve atc = 1.0 to 0 JND forrelative perceived contragsee Figures.5).
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The coefficients of the power functiamc® + v, wherec is the contrast
factor for each luminance level, are given in Tabl&. All R-square values
of power fittings are above 0.93 for our data.

4. Interpolating the curves in Figu®5 to construct a surface model with
parameters of mean luminance levantrast factor and relative perceived
contrast in JND units (see Figuéet). Cubic interpolation is employed.

16

=—very dark
14} |=dark 9.5¢
—medium
- bright

12 9.2¢%4 -16

050 45

10r

Perceived contrast [JND]

1
Contrast factors

Figure 6.5: Relative perceived contrast in JNDs at differebluminance levels
for given contrast factors. Dots represent the rescaled datfor each corre-
sponding image region. Coefficients of each curve are shown Table 6.3,

a B~
Very dark| 9.50 0.45 -5.5
Dark | 9.09 047 -2.6
Medium | 9.21 0.47 -1.6
Highlight | 9.50 0.50 -1.5

Table 6.3: Coefficients for the power functionac® + ~ in Section6.6for mea-
sured luminance levels. See also the plots in Figu@5.

After all steps shown above, we derive the following fornfolerelative perceived
contrastC),:

Cple, L) = 9.3¢"47 + (L) (6.2)
wherec is given contrast factorand L is the logarithm of mean luminance of
a segmented region. The valuescofind 5 are computed as average values in
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Table6.3 The~(L) coefficient part is derived as

_ 0.31L —6.1

W) = =17 (6.3)

by fitting to a rational function with R-square 0.99. Figué visualizes this
model.
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Figure 6.6: A surface model of perceived contrast in JNDs wit respect to
different mean luminance levels and contrast factors (see Eation (6.2). A
transparent surface shows that we need different contrastdctors for differ-
ent luminance levels to achieve the same perceived contra@ JNDs as an
example). The curves derived in Figures.5are also displayed on the surface.

6.7 Discussion

The studies of physical versus perceived contrast chanthe ioontext of simple
patch stimuli or sinusoidal patterns have led to the dedwabf power lawfor
contrast discriminationljegge 1980Whittle 1986 Kingdom and Whittle 1996
andcontrast transducefunctions Legge and Foley 198Mantiuk et al. 2006
Although itis yet unclear how to objectively compare thesdifigs to our studies
on a complex image, we analyze and discuss apparent siegdri the following
sections. Throughout the analysis we refer to ¢batrast factorc as a relative
contrast measure, therefore both thresholds and scaknexaressed in it.
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According to the data in Tablg.2, contrast discrimination threshold remains ap-
proximately constant for differerdontrast factorsand has consistent character-
istic across the luminance changes. Whudstrast factoris a measure relative
to the existing contrast in the area, it means that we obsepentrast masking
effect [Daly 1993 with exponent close td. The discrimination threshold for
contrast factoris independent of the existing contrast in the image. Thestin
old remains approximately constant for middle and dark hance values, but
strongly increases for very dark luminance.

The range of local contrasts in our test image, measure@atiéncy of highest
contrast sensitivity, spans upQa in Michelson measure. For such contrasts, Peli
at al. [Peli et al. 199].observed a similar behavior in a corresponding experiment
for a simple stimuli. We also observe a slight increase ieghold for bright areas
which is unusual.

Thecontrast scalingexperiment derived the relation between the relative esitr
measure and JND of contrast. Such a relation is usually describetd&gontrast
transducer functionMlantiuk et al. 200§ which is a power function. The con-
trast transducer converts contrést= (0g( Lynaz/ Limin), t0 the IND of contrast.
Parameterizing the contraSt with contrast scaling from Equatio®.0) we can
derive the relatiortz(c) = ¢ - G(1), whereG(1) is the contrast in the unmodified
image. Since&~(1) is constant for a given image, we conclude that the contrast
transducer for should also follow the power law.

The fit of the data from the experiment to a power function Itesu a fair consis-
tency of perceptual response to contrast across measumngckloce levels. The
exponent valug¢g = 0.47 and scale valuer = 9.32 are approximately the same
for all luminance levels and the curve is only shifted alomg JND axis depend-
ing on the luminance (see Equatidhd)). The exponent of the contrast transducer
derived by Mantiuk et al.Mlantiuk et al. 2006is approximately equal t0.52 and

is similar to our results obtained for the complex image.

We wrap the aspect of contrast in complex images indhtrast factorfrom
Equation 6.1) which permits obtaining a relation between two contrastaut
actually measuring them. Our handling of contrast genagslihe fact that overall
image contrasts is composed from several sub-band comizonbith have var-
ied influence on the perceived contrast. Although we madetedfiat our image
is representative for natural scenes, we probably make ergleration which is
yet to be estimated. Currently, however, the comparisonlébe® measurements
for simple stimuli does not indicate any incorrectness.
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6.8 Application

6.8.1 Uniform Contrast Scaling

We aim at maintaining perceptual uniformity in contrastisicafor complex im-
ages across wide luminance range. We employ our experihtattato parame-
terizecontrast factonin Equation 6.1) so that we adjust contrast scaling by speci-
fying the amount of perceived contrast chaigen relative JND units of contrast:

e, =1L (5)6(%” | (6.4)

The parameterizedontrast factorc(C,, L) is obtained as a cross section of sur-
face in Figure6.6 at a fixed relative JND contrast changeand as a function of
pixel luminancelL. As a formulac(C,, L) can be obtained as an inverse function

of Equation 6.2): 1
o(Cy, L) = (Cf’_—’V(L)) ’ (6.5)

(0%
whereC,, is a desired perceived contrast ay(d.) is same as Equatio 3).

The analysis of the parameterizatiofC,, L) in Figure 6.7(a) reveals that the
valuecontrast factowaries significantly for a given perceptual change of catira
By taking the reverse, a fixambntrast factoleads to perceptual non-uniformity in
contrast change of about 4 JND units across luminance rasagjalale on current
displays (Figures.7(b). Figure6.7(a)also demonstrates an interesting observa-
tion that a desired decrease in contrast equal2aJND with respect to middle
luminance, results in no contrast change in very dark atadle next sections we
use Equation@.4) to maintain perceptual uniformity in global and local aast
scaling.

6.8.2 Global Contrast Scaling

The global contrast scaling is obtained when the referamméniancel in Equa-
tion (6.4) is constant for all pixels in the image. To maintain peraaptiniformity,

the exponent of a power function is dependent on the pixeffgnance value and
results in an adjusted luminance mapping function. Theiplétigure6.8illus-
trates that high luminance requires smaller contrast ahéman lower luminance.
Such a difference in mapping is mandated by our experimeshdanved based
on its model (see Figur@.6), and it stays in accordance with experiments by Peli
etal. [Pelietal. 1991



Chapter 6: Perception-Based Contrast Enhancement Model for Cmplex Images in

108

HDR

107 10° 10" 10° 10" 10° 10° 107
log, uminance log, Juminance

(a) Inversely computingontrast factorgo ob- (b) Applying the samesontrast factorsglob-
tain the same perceived contrast. ally. It causes different perceived contrast.

Figure 6.7: Influence of luminance level on perceived contrst change and
on adjustment of contrast factor to maintain perceptually uniform contrast

change. The values ofr and 5 in Equations (6.2) and (6.5) are set asoe = 9.2

and 7 = 0.47.
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Figure 6.8: Luminance mapping in perceptually uniform globd contrast scal-
ing. Mapping clipped to minimum display luminance.
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6.8.3 Local Contrast Scaling

Adjusting the reference luminandein Equation 6.4) to an average of certain
small area around each pixel in the image, the contrasingcatjuation becomes
an unsharp masking filter for enhancement of local contréstalogically to pre-
vious Sectior6.8.2 illustrate that high luminance areas require smaller resht
enhancement than lower luminance areas. Fo@utrast factorleads to much
weaker perceived enhancement of local contrast in darls §sea Figuré.9).

R 7

Figure 6.9: Standard local contrast enhancement (Top) andgrceptually uni-
form local contrast enhancement (Bottom) byC, = +4 JND with respect
to the original image shown in Figure 6.2 Differences are most visible in
marked areas, but are very subtle unless observed on an HDR shlay.
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6.9 Summary and Future Work

Through psychophysical experiments, we derived a model fuerceptually uni-
form contrast change in complex images and demonstrateapjtfication to

global and local contrast scaling. We expect that such a nethhad is partic-

ularly important for displays with wide luminance range,igéhreduces the non-
uniformity in contrast scaling of several JND units. We alied certain resem-
blance of our results for complex images with experimentstbérs performed
for simple stimuli.

In the next step, we plan to extend our experiments to a mpresentative group
of test images and to extensively compare our results witheat findings in
psychophysics.



Chapter 7

Brightness of the Glare lllusion

7.1 Introduction

Figure 7.1: Glare illusion in painting (left), photography (middle), and
computer-generated games (right). The right image courtesgf Remedy En-
tertainment.

The glare illusion has been efficiently used for boostinglitightness of light
sources in paintings, exploited in photography, and comynemployed in com-
puter games (see Figuigl from left to right, respectively). The illusion can
evoke a very realistic sensation of self-luminous objent$ @an produce an im-
pression of higher brightness than the maximum of a compdisgiay or re-
flectance of white paint. While painters have to rely on thkilt o produce the
glare illusion, glare in photography arises naturally a&srésult of light scattering

in lenses (referred to dsns flarg and can be further enhanced by cross screen or
diffusion filters.

A large number of papers in computer graphics have propodeaihaed visual
models (diffraction and diffusion in the eye optics) to gexte a realistic glare
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illusion [Nakamae et al. 199®okita 1993Spencer et al. 199%Vard Larson et al.
1997 Kakimoto et al. 200b However, both painters and photographers have been
able to produce stunning glare illusions without any knalgke about the optical
effects in the eye. Accurate visual models are also raredy uis practice, for
example in game engines, as they are computationally toenske. Instead,
game artists hand-tune their digital filters to produce thst leffect, even though
the resulting convolution kernel is very different to theuad visual models. In
this paper, we compare both approaches: an ad-hoc approaichntolves the
convolution with a Gaussian filter, and a physically-basggr@ach that employs
a Point Spread Function (PSF) of the eye. We measure thetfeggboost that
can be achieved with both methods and discuss the problexhsfy arise, such
as deformation of the “glaring” objects due to clipping ofjlhipixel values and
undesirable Mach-band illusion that forms a bright outlémeund the modified
objects Yoshida et al. 2008a

It should be noted, that the glare illusion we investigatis research is different

from disability glareand theillusionary glareeffect. The glare effect consists of
an illusionary glow (blooming), concentric rings of diféert colors (corona), and
radial streaks (flare) that we can observe around brighttband light sources.

The glare effect causes the so-calteshbility glare which is the loss of contrast
visibility in the presence of strong light sources. The gldlusion, on the other

hand, evokes an illusion in the center of an object rathar thats surround as

the presence of a smooth gradient around an object can deuebject to appear
brighter and self-luminous.

In the following sections, we introduce the related work aththe glare illusion

in Section7.2 Section7.4 contains stimuli and apparatus for our psychophysical
experiment. Preliminary experiments and the main experiaiesetup and pro-
cedure are described in Sectioh8— 7.5. Results and discussion of our experi-
ments are summarized in Sectioh§ and7.7. In the end, Sectioii.8 concludes
this work.

7.2 Previous Work

Rendering Glare A number of methods have been proposed for the glare ren-
dering in computer graphics. Nakamae et al. introduced demamgy technique

by considering diffraction effects at the pupil and eyeé&ssin images with high
intensity lights Nakamae et al. 1990 Rokita proposed a technique to render
high intensity lights, blooming and glar&¢pkita 1993. His method dealt with

the spectrum of the incoming light and diffraction at theslemd on particles in
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the eye. Spencer et al. presented a quantitative model terepare Spencer
et al. 1995 (see Figurer.2). They reviewed the physical mechanism of glare and
modelled it by a PSF for each of photopic, mesopic, and seot@ses. They also
reported that the glare effects enhance the brightnesghifdources. Ward Lar-
son et al. employed Moon and Spencer’s adaptation mddebh and Spencer
1947 in their tone reproduction operator to enhance bright aisjdVard Larson

et al. 1997. Kakimoto et al. attributed the main source of glare to thgattion

on the eyelashes and pupil and simulated it using wave ofKiakimoto et al.
2003. Van den Berg et al. proposed a physical model to simulateciliey
corona found by Simpsorsjmpson 195Bthat often accompanies the perception
of real glare sourcevfn den Berg et al. 2005They assumed that the incoming
light is scattered on small particles situated in the lertstha vitreous in the eye.

log £

Visual Angle [degraes]

(a) PSFs for (a) photopic and (b) scotopic scenes.

(b) Examples of Spencer et al.'s model.

Figure 7.2: Perceptual model of rendering glare proposed byspencer et al.
[Spencer et al. 199b
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Glare in Games All of the above methods render glare effects by simulating
optics of the eye. Kawase proposed a method to render glarerblgining several
Gaussian convolutions with different kernel siz€a\vase 200p(see Figurer.3).
This method has no perceptual background, still, sinceagysoach is simple and
computationally inexpensive, it is often used in computangs.

-+-+-+-+- = u

Figure 7.3: Generating glare in computer games by using muiple Gaussian
filters and magnifying them with a weighting function used in[Kawase 200%.

Appearance of Glare  Although much attention was put to physical and op-
tical aspects of the glare effects and modelling disabdigre Mos 2003, the
brightness boosting glare illusion has not been well stidi#avagno and Ca-
puto conducted psychophysical experiments to measurartheession of self-
luminosity of glare Favagno 1999Zavagno and Caputo 20PIThey asked sub-
jects to increase the gradient of ramps between a bright jpaittt four surrounding
dark squares until the center patch started being percawsdlf-luminous. They
found that there was a linear relation between the backgrtuminance and the
ramp gradient.

Visual lllusions  The glare illusion often coexists with other illusions, wini

can either raise or lower perceived luminanc&multaneous contrastauses a
perceptual shift in color appearance when the color of tineustis background is
changed Gerrits and Vendrik 1970Adelson 1998 Fairchild 1998 Chapter 6].

A stimulus is perceived as darker on a light background wihigEesame stimulus
is perceived brighter on a dark background (see Figut8).

Furthermore, the steep gradient of the glare profile andoits termination by
clipping can elicit theMach-bandillusion [Ratliff 1965 Lotto et al. 1999 which

is visible as a bright outline around the glaring object (Bepire2.12. Finally,
the convolution kernel used to produce glare can cause attolg grow or to
change shape (see the first column of Figufes— 7.8), which results in an
increase of brightness, since larger objects often appebe tbrighter Li and
Gilchrist 1999. Refer to Sectior2.4for simultaneous contrast and Mach bands.
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7.3 Preliminary Experiments

Although perceived luminance is usually measured by usiagnitude estima-
tion, magnitude production, or brightness matching meshae found that these
methods resulted in too noisy data to interpret with higkrindnd intra-observer
variance. One possible reason for the high variance is ligatlltision is often
subtle and not much larger than the discrimination thresh®bd reduce the dis-
crimination threshold, we increased the background lungedrom almost black
(1 cd/m?) to a much higher level (15@7/m?) with the constant disk luminance
at 220cd/m? in our pilot studies. This should have helped to reduce theritin-
ination threshold, as it is known that it increases with tin@ihance difference
between a background and a target digkjttle 1984.

We also increased the disk size and reduced the distanced®teference and
target images, as larger stimuli that are closer to eactr atteeeasier to com-
pare. In addition, we experimented with temporal comparisowever, we dis-
missed this idea of experimental procedure because theunegasnts could be
affected by the Gelb effect (se&ilchrist et al. 1999 for details on the Gelb
effect). To improve accuracy, we also tried to employ strigirocedures, such
as two-alternative forced choice (2AFC) combined with Pat@mEstimation by
Sequential Testing (PEST)4ylor and Creelman 19§ 7dut we did not observe a
reduction in variance.

7.4 Experimental Setup for Measuring
Brightness of the Glare lllusion

7.4.1 Apparatus for All Experiments

We conducted psychophysical experiments to measure th&t bodrightness
caused by glare illusion. The input images used in our erpEris consisted
ofadisk (0.3,0.6, ..., 1.5 vis deg) displayed on a background image (3.2 vis deg)
containing a cloudy sky. The complex background introduoeith contrast and
context, which was more natural setting than a flat backgitodine average lu-
minance of the background was sef.g§ = 50, 100, ..., 200 cd/m?. A reference
image with the glare illusion rendered around the disk wamsvshin the center
and two target images without any glare were presented dndides, as shown

in Figure7.4. The maximum luminance of the reference image was kept annst
at Lgmax = 220 cd/m? to simulate the maximum luminance of a typical display,
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Darker. Reference. Brighter.

¢ o

Figure 7.4: A screenshot of a single trial of the experiment. A reference
image (middle) and two target disks (left and right) are showm at each trial.
The black line under the target images indicates which imagesiactivated to
modify. A subject was asked to adjust the perceived luminare of the target
disks which looked slightly but visibly darker (left) or bri ghter (right) than

that of given reference image.

but the disk luminance of the target images could be incokapeto the actual
maximum luminance of the display used for our experimer38 (4/m?).

The images were displayed on a 20Earco 10-bit LCD display (Coronis Color
3MP Diagnostic Luminancg. The 10-bit precision eliminated potential contour-
ing artifacts on smooth gradients, which could have beerrvbs on an 8-bit
display. The Barco display was carefully calibrated by maaguts luminance
response for a range of input values using the MINOLTA LS-ligix meter.

7.4.2 Methods for Generating the Glare Illusion

To generate the glare illusion for the reference image, veel iwo strategies: a
method that employed Gaussian convolution, commonly useghime engines
(Method I); and the method proposed by Spencer eSglepcer et al. 199%hat
employs a PSF of the human eye (Method Il). Our input is a til@ainance
imageL (not gamma corrected). In both methods, we first computesion @ixel
the luminance that exceeds the maximum luminance of a typisplay Lgmax aS

. { 0 otherwise. (7.1)

1WWW. bar co. cont cor por at e/ en/ product s/ product specs. asp-specs. asp?el enent =2882#

2vwwv. koni cami nol ta. conti nstrunment s/ products/|ight/|um nance-neter/|s100-1s110/i ndex. htm
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Next, AL is convolved with an appropriate 2D digital filter. There &we reasons

for applying convolution only to the values greater tHap,.x. Firstly, we do not

want to blur the entire image; and secondly, only the pixdlese luminance can
not be displayed should be boosted in brightness.

For Method I, the convolution kernel is given by

Fo,y) = ~ exp (—”32 i y2> (7.2)

k 2 02

wherezx, y are pixel indices (from-s/2 to s/2, wheres is the stimulus size),

o = 0.34 vis deg, andk is a normalization factor computed as the sum of all
kernel elements. For Method I, similarly as i8dencer et al. 1995we employ
the PSF proposed by Vosgs 1984

PSF(6) = 0.384 fo(6) +0.478 f1(6) + 0.138 f5(6) (7.3)

whered is the angle between the primary object and the glare soardedrees
andf, ... f, are given as

Fol0) = 2.61 x 10°e(0:02)”, (7.4)
20.91

fi(0) = @+ 0.02)% (7.5)
72.37

f2(0) = @+ 0,02 (7.6)

We compute the digital filter by integrating the proposed PEEhe eye using
trapezoidal numerical integration over ten samples fohgaxel. The result of
the convolution is added back to the original luminance mhamd all values are
clamped to the maximum valugymay.

A lookup table generated by the MINOLTA LS-100 light meter thisplay cali-
bration is used to map the resulting luminance values to ig@ay pixel values.
We generate stimuli of twice the resolution as required &ed filter and subsam-
ple them to avoid aliasing artifacts.

7.4.3 Stimuli for Experiment |

To vary the strength of the glare illusion, the input disk inance levels for
the glare rendering are set agsx = 220, 1165, 2110, 3055, 4000, 7000 cd/m?
(labeled as “A’ — “F” respectively) for Method | and, for Mettl Il, Lgsk =
220, 1480, 2740, 4000, 7000, 10000 cd/m? (“a” — “f” respectively). The size of
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the center disk was set at 0.3 vis deg, and the average backjhaminance was
set atLpy = 150 cd/m?*. Note that theLqsx parameter is abstract and the same
value of this parameter can result in different strengththefglare illusion for
Methods | and II. However, we selected the valdggy so that the stimuli “C”
and “c” do not differ visibly in size from the original disknd the entire usable
range of thisLgisk is examined. All reference images used in the experiments ar
shown in Figurer 5.

7.4.4 Stimuli for Experiments Il, Il and IV

After conducting Experiment |, we extended a variety of lgaokind luminances.
The average background luminances were sédi,gt = 50 c¢d/m?* for Exper-
iment Il, Lyg = 100 cd/m? for Experiment Ill, andLpy = 200 cd/m? for
Experiment IV. The other setup of an experiment was kept e s that of Ex-
periment |. The input disk luminance for the glare rendem@ge Lgisx = 220,
1165, 2110, 3055, 4000, and 7000 cd/m?* (labeled as “A" — “F” respectively)
for Method | (Gaussian) anflgisxk = 220, 1480, 2740, 4000, 7000, and 10000
cd/m? (“a” — “f") for Method Il (Spencer et al.). The center disk weamained
same as Experiment I: 226/m? and 0.3 visual degree. All stimuli and their
profiles are shown in Figuré.6 for Experiment I, Figure/.7 for Experiment Il
and Figure7.8for Experiment IV.

7.5 Experimental Procedure for Measuring
Brightness of the Glare lllusion

To further reduce the randomness in the subjective resppmseemployed an
arranged increment/decrement method. Subjects were &slastjust the target
images such that the perceived luminance of the left diskagadose as possible
to that of the reference disk but slightly and visilalgrker. Likewise, the right
disk should be adjusted to be perceived as slightly but lyisiighter. Then, the
matching perceived luminance is assumed to be the mean lofléfbiand right
target disk luminance, thereby producing a measure thabig mobust against
outliers (see Figuré.4).

When the Mach-band illusion was seen on the reference disksubject was
asked to ignore the Mach-band and adjust the target disksetbrightness in-
side the illusionary ring. As a hint of how to adjust briglgeeof target disks, a
subject was instructed as follows: “You could try to adjust brightness of the
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Method | (Gaussian)

Method Il (Spencer et al.)
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Figure 7.5: Experimental stimuli and their profiles at L,y = 150cd/m?.
The images in the left column show the stimuli and profiles for Méhod |
(Gaussian), while those for Method Il (Spencer et al.) are aranged at the
right side. The characters between stimuli and profiles (“A” —“F” and “a” —

“f”) indicate the luminance of the reference disks Lgisk(refer to Section7.4.3

for details).
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Figure 7.6: Experimental stimuli and their profiles at Lyg 50 cd/m?.
The images in the left column show the stimuli and profiles for Méhod |
(Gaussian), while those for Method Il (Spencer et al.) are aranged at the
right side. The characters between stimuli and profiles (“A” —“F” and “a” —
“f”) indicate the luminance of the reference disks Lgisk (refer to Section7.4.4
for details).
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Figure 7.7: Experimental stimuli and their profiles at Lpy = 100 cd/m>.

The images in the left column show the stimuli and profiles for Méhod |
(Gaussian), while those for Method Il (Spencer et al.) are aranged at the
right side. The characters between stimuli and profiles (“A” —“F” and “a” —
“f”) indicate the luminance of the reference disks Lgisk (refer to Section7.4.4
for details).
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Figure 7.8: Experimental stimuli and their profiles at L,y = 200 cd/m?. The
images in the left column show the stimuli and profiles for Metlod | (Gaus-
sian), while those for Method Il (Spencer et al.) are arrangedat the right
side. The characters between stimuli and profiles (“A” — “F” and “a” — “f”)
indicate the luminance of the reference diskd.q4isk (refer to Section7.4.4for
details).
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target disks as same as that of the reference and then goujowniil you start
seeing the difference.” Both target disks were initiallyteetignificantly different
luminance levels (100 and 40d/m? for “darker” and “brighter” target images,
respectively).

After adjusting the luminance of the target disks, a quesiiire followed each
trial. All questions were asked for each reference imagecaudtd be answered
by “yeS” Or “nO”.

Q1: Does the reference image glow? [y/n]
Q2: Do you see a bright ring (a.k.a. Mach-band) on the retarelisk? [y/n]
Q3: Are the sizes of the reference and target disks the say@? |

10 subjects (7 males and 3 females) at the average age of BGefe26 — 40
years old) participated in our experiment. All subjectsewed@ve about the pur-
pose of the experiment and had either normal or correcteutimal vision. The
subjects were seated at a distance of 1 m from the display dimddighting con-
dition (60 lux). Each subject read a written instructiontod experiment, passed
a training session, and then took the main part of the exgerimThe whole
procedure took approximately 20 minutes for a single subjec

7.6 Results

7.6.1 Experiment |I: Measuring Brightness of Glare Illu-
sion at Lpg = 150 cd/m?

The results of Experiment | are plotted in Figuré® and7.10 As shown in
Figure7.1Q, the glare effect can raise the perceived luminancg0by 35% com-
pared to the actual luminance 228/m?, and Method | boosts the perceived
luminance more than Method Il. Apparently, perceived lusnice levels increase
with increasing luminance of the didk;sk that enters both methods as the main
parameter. The growing trend of perceived luminance as @itmof Ly does
not appear to be linear: while small and medium values;f have strong effects
on perceived luminance, this effect saturates for largeesbf L gisx.

Itis apparent from Figur@.9, that the upper and the lower bounds of the perceived
luminance do not differ qualitatively since the generalpghaf the curves are
close to parallel in all cases. Therefore, the measuringracg can be increased
by using the mean of these two thresholds instead of the tparate values. In
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Figure 7.9: Results of the experiment on measuring brightngs of glare illu-
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the setting of the Lgisx parameter (refer to Section7.4.3for details).
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at the background level L,y = 150 cd/m? for Methods | (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” — “F” and “a”
— “f”) indicate the setting of the Lgsx parameter (refer to Section7.4.3for

details).
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the analyzes reported in the following, only the mean of wethresholds is used
as a dependant variable.

To analyze the data, we condudi &isk luminancelgisk) x 2 (method) Analysis
of Variance (ANOVA), treating disk luminance and method gzaated measure-
ment factors. Because the scale of the paramietgris not comparable for the
two Methods, the analysis treats different levels (“A” — “&Bhd “a” — “f” for
Methods I and Il, respectively) rather than numerical valoiL 4isk as equivalent.
These values are assumed to be of ordinal scale. There isiicgigt main effect
of Lgisk, F'(5) = 23.68,p < .001, indicating that the luminance of the center disk
(which entered the algorithms as the main parameter) hasflemnce on how
bright it was perceived to be. The main effect of factor “Mmthis not signif-
icant, F'(1,9) = 1.64, showing that the two Methods do not differ in brightness
boost over all levels. However, the;sx x Method interaction reaches signifi-
cance,F'(5) = 7.77,p < .001, indicating that the Methods differ at some, or at
least one, of the levels dfis.

To narrow down this effect, further analyzes are carried datom the visual
inspection of the data (Figuré.10, it is suspected that the two Methods dif-
fer only for large values of the parametgjsx. Therefore, two ANOVAs which
are similar to the one above are conducted for ley@&lsB, C} and{D, E, F}
separately. As expected, the main effect for “Method” in &OVA for the
first group of levels{A, B, C} remains not significant/{(1,9) = 1.4), while
the Method factor reaches significance for the second grdupvels {D, E,

F} (F(1) = 11.96,p < .01). There are no other significant effects, in partic-
ular the Methodx Lgisk interaction does not reach significance in both analyzes
(F(2) = 1.34 and F(2) = 0.28), indicating that the interaction effect from the
global analysis is sufficiently explained by this separatio

Pairwiset-tests of the two Methods for the levels D, E and H.gfx are performed
and reveal that, for all cases, the Gaussian method prodticesyer perceived
luminance {(14) = 1.71,p = .05, t(14) = 1.73,p = .05, t(14) = 1.96,p < .05,
for D, E and F).

To further investigate the relationship between perceiuedinance andL sy,
pairwise contrasts between levels bfisx are computed for both methods. To
control the family-wise error rate, thevalues are adjusted, using the method
proposed by HolmHlolm 1979. The results of this analysis are illustrated in Fig-
ure7.11 Theindicated sets depict levels for which the perceivaedance values
are statistically indistinguishable on9a% significance level. For the Gaussian
method, a “jump” in perceived luminance between the third dre fourth level
arises, after which an increase in luminance does not fuellegate perceived lu-
minance. For Spencer et al.'s method, the increase occuierdgetween level B
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Figure 7.11: Similarity groups of the Lg;s levels atLyy = 150 cd as revealed
by post-hoc contrasts at &5% significance level for the Gaussian method (a)
and Spencer’s method (b). Items in the same set were statistilly indistin-
guishable.

Method | (Gaussian).pg = 150 cd/m?.
Luminance of diskd gisk | A B C D E F
Q1: Does the reference image glow? 0 60 90 100 100 10
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0O 10 20 50 80 90
Q3: Are the sizes of reference and target disks the san®? 100 30 10 0 0
Method Il (Spencer et al.,ng = 150 cd/m?.
Luminance of diskd gisk | @ b ¢ d e f
Q1: Does the reference image glow? 0 100 90 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0O 70 80 80 80 90
Q3: Are the sizes of reference and target disks the san®@? 80 30 0 0 0

Table 7.1: Results of the questionnaire in percentages of ghanswer 'yes’ for
Lpg = 150 cd/m?. Colors indicate either above (red) or below (blue) 50%.

The answers of the subjects to the questionnaire presefierdeach trial are
summarized in Tabl&.1 For both Methods, the application of the glare models
produces a “glowing” impression of the disk and is indepenas how strong
the glare is rendered. The results from Question 2 inditeteMethod Il is more
likely to induce a Mach-band effect, which might be one aspéan explanation

of why Method Il does not produce as strong an effect as Methétbwever,
another factor that probably helps to induce the differdreteveen the Methods
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is the size of the disk that increases with growing, for Method | much stronger
than for Method Il (see Figuré.5). This fact is also highlighted by the results for
Question 3 of the questionnaire.

7.6.2 Experiments Il — IV: Measuring Brightness of Glare
lllusion at Lpg = 50, 100, 200 cd/m?

The results of Experiments Il — IV are shown in Figuid42 and 7.13 (Ex-
periment II: Loy = 50 cd/m?), Figures7.14 and 7.15 (Experiment Ill: Lpy =
100 cd/m?), and Figure§.16 7.17(Experiment IV:Lyg = 200 cd/m?). They are
also analyzed by conducting 6sx) x 2 (methods) ANOVA with different levels
(“A’ - “F” and “a” - “f” for Methods | and Il respectively) of Lgisk rather than
numerical values of gjs.

In Experiment Il atL,q = 50 cd/m?*, ANOVA indicates that the main effect of
Methods is not significantt’(1) = 3.64, p = 0.0608. Unlike Experiment I, the
main effect of Lgisk(£(5,60) = 2.88, p = 0.0213) is also not significant, while
the interaction of Methods anflgisk (F(4,55) = 4.8, p = 0.0022) is highly
significant.

In Experiment Ill atLpg = 100 cd/m?, the main effect of Methods is not signif-
icant (F'(1,75) = 1.18, p = 0.28) as well as Experiments | and Il. On the other
hand, both the main effect dfss and the interaction of Methods arg;s, are
very significant: F'(5,71) = 12.87, p << 0.01 (the main effect of Methods) and
F(4,66) = 4.52, p = 0.0027 (interaction).

The results of Experiment IV at,q = 200 cd/m? also show the same tendency
that the main effect of Methods is not significait((, 75) = 0.54, p = 0.46),
but the main effects of.qisx (F'(5,71) = 13.18, p << 0.01) and the interaction
(F'(4,66) = 3.97, p = 0.006) are both significant.

Tables7.2, 7.3 and7.4 summarize the answers of our subjects to the question-
naire for each trial. The answers for Experiments Il — IVdallthe same manner
as that of Experiment I. the application of the glare modetslpces a glowing
impression and is independent on the strength of the gladerang (Question 1).
According to the answers of Question 2, Mathod Il (Spencesiipce more ef-
fects of Mach-band as well as Experiment I. Again, this cdagdan explanation
why Method Il does not produce as strong glare illusion ashidetl because
Mach-bands reduce brightness at the center relatively félt of the strength of
glare illusion can be also seen in the answers of Question 3.
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Figure 7.12: Results of the experiment on measuring brightass of glare illu-

sion for Ly = 50 cd/m?*. The characters (‘A" —

“Fll and “a” _

“f”) indicate

the setting of the Lgisx parameter (refer to Section7.4.4for details).
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Figure 7.13: Percentage of increase for the mean perceivedrhinance levels
at the background level Lyy = 50 c¢d/m? for Methods | (Gaussian) and II

(Spencer et al.) with errorbars of SEM. The characters (“A” —

“FH and “an

— “f”) indicate the setting of the Lgsx parameter (refer to Section7.4.4for

details).
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Figure 7.14: Results of the experiment on measuring brightass of glare illu-
sion for Lyy = 100 cd/m?. The characters (“A” —“F” and “a” — “f") indicate
the setting of the Lgisx parameter (refer to Section7.4.4for details).
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Figure 7.15: Percentage of increase for the mean perceivedrhinance levels
at the background level L,y = 100 cd/m? for Methods | (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” — “F” and “a”

— “f”) indicate the setting of the Lgsx parameter (refer to Section7.4.4for
details).
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Figure 7.16: Results of the experiment on measuring brightess of glare illu-
sion for Ly = 200 cd/m?. The characters (“A” —“F” and “a” — “f”) indicate
the setting of the Lgisx parameter (refer to Section7.4.4for details).
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Figure 7.17: Percentage of increase for the mean perceivedrhinance levels
at the background level L,y = 200 cd/m? for Methods | (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” — “F” and “a”
— “f”) indicate the setting of the Lgsx parameter (refer to Section7.4.4for
details).
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Method | (Gaussian).pg = 50 cd/m?.
Luminance of diskd gisk A B C D E F
Q1: Does the reference image glow? 0 100 100 100 100 10f(
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 0O 33 83 83 83
Q3: Are the sizes of reference and target disks the sgm&3 100 83 0 0 0
Method Il (Spencer et al.Y,nq = 50 cd/m?.
Luminance of diskd.gisk a b C d e f
Q1: Does the reference image glow? 100 100 100 100 100 O
Q2: Do you see a bright ring (a.k.a. Mach-band)? 67 100 100 83 83 O
Q3: Are the sizes of reference and target disks the samié® 67 17 0 0 0

Table 7.2: Results of the questionnaire in percentages of ghanswer 'yes’ for
Lpg = 50 cd/m?. Colors indicate either above (red) or below (blue) 50%.

Method | (Gaussian).pg = 100 cd/m?.

Luminance of diskd gisk | A B C D E F
Q1: Does the reference image glow? 0O 86 100 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 14 14 43 86 100 100
Q3: Are the sizes of reference and target disks the sgn@¢? 86 100 O 0 0

Method Il (Spencer et al. g = 100 cd/m?>.

Luminance of diskd gisk | @ b C d e f
Q1: Does the reference image glow? 86 100 100 100 100 O
Q2: Do you see a bright ring (a.k.a. Mach-band)? 71 100 100 100 86 O
Q3: Are the sizes of reference and target disks the sani@? 29 0 0 0 0

Table 7.3: Results of the questionnaire in percentages of ghanswer 'yes’ for
Lpg = 100 cd/m?. Colors indicate either above (red) or below (blue) 50%.

Method Il (Gaussian)Lyg = 200 cd/m?.
Luminance of diskd gisk A B C D E F
Q1: Does the reference image glow? 0O 86 100 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 0O 14 71 71 51
Q3: Are the sizes of reference and target disks the samié® 100 O 0 0 0
Method Il (Spencer et al.),ng = 200 cd/m?.
Luminance of diskd.gisk a b C d e f
Q1: Does the reference image glow? 100 100 100 100 100 O
Q2: Do you see a bright ring (a.k.a. Mach-band)? 71 71 71 71 71 O
Q3: Are the sizes of reference and target disks the samé&8 14 0 0 0 0

Table 7.4: Results of the questionnaire in percentages of ghanswer 'yes’ for
Lpg = 200 cd/m?. Colors indicate either above (red) or below (blue) 50%.
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7.7 Discussion

In our psychophysical experiment, we employ Spencer et middel Spencer
et al. 199%and Gaussian convolution model to produce glare illusicdiféerent
background luminanceb,y = 50, 100, 150,200 cd/m?. Both Methods succeed
in producing a strong glare illusion. It is shown that an @age in the chosen
parameter results in a larger amount of perceived luminaRoe high values of
the luminance of the disks, the Gaussian Method producesagsr boost in
perceived luminance than Spencer et al.’'s method.

However, the Gaussian method results in a stronger inci&fadisk size when

large parameter values are chosen. Therefore, the findatigathussian kernels
produce a stronger illusion should be taken with a pinch bfssace larger areas
are often perceived as brightéii fnd Gilchrist 1999. It is therefore possible, that
the apparent advantage of the Gaussian method is due toctiease of the size
of the glare source rather than an advantage of the Gausstiodper se. We
therefore conclude, that both Methods produce a compairatskease in perceived
luminance when reasonable parameters are chosen. Thisrssting also from

a practical point of view, since a convolution with a sep&dbaussian kernel is
much faster than in case of non-separable kernels requirgdd eye’s PSF.

Yet, there are differences in how the two Methods behaveringeof potential

side-effects. While the Gaussian method is relatively uisinle to distort the

shape and size of the convolved object, Spencer et al.’'sadaethmore robust
regarding the choice of the parameter and therefore leslylth produce this

effect (even though it does change the disk shape with gpwiRy, see Figure

7.5). On the other hand, Spencer et al.'s method is more likebxtite a Mach-

band effect, which is often perceived as objectionable s Tiight be caused by
the steeper gradient in the glare image rendered with Speheé’s method (see
scanlines in Figuré&.5) as shown inlRatliff 1965, pp. 85].

It is interesting to note that models of the optics in the haraege Stiehl et al.
1983 Spencer et al. 1998lo not outperform the simple Gaussian convolution ap-
proach in terms of pure effectiveness of boosting the peedduminance. These
results allow the speculation that the scattering light iiimlan’s eye is not the
only factor in the Human Visual Systems (HVS) that contrésuto elicit the glare
illusion. Possibly, neural centers later in the visual path that are not captured
in this type of model contribute to the perception of glararses. Under this as-
sumption, a model for rendering glare sources based punedyrpirical evidence
could be more appropriate.
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7.8 Summary

If rendered properly, the glare illusion can increase thegieed luminance and
therefore also the dynamic range of a display by 20—-35%. olgih the glare
illusion is believed to be related to optical distortionglie eye, our experiment
indicates that faithful simulation of the eye’s optics ig necessary to achieve a
strong brightness boost. The glare illusion produced by as&an convolution
can give the same increase of perceived luminance as a coR®leof the eye, is
less likely to cause undesirable Mach-band effects andsterféo render. On the
other hand, the spiky profile of the eye’s PSF does not chdrgeliject’s shape
and size as much as the Gaussian kernel.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The work presented in this dissertation is mainly focusece\aluation of tone
mapping operators (TMOs) and enhancement of contrast agistiess for high
dynamic range (HDR) images. Since the human visual systenSjHhibits
strongly non-linear behavior across such wide range ofriamte, we often have
to run psychophysical experiments ourselves to underdiatidr the HVS char-
acteristics in the context of HDR image perception.

As a solution for displaying HDR images on low dynamic rangBR) display
devices, a number of TMOs have been developed, howeveke tias no sys-
tematic evaluation to show how tone mapped images are pectdifferently by
human observers, and which attributes of image appearakeeérito account the
difference between TMOs yet. We conducted a psychophysiqariment with
seven TMOs which were not directly compared to each othen ather studies.
The tone mapped images were compared and rated againstonesponding
real-world views at the position where the HDR image was.sBat result shows
that qualitative differences between TMOs have a systemeffect on the human
perception. However, it also turns out that it is hard to getene TMO which
performs consistently the best in terms of image fidelitydose those TMOs are
too complicated to clarify a relationship among TMO paramsettings, an input
HDR image, and the final tone mapped images (Chapter

After this result, we went back to a simple setting of a gen&@WO which em-
ploys the three most important parameters: brightnesstasinand color satura-
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tion of an image. A series of image preference and fidelityeexrpents have been
conducted with several types of limited dynamic range opldigs, in which the
human subjects adjusted those parameters, to better tenttbthe performance
of users on TMO parameter settings. The results show theggmeric TMO is
strongly affected by two factors: anchor white and contr&ibjects set refer-
ence white (anchor white) to a bit lower value than the maximuminance of
an image, if the image contains large self-luminous objddtdike anchor white,
contrast factor is more subjective, therefore users shioae a control to adjust
it. Itis also shown that the parameters can be automatieatlynated based on the
characteristics of an image for best-guessing resultseXxample, contrast can be
predicted based on the dynamic range of an image, and th@mawtiite has a
relation to the image key value. In addition, the outcomenflemulating several
types of limited dynamic range of displays depicts that #sulting images de-
pend on the purpose of the TMO: the best-looking (preferéask) or the best
fidelity task. These results of a simple and fundamental TMIDbe applicable
for more complex TMOs (Chapt®&).

The above two studies focused on evaluation of image appeaia HDR. We
also studied the enhancement of contrast and brightnessiofage in HDR. A
usual way to scale contrast in image processing such as gawomgtion gives
a constant change of contrast in the whole image, howeveh, simple scaling
leads to non-uniform perceived change in contrast becaud® dower contrast
sensitivity of the human eyes for the low luminances. Basetthisrfact and HDR
display technology which can reproduce much lower lumieahan that of con-
ventional LDR displays, we conducted two perceptual expenits of perceived
contrast over a complex image. Perceived contrast scalasgonesented with re-
spect to given physical contrast and different adaptatiomnances. The results
of contrast scaling experiment were converted to just ratite difference (JND)
units to construct a model to provide uniformly changingce@red contrast in
complex images (Chaptéj.

Finally, we measured the brightness enhancement causetekgldre illusion.
We observe that an object in an image looks much brightdrjsfurrounded by
smooth profiles, and we call it the glare illusion. To evoke g¢are illusion, we
employed two convolution methods: a point spread functi®®F) of the human
eye and a Gaussian kernel. The outcome of this work showshigtare illusion
increases the perceived luminance (brightness) by 20 — 3bifwlicates that the
glare illusion can visually expand the maximum luminanca dfsplay device by
20 — 35 %. This result was obtained for both convolution meéshof Gaussian
kernel and PSF. This means that, although itis believedltre dlusion is related
to some optical systems, faithful simulation of the humagsag not necessary to
achieve a strong brightness boost caused by the glareoifilmcause the Gaus-



8.2 Future Work

sian kernel which has no theoretical background of humaception evokes the
brightness boosts of similar strength as the PSF (Chdjpter

8.2 Future Work

For human visual perception in high dynamic range imaginQR#, there are a
number of unsolved problems. As we have investigated TM@hiapterst and
5, there is still no TMO which perform the best consistenthtenms of image
fidelity. Additionally, an optional parameter setting magpend on the contents
of an image for all image classification. Automatic selettdthe best TMO and
its parameter settings for a given image is an open question.

There are also a number of improvements and extensions faneement of
contrast and brightness in an image. In contrast enhandeshety, we plan to
extend our experiments with more representative groupsbirtgages. Then, the
revised contrast enhancement model for HDR images as prdpoghis disser-
tation should be then even more robust. Additionally, howdéfine contrast in
complex images by a single number in an absolute unit isastiig open ques-
tion.

In the study of brightness boost by the glare illusion, weeharoposed a funda-
mental approach to investigate the glare illusion. Theesfthere are still several
factors which were not measured in this dissertation, fangxe, the extent of the
glare profile and the size of the object. A model which inchidi of these factors
would allow to render the glare illusion with desired stréngnd appearance.
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