
Lighting Details Preserving Photon Density Estimation

Robert Herzog
MPI Informatik, Germany

H.-P. Seidel
MPI Informatik, Germany

Abstract
Standard density estimation approaches suffer from vis-

ible bias due to low-pass filtering of the lighting function.
Therefore, most photon density estimation methods have been
used primarily with inefficient Monte Carlo final gathering
to achieve high-quality results for the indirect illumination.
We present a density estimation technique for efficiently com-
puting all-frequency global illumination in diffuse and moder-
ately glossy scenes. In particular, we compute the direct, indi-
rect, and caustics illumination during photon tracing from the
light sources. Since the high frequencies in the illumination
often arise from visibility changes and surface normal vari-
ations, we consider a kernel that takes these factors into ac-
count. To efficiently detect visibility changes, we introduce a
hierarchical voxel data structure of the scene geometry, which
is generated on GPU. Further, we preserve the surface orien-
tation by computing the density estimation in ray space.

1 Introduction and Related Work
Since the beginning of computer graphics, many work has

been devoted to the problem of generating realistic images
with physically plausible lighting in synthetic scenes referred
to as global illumination (GI). In this work we focus on ap-
proximate and biased algorithms for solving the GI prob-
lem efficiently. Our algorithm uses a novel photon splatting
technique capable of handling all-frequency illumination us-
ing photon density estimation (PDE) in ray space [5], which
does not introduce visible bias as in standard PDE algorithms.
This is because we explicitly compute the visibility during
the density estimation via discrete occlusion testing in a vox-
elized scene. Using a voxel representation of a polygonal
scene is not new but has regained attention due to modern
programmable graphics hardware. In [3] the authors present
a robust method to generate an oct-tree hierarchy of a solid
voxelization of arbitrary polygonal scenes in a slow offline
process. In [1, 2] it was shown how to efficiently generate a
voxelized grid in real-time on the GPU. Surfaces of the scene
are rasterized to uniform grid slices in multiple passes. Such
approach has also been used in this paper, although we tar-
get on efficient hierarchical data structures. Moreover, we
also show how to approximate the average surface normal per
voxel, which is ignored in [1, 2].

Our work is related to [4], which proposed to perform
the nearest neighbor search, essential for all density estima-
tion techniques, for a disc in the tangent plane of a surface
point. This leads to the elimination of boundary bias inher-
ent to photon maps. However their method needs complex

data structures for searching and still suffers from topologi-
cal bias and proximity bias [9]. Since a direct visualization
of the photon density leads to poor quality, expensive final
gathering must still be performed to achieve high-quality in-
direct illumination [6]. Another popular GI algorithm is in-
stant radiosity [8] (IR). Similar to PDE, IR caches and reuses
lighting information on scene surfaces to suppress noise at
the expense of bias. However, for the view-dependent gather-
ing pass, PDE computes the irradiance directly from the local
photon density, while IR integrates the incident radiance over
the whole scene area shooting a shadow ray to each virtual
point light source (VPL). It reproduces high-frequency light-
ing features but its brute-force nature allows only a small set
of VPLs, which is insufficient for glossy light transport. A
few extensions to IR have been developed for choosing a sub-
set of VPLs adaptively per pixel sample [11]. Our method can
be understood as a trade-off between IR and PDE.

2 Photon Density Estimation in Ray-Space
In standard PDE methods [6] a photon contributes energy

∆Φ to its local neighborhood, which is weighted by a normal-
ized 2D density estimation (DE) kernel Kh with bandwidth
(radius) h. The sum over all energy contributions received
by a differential surface dA(y) at point y, which we call eye
sample, is an approximation to the irradiance E(y).

E(y)=
∫

Ω+
L(y, ω) cosθ dσ(ω)≈

K∑
i

Kh(y, xi)
∆Φi(xi, ωi)

∆A(y)
, (1)

where Ω+ is the upper hemisphere of incident directions,
L(y, ω) is the incident radiance at y from direction ω for dif-
ferential solid angle dσ(ω), ∆Φ(x, ω) is the photon flux, and
K is the number of photons under the DE kernel with foot-
print area ∆A(y). For computing the outgoing radiance along
a direction the incident flux is convolved with a BRDF fs.

Since all DE techniques need to consider a finite neigh-
borhood to estimate the density, they suffer from bias [10].
To reduce the bias, we can decrease the kernel bandwidth.
This, however, increases the noise in our estimate. Another
possibility is to split the irradiance function we are trying to
estimate into different components that we solve explicitly.
The low-frequency components of the function are still com-
puted via DE while the high-frequencies are computed accu-
rately since they are the main source of bias in PDE, which
mostly result from surface normal variation and wrong visi-
bility assumptions in the neighborhood. The former is solved
by operating in ray space [5] and decoupling the PDE from

the surfaces. The latter is more complex because it requires
to evaluate the visibility function inside the DE footprint be-
tween the origin of the photon (xi−1) and all eye samples in
the footprint, which ruins the efficiency of PDE. Nevertheless,
we provide an efficient approximation for the visibility esti-
mation. We can rearrange (1) to exclude the visibility func-
tion V (y, x) and the surface orientation cos θ from the DE to
be computed explicitly:

E(y)≈
K∑
i

Kh(y, xi, ωi)V (y, xi−1)
∆Φi(xi, ωi) cos θi

∆A⊥
ωi

(y)
, (2)

where Kh(y, xi, ωi) is the DE kernel whose domain is ori-
ented perpendicular to the direction ωi. The kernel evalu-
ates the distance of y to the photon ray (xi, ωi) [5]. The
point xi−1 is the origin of the photon ray and θi is the an-
gle between the photon ray and the surface normal at point
y. ∆A⊥

ωi
(y) = ∆A(y)/ cos θi is the area of the unprojected

DE footprint. See Fig. 1 for a geometric interpretation in 2D.
To preserve the photon energy ∆Φrgb, the axis-aligned ker-
nel footprint (shaded parallelogram) is tested for occlusion
along its traversal. Fig. 1 shows the masked kernel Kh (blue)
and the occluded areas (thick black curves) and visible areas
(thick grey curves). The photon flux is only splatted to eye
samples e1 because e2 is back-facing, e3 is occluded, and e4

is outside the kernel footprint.
Note that we partially compute the geometric term

G(x, y) = V (x, y) cos θx cos θy

||x−y||2 . In contrast to instant radios-
ity [8], our method does not suffer from singularities near cor-
ners since the squared distance term in the geometric term is
implicitly handled by the density estimation. Since we use
a splatting approach, one photon ray spreads its energy to
all visible eye sample points y inside its kernel footprint as
shown in Fig. 1.

rgb

K h
e1

e3 e4

h

xi

xi−1

e2

Figure 1. Photon splatting in ray-space with a kernel Kh

(blue) preserving occlusions and surface orientation.

3 Algorithm Outline
Our density estimation algorithm extends the splatting

technique described in [5]. First, all primary rays are shot
from the eye. Then hit-point records with the scene surfaces
referred to as eye samples are stored. Second, the scene is
voxelized into a grid using the GPU and a voxel hierarchy
is constructed over the grid. Next, the photons are traced
through the scene using Quasi-Monte Carlo sampling until a
desired number of direct, caustics, and global indirect photons
has been stored. During the photon sampling a splat radius is

computed from the photon path probability density for each
photon and each type of light transport [5]. In the following
phase all photon rays splat their energy to the image plane us-
ing a novel density estimation technique (Section 2) including
a search for the nearest-neighbor eye samples in a cylindrical
volume. For accelerating the nearest neighbor search and at
the same time testing for occlusion, the generated voxel hier-
archy is traversed in front to back order in the spirit of ray-
tracing with kd-trees.

4 Synthetic Scene Voxelization
The basis of our algorithm is the discretization of the scene

model into voxels. As in [1, 2] the voxelization process runs
as follows: First the scene model is, if not yet present, tessel-
lated to triangles. Optionally, we test the polygonal scene for
wrongly oriented triangles by performing a random walk by
means of raytracing through the whole scene. Triangles that
are detected as back-facing are flipped and triangles, which
were flipped more than once are marked as two-sided. Next,
all triangle vertices are passed to the GPU memory as ver-
tex buffer objects. For all three dimensions, the axis-aligned
bounding box of the scene is divided into intervals composed
of multiple grid slices (maximum 64). For each interval all
triangles are rasterized by an orthographic camera with its
frustum defined by the current grid interval boundaries. All
triangles falling into the currently processed interval are vox-
elized in the fragment shader according to their interpolated
z-distance (logic ’OR’ mode) such that each bit in a color
channel determines whether a voxel of a slice is empty or
not [2]. We also need to distinguish between front and back-
facing fragments. In addition, we apply 4× 4 super-sampling
per voxel for anti-aliasing purposes and also for the recon-
struction of a discretized average normal per voxel assuming
the surface inside the voxel is piecewise linear. The outcome
is a 3D grid consisting of cubic voxels each storing the dis-
crete occlusion ratios for all six sides (6 bytes).

5 Constructing the Voxel Hierarchy
As for raytracing, a grid has the disadvantage that it can-

not adapt to local scene complexity and does not scale well
with its resolution. Therefore, we build a hierarchy, more pre-
cisely a kd-tree, on top of the precomputed grid that merges
all empty voxels during its construction.

The kd-tree is built on the CPU in a recursive top-down
fashion and the axis-aligned splitting plane of a node is al-
ways aligned with the boundary of a voxel. The plane is either
positioned at the spatial-median voxel for the largest dimen-
sion of the node’s bounding box or at the closest non-empty
voxel if either half-space is empty. For efficiently culling
empty space, we build a 3D summed area table (SAT) of the
occlusion grid, which is only kept temporarily during the tree
construction. The construction time for the 3D SAT is negli-
gible compared to the rest of the computation. The compu-
tation for the best splitting plane according to our heuristic
can then be computed in constant time. The discretization
of the tree construction increases not only the performance
but also allows for higher compression of the size of the kd-
tree nodes. Each node consists of only 8 bytes and there are

4 basic node types: Empty Nodes, Splitting Nodes, Occlu-
sion Nodes, and Visible Nodes. Empty nodes represent empty
space that can be skipped. Splitting nodes sub-divide their
associated bounding box into half-spaces. An occlusion node
is created when either a voxel is reached (the smallest entity)
or the occlusion in the sub-tree is uniform. Occlusion nodes
contain information about local occlusion (1 byte) and the av-
erage quantized normal (3 bytes), which is used to determine
if occlusion is feasible. A visible node stores the index and
the number of eye samples associated with the node and has
always one child node. The hierarchical voxelization results
in a small memory footprint even for high resolution grids.

5.1 Traversal of the Voxel Hierarchy

Similar to raytracing with kd-trees, we recursively traverse
the tree from the root to the leaves in near to far order. This
requires maintaining a stack. In standard raytracing the re-
cursive tree traversal works in 1D ray space. Since we deal
with a volumetric ray, we need to keep track of the minimum
and maximum bounds tightly encompassing the ray volume in
three dimensions. The ray volume is represented by a cylin-
der, whose radius is defined by the photon’s splat radius. A
volumetric traversal is more complex than a 1D ray traver-
sal and we need to make simplifying assumptions: first, the
kd-tree and most parameters are discretized to the grid resolu-
tion and second, the kd-tree and its traversal are axis-aligned
and we restrict the recursive sub-division of the ray volume to
axis-aligned bounding boxes starting with the whole bound-
ing box of the ray volume (Fig. 2a). For the sub-divisions
of the ray volume, we only need to consider cross-sections
with the cylinder and the axis-aligned splitting planes of the
kd-tree in order to compute the new bounding boxes for the
front and back side of a splitting node. The height and width
of each cross-section in each dimension are precomputed by
projecting the cylinder onto the three axis-aligned planes. The
major traversal axis N corresponds to the largest component
of the ray direction. The axes U and V span an elliptically
shaped slice of the cylinder.

Having precomputed these values, we can quickly com-
pute the new ray bounds (Fig. 2a) for the near (blue box) and
the far side (red box) of a splitting node in one of the three
splitting axes. Occlusions by surface voxels are stored in an

R

x

y

-Ry

+Ry

?

(a) (b)
Figure 2. (Left) A volumetric 2D traversal step for
a splitting node in the kd-tree. (Right) Self-occlusion
(dashed point-squares) on a flat surface.

(U ,V)-aligned 2D buffer, which we call the occlusion mask.
All non-empty voxels update the occlusion in the correspond-
ing cell of the occlusion mask until a cell is fully occluded.
To avoid self-shadowing, only voxels in front of the tangent

plane at the ray’s origin update the occlusion. For all visi-
ble voxels, the photon energy is splatted to pixels associated
with their eye samples. The photon energy contribution to an
eye sample is weighted by the factors given in (2). The term
V (y, xi−1) is approximated by the occlusion weight in the
cell of the occlusion mask, which can be bilinearly interpo-
lated between the four nearest neighbor cells according to the
eye sample’s position in the voxel. Note that all positions and
distance values are represented in grid coordinates for ease of
computation.

Finally, the radiance contribution of the photon ray to all
affected pixels in the image is weighted by the local surface
BRDF and the pixel weight associated with the eye samples.

5.2 Discretized Occlusion

Since we do not regard infinitesimal thin rays but deal with
discrete volumetric rays, many discrete occlusions can map to
the same cell of the occlusion mask depending on the incident
angle with a surface, which leads to self-occlusion. In Fig. 2b
the high-lighted voxels (point-squares) show the state of one
particular cell in the history of the occlusion mask (green).
The grey squares represent surface voxels. The dashed point-
squares indicate the traversed voxels that are possibly self-
occluding. Adding a small threshold to the occluder distance
when comparing it with the current surface distance, may pro-
duce visible light leakage for near occluders. Instead we com-
pute the minimum occluder distance adaptively depending on
the incident angle of the ray to the voxelized surface (distance
from first to last dashed square in Fig. 2b). Yet a simpler way
is to update the occlusion only for back facing voxels, which
fails for ambiguous voxels that contain front and back facing
surfaces. In either case we need the surface normal in the
occluder voxel.

5.3 Estimating the Surface Normal

The approximate surface normal in a voxel is implicitly
computed during the 3D rasterization. Assuming that a voxel
does not contain front and back facing surfaces simultane-
ously, the average quantized normal ~N can be approximated
from the 6 discrete front and back facing occlusion ratios
stored in a voxel, see Fig. 3.

x
z

y
A
z

A A
x

A
y

N≈
−Ax ,−Ay ,AzT

∥Ax ,Ay ,AzT∥

Figure 3. Estimating the average surface normal in a
voxel from the 3 axis-aligned projections Ax, Ay, Az of a
surface (blue) with clipped area A inside the voxel.

For the back facing test the normalization of ~N can be
avoided since we are only interested in the sign of the dot
product between ray direction and ~N . In the case of ambigu-
ous voxels (i.e. front and back facing), we add an offset to the
occluder distance, which is measured along the dimension of
highest occlusion in the voxel (z in Fig. 3). This dimension is
precomputed and stored in the corresponding node during the
hierarchy construction.

Scene Method Memory Build Eye Light Total

GLOSSY BOX Ray-splat 192×192×192 (5+26+6) 3.2 1.4 54 59
(81 % diffuse) Lightcuts s̄=431 (14+5) 0.8 626 1.2 628

Path-tracing (2500) − − 2720 − 2720
Scene settings 500× 500× 4; M = 100, 000; (20%, 50%, 30%)

OFFICE Ray-splat 384×240×384 (13+23+3) 5.2 1.5 58 65
(91 % diffuse) Lightcuts s̄=261 (8+3) 0.9 390 0.5 391
Scene settings 500× 500× 4; M = 55, 000; (40%, 60%, 0%)

CONFERENCE Ray-splat 560×368×160 (17+23+9) 10.6 3.4 98 112
(86 % diffuse) Lightcuts s̄=321 (21+7) 5.6 680 3.4 689
Scene settings 500× 500× 4; M = 150, 000; (35%, 65%, 0%)

Table 1. Computation times (seconds) and memory con-
sumption (megabytes) for the rendering phases of our
ray splatting method, instant radiosity with lightcuts, and
path tracing. The images are shown in Fig. 5.

6 Results
We have evaluated our method in comparison with instant

radiosity (IR) combined with lightcuts [11] using three scenes
of different complexity and lighting condition. The scene set-
ting and the photon distribution is the same for both meth-
ods. The resulting images are shown in Fig. 5. The rendering
times and parameters are given in Table 1. All results were
computed with an Athlon 64 X2 2.2 GHz Processor using
one core. The scene settings are: image resolution times the
number of samples per pixel, total number of stored photons
(M); and the percentage of stored direct, global indirect, and
caustics photons. For our ray-splatting method the entries in
the table show (from left to right): grid resolution, memory
for the occlusion tree plus eye samples plus photon rays, time
to build the raytracing kd-tree and the occlusion hierarchy,
time for shooting eye rays, time for photon sampling and ray
splatting, and total time needed to compute the image.

For the lightcuts method the table shows (from left to
right): average number s̄ of evaluated shadow rays per pixel
sample with 2% error metric, memory used for the light clus-
ters [11] plus the photons (VPLs), time for constructing the
raytracing kd-tree and clustering VPLs, rendering time, time
for the VPL sampling (same as in our method), and total time.

The GLOSSY BOX scene contains a glass sphere and a
glossy icosahedron and is rendered with global illumination.
Since lightcuts is not able to generate caustics, we rendered
the scene with path tracing [7] using 2500 samples per pixel.
In Fig. 5a-c the illumination in the office scene is decomposed
into the direct, indirect, and global illumination. The refer-
ence is shown in Fig. 5d and was computed using lightcuts
with s̄ = 261. The darkening in the corners of the lightcut
image is due to the automatic clamping of too high contribu-
tions of indirect VPLs.

In Fig. 4 we show that our method is also capable of pro-
ducing high quality direct lighting with sharp and soft shad-
ows using a small number of photons. Reference image (a)
is generated by sampling the light source with 100 shadow
rays per pixel, (b) is computed using the method in [5] with
80, 000 photons (i.e. ray splatting without explicit visibility),
and (c) and (d) are rendered with our method using 10, 000
photons.

7 Conclusion and Future Work
We proposed an efficient global illumination algorithm

based on density estimation that produces good quality im-

(a) 14.7 sec (b) 22.5 sec (c) 6.1 sec (d) 9.2 sec

Figure 4. The teapot scene with direct illumination.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. 1. row: office scene with (a) direct, (b) indi-
rect (+1 f-stop), (c) GI with ray-splats, (d) lightcuts [11];
2. row: glossy box, (e) ray-splats, (f) path tracing; confer-
ence with GI, (g) ray-splats, (h) lightcuts.

ages with a small number of photons. In contrast to [5]
our algorithm is less sensitive to the bandwidth selection due
to explicit visibility evaluation. However, because the costs
for processing a single photon are relatively high compared
to [6, 5], the computation of fine illumination details (e.g.
caustics), which require a high photon density, becomes com-
putationally more expensive.

References

[1] Z. Dong, W. Chen, H. Bao, H. Zhang, and Q. Peng. Real-time voxeliza-
tion for complex polygonal models. Pacific Graphics, pages 43–50,
2004.

[2] Elmar Eisemann and X. Décoret. Fast scene voxelization and applica-
tions. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 71–78, 2006.

[3] D. Haumont and N. Warze. Complete polygonal scene voxelization.
2002.

[4] V. Havran, J. Bittner, R. Herzog, and H.-P. Seidel. Ray maps for global
illumination. In Rendering Techniques 2005, pages 43–54, 2005.

[5] R. Herzog, V. Havran, K. Myszkowski, S. Kinuwaki, and H.-P. Sei-
del. Global Illumination using Photon Ray Splatting, to appear in Eu-
rographics. 2007.

[6] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. AK,
Peters, 2001.

[7] James T. Kajiya. The rendering equation. In Proceedings of ACM
SIGGRAPH ’86, pages 143–150. ACM Press, 1986.

[8] Alexander Keller. Instant radiosity. In Proceedings of ACM SIG-
GRAPH, pages 49–56, 1997.

[9] R. Schregle. Bias compensation for photon maps. Computer Graphics
Forum, pages 729–742, 2003.

[10] B.W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapmann and Hall, London, 1985.

[11] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and
D. Greenberg. Lightcuts: A scalable approach to illumination. In Pro-
ceedings of ACM SIGGRAPH, pages 1098 – 1107, 2005.

