
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

Render2MPEG: A Perception-based Framework Towards
Integrating Rendering and Video Compression

Robert Herzog1, Shinichi Kinuwaki1, Karol Myszkowski1, Hans-Peter Seidel1

1MPI Informatik, Computer Graphics Group, Saarbrücken, Germany

Abstract

Currently 3D animation rendering and video compression are completely independent processes even if rendered
frames are streamed on-the-fly within a client-server platform. In such scenario, which may involve time-varying
transmission bandwidths and different display characteristics at the client side, dynamic adjustment of the rendering
quality to such requirements can lead to a better use of server resources. In this work, we present a framework where
the renderer and MPEG codec are coupled through a straightforward interface that provides precise motion vectors
from the rendering side to the codec and perceptual error thresholds for each pixel in the opposite direction. The
perceptual error thresholds take into account bandwidth-dependent quantization errors resulting from the lossy com-
pression as well as image content-dependent luminance and spatial contrast masking. The availability of the discrete
cosine transform (DCT) coefficients at the codec side enables to use advanced models of the human visual system
(HVS) in the perceptual error threshold derivation without incurring any significant cost. Those error thresholds
are then used to control the rendering quality and make it well aligned with the compressed stream quality. In our
prototype system we use the lightcuts technique developed by Walter et al., which we enhance to handle dynamic
image sequences, and an MPEG-2 implementation. Our results clearly demonstrate many advantages of coupling
the rendering with video compression in terms of faster rendering. Furthermore, temporally coherent rendering leads
to a reduction of temporal artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics
and Realism - Rendering, Global Illumination, MPEG, Compression

1. Introduction

A server-based platform with the client access through the In-
ternet becomes a very attractive approach to access and inter-
act with 3D graphics. To reduce the dependence on restricted
computational capabilities on the client side and to simplify
handling the diversity of client devices, the server can render
images and stream them to the client side using a standard
video compression technique. This way the client does not re-
quire any support for rendering and a standard web browser
may be sufficient for video playback and backward interaction
with a 3D model on the server. This is in particular important
for applications that require huge 3D data, which cannot be
handled by thin clients such as smart phones, PDAs, or even
laptops. In such a scenario the 3D data is stored in one re-
liable place (possibly with guaranteed full-time access) and
does not have to be transmitted to the client, which improves
interaction and simplifies control over confidential data. This

also ensures that in applications involving collaborative work
all users always deal with the same, fully updated 3D models.

Such client-server graphics platforms are available on the
market, e.g., RealityServer developed by the mental images,
Inc. company. The range of possible applications for such sys-
tems can be such diverse as: remote access to 3D data (e.g.,
for maintenance and repair purposes), industrial and archi-
tectural design, 3D navigation and tourism, interactive online
(mobile) entertainment, and others. Such a client-server archi-
tecture can also be attractive in medical applications requiring
3D visualization and data access at any time and location.

To make such solutions practical and reduce the required
bandwidth for video streaming, the MPEG and Motion JPEG
encoding standards are used. However, in existing solutions
the compression step is completely independent from the pre-
ceding rendering step. In this work, we demonstrate that by
closer coupling of these two steps the computation redun-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

dancy can be reduced and the rendering quality can be well
matched to the video quality, so the benefits of such coupling
can be mutual.

The most obvious benefits come from the use of motion
compensation vectors which, at the rendering stage, are in-
expensive to derive for every pixel with very high accu-
racy [MB95]. On the compression side, this eliminates costly
search for motion compensation vectors for pixel blocks
[WKC94], which is one of the major bottlenecks in video
encoding. Also, erroneous motion vectors due to approxi-
mate search algorithms are eliminated and variable block-size
motion compensation [Bov05, Chapter 6.5] does not intro-
duce any significant computational overhead. On the render-
ing side, pixel-level motion compensation enables pixel shad-
ing re-computation for consistent scene sample points tracked
for subsequent frames, which reduces temporal aliasing in
particular for textured regions. Motion compensation can be
used for proper simulation of camera shutter speed and re-
sulting motion blur [HDMS03] as well as filtering in tempo-
ral domain. All these techniques suppress temporal rendering
artifacts, which otherwise cannot be distinguished from im-
age features by the encoder and are reproduced in video at
expense of extra bandwidth [BG00].

In this work our focus is on the rendering accuracy con-
trol. It is current practice that frames are often rendered with
many details that are later discarded due to lossy video com-
pression. This means that the rendering quality can often be
reduced without affecting the video quality, which may lead
to faster rendering that is important in interactive applications.
In MPEG compression the video quality is controlled through
varying the quantization of discrete cosine transform (DCT)
coefficients (used for a pixel block representation), which ef-
fectively leads to the information loss. A good match between
the compressed and rendered image quality can be achieved
by imposing a stopping condition on rendering, so that fur-
ther computation cannot contribute to visible pixel changes
due to the quantization error. This can be facilitated by us-
ing the DCT pixel block representation both at the rendering
and compression stages [BM95]. Also, such a DCT repre-
sentation enables an inexpensive incorporation of a percep-
tual image quality metric to rendering, which additionally can
adapt the quantization error to the image content by modeling
important characteristics of the human visual system (HVS)
such as contrast sensitivity, luminance and contrast mask-
ing [FPSG97, BM98, WPG02].

In this paper we propose a framework combining real-
istic rendering and MPEG video compression. Our render-
ing is based on the instant global illumination algorithm
[Kel97, WKB∗02] combined with the lightcut data structure
[WFA∗05,WABG06]. We extend these techniques to take ad-
vantage of temporal coherence between subsequent frames.
The rendering quality is guided by a DCT-based quality met-
ric, which maintains the rendering errors below the visibility
level imposed by the quantization errors. At the same time the
quantization errors are adapted to local image content to make
the compression errors uniformly perceivable across the im-

age space. Our prototype system shows many advantages of
combining rendering and compression into a unified frame-
work such as faster rendering and reduction of temporal arti-
facts.

In the following section we discuss previous work, which is
relevant for video compression and rendering integration. We
briefly summarize our system in Section 3 and then outline
the extensions of the lightcut and instant radiosity techniques
to fit them into our Render2MPEG framework. In Section 5
we introduce a perceptual model, which we use to steer the
global illumination computation. In Section 6 we present re-
sults obtained using our techniques. Finally, we conclude this
work and suggest directions of future research.

2. Previous Work

Computer graphics techniques have been used to compute
motion vectors for synthetic scenes that are then used for
the MPEG compression [WKC94]. The authors showed that
when using their projective-texture based algorithm for mo-
tion vectors computation, better compression ratios can be
achieved than for standard MPEG solutions [Bov05, Chapter
6.1], in particular for scenes which are rich in textures. Also,
image-based rendering introduced by McMillan and Bishop
[MB95] directly leads to the motion vector computation for
each image pixel. Depth information from the previous frame
is required to warp that frame and find new pixel positions in
the following frame. In our system such image warping can be
performed efficiently at the rendering stage, and the resulting
motion vectors can directly be applied to video encoding.

Compression techniques have been also used for stream-
ing 3D data in a client-server architecture. Cohen-Or et al.
[COMF99] showed that by rendering mesh elements with pro-
jective textures on the client, and streaming only the residual
error between warped texture views for subsequent frames
from the server, the bandwidth-demanding transmission of
full resolution textures can be avoided. However, the sequence
of visible geometry and textures for streaming and rendering
on the client side have been prepared off-line. Levoy [Lev95]
proposes a client-server architecture in which the residual er-
ror between high- and low-quality renderings performed at
the server is compressed and streamed to the client. The client
performs only the low-quality rendering, adds decompressed
residual error, and displays the composite. In our solution, we
assume that only video decoding is performed on the client
side, and we are more interested in the impact of compression
for steering rendering on the server side.

Bolin and Meyer [BM95] developed a ray tracer, which
projects pixel samples directly onto a DCT basis function for
an 8× 8 pixel block. The technique was developed for static
images. As a result of such rendering a JPEG-like image rep-
resentation is directly obtained. Since samples are generated
sparsely for each block, a costly least squares procedure is re-
quired to approximate all DCT coefficients that best interpo-
late the sampled data. When samples are progressively added
additional frequency terms in the DCT block representation

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

are also added. In our approach, we avoid such costly oper-
ations by using packet ray tracing [WKB∗02] that processes
all 16×16 pixels in the macroblock at once with an overhead
equivalent to the cost of 30 rays computed independently.

More advanced visual models have been used to steer
the costly global illumination computation [BM98, RPG99,
YPG01]. In all these techniques the goal was to continue the
computation until rendering inaccuracies do not affect any-
more the visual quality of images. Our goal is quite different,
because we accept visible quality degradation under the con-
dition that similar degradation is introduced by the follow-
ing lossy video compression. Thus, we intend to adaptively
control the rendering quality to make it synchronized with
the available bandwidth (effectively the quantization error),
which is important in Internet applications where the qual-
ity of services (QoS) is not guaranteed. We achieve this goal
using a DCT-based visual model [Wat93,ZDL00], whose pre-
dictions are well aligned with typical artifacts in image and
video compression. A similar model has been successfully
used by Walter et al. [WPG02] for off-line estimation of visual
masking by textures. In their approach, both the scene lighting
and geometry are not considered and thus do not contribute to
the masking prediction, which may result in too conservative
(precise) rendering. Also, they do not consider the quantiza-
tion error, which in our application leads to major improve-
ments of rendering efficiency.

All discussed perception-based rendering techniques strug-
gle with proper estimation of scene lighting as required to
account for local luminance adaptation and visual masking.
This is a typical “chicken-and-egg” problem, where the light-
ing knowledge is required to take the full advantage of the
visual model, which is actually supposed to steer the light-
ing computation. In our approach, by taking into account the
frame-to-frame coherence in lighting, we obtain a good pre-
diction of the lighting distribution in the subsequent frame,
whose computation is steered by a visual model.

3. Algorithm Overview

In the following we briefly describe the whole algorithm,
which is sketched in Fig. 1. Our renderer is based on the light-
cuts algorithm [WFA∗05, WABG06] as lightcuts is about one
to two orders of magnitude more efficient than equivalent final
gathering approach based on photon mapping [Chr99, Jen01,
KGPB05]. This is due to a smaller number of final gather rays
that need to be evaluated per pixel (ca. 50-400) and because
lightcuts, based on instant radiosity, does not require com-
putationally intensive density estimation queries in the pho-
tonmap. Nonetheless, per pixel computation is still too costly
for efficient rendering in particular for higher resolution im-
ages. Therefore, we exploit the spatial coherence of the indi-
rect illumination. In contrast to the interpolation of pixel ra-
diance as proposed in the reconstruction cuts [WFA∗05], we
favor irradiance interpolation of the incident lighting in object
space [WRC88, KGPB05]. This decouples the interpolation
from the surface material and prevents interpolation errors for

high-frequency textures and surface boundaries. Since irra-
diance caching works only robustly for smooth lighting, we
separate the high-frequency lighting components. A common
way is to compute direct and indirect light separately since
direct lights mostly influence the whole image whereas the
weaker indirect lights often have only local impact on the ren-
dered image. Therefore, we compute for all pixels direct light-
ing as well as dynamic indirect lighting using standard instant
radiosity techniques [Kel97] with shadow mapping. We gen-
erate parabolic shadow maps on the GPU and use them for
per pixel accurate lighting computations.

Summarizing, our algorithm works as follows: First, a uni-
form grid is updated for all dynamic objects, which is used
as raytracing acceleration data structure. Next, photons are
traced through the scene splatting their energy to a fixed set
of virtual point lights (VPLs), which we refer to as anchor
lights. In the case of the first frame we construct a light tree
over the anchor lights as described in Section 4.1. Otherwise
all internal nodes in the tree are updated as described in Sec-
tion 4.1.1. Then we shoot all primary (eye) rays for the cur-
rent frame using packet raytracing [WKB∗02] for 16×16 rays
corresponding to one MPEG macro-block and find correspon-
dences in the previous frame by backward reprojection. This
way we can fill our error-threshold map with the previously
computed visibility thresholds as explained in Section 5.3,
which are then used to control the accuracy of the global il-
lumination computation for the current frame. After comput-
ing direct and dynamic indirect lighting for each pixel using
shadow maps, we compute the indirect lighting based on irra-
diance caching. Note that our error-threshold map is intended
to steer the lightcuts computation on a per pixel basis. How-
ever, when using irradiance caching a cache sample influences
a large neighborhood of pixels, which are likely to have a dif-
ferent rendering error-threshold. As a remedy, we filter the er-
ror threshold for a cache by averaging the tolerable rendering
errors over the cache’s footprint in image space. For weight-
ing the error thresholds we use a Gaussian filter kernel. Fi-
nally, we compute the new error threshold map as described
in Section 5.2, which is then used for the next frame.

 Update dynamic object data

Photon tracing + update VPL energy

Construct light-treefirst frame?

Update energy in light-tree
clusters

Restructure light-tree

Shoot camera rays

Reproject pixel-samples and fill
error-threshold map

Compute direct + dynamic indirect
illumination

Compute indirect illumination via
irradiance caching with lightcuts

Compute error thresholds
(Figure 3)

yes

no

Figure 1: Flow in the rendering pipeline for computing one frame.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

4. Temporally Coherent Lighting Computation

Although temporally coherent global illumination is not the
main focus of this work, for efficient video coding and
motion compensation on MPEG side, we favor spatially
and temporally coherent illumination in contrast to unbi-
ased solutions [RPG99, BM98, BM95], which trade off bias
for high-frequency noise. Note that noise is well preserved
in the DCT-based MPEG compression and leads to unde-
sirable bandwidth expansion [BG00]. We chose a hierar-
chical version of instant radiosity [Kel97] based on light-
cuts [WFA∗05] because lightcuts is a pixel-adaptive, scalable
global-illumination algorithm and perhaps more importantly,
it allows to control the computation by a perceptual rendering
error. However, the original lightcuts algorithm has been de-
veloped for still images [WFA∗05]. In the temporal domain
only short time intervals have been considered to model the
effect of motion blur [WABG06]. In order to support longer
animation sequences with fully dynamic scenes, we extend
lightcuts into the temporal domain. This imposes several con-
straints to the algorithm in order to suppress temporal noise:

• A constant number of virtual point light sources (VPLs) in
the scene are considered for the whole animation sequence.

• VPLs are sampled uniformly across the scene surfaces and
their positions are fixed (similar to the anchor [SKDM05]
and gather [HPB06] samples). We call those VPLs anchor
lights.

• Only VPL intensities are updated from frame to frame us-
ing coherent photon splatting.

• The light hierarchy, which is built on top of the VPLs as
in [WFA∗05], is not rebuilt but only updated from frame to
frame.

During computation of the pixel radiance only a small fraction
of anchor lights is evaluated per pixel, which are chosen adap-
tively by computing a cut in the light hierarchy. While this
lightcut is computed as in [WFA∗05], the pixel error thresh-
olds that determine the cut size adapt to the HVS and the
quantization error imposed by MPEG.

4.1. Construction of a Light Hierarchy

As in the original lightcuts algorithm [WFA∗05], the light
hierarchy is constructed only once using a costly greedy
bottom-up construction to cluster any two virtual point lights
(VPLs) at a time that minimize a cost function (e.g. volume
of associated bounding box and bounding cone weighted by
their summed energy). See [WFA∗05] for more details. An
alternative approach using a recursive top-down construction
of the point-light hierarchy is much more efficient and eas-
ier to implement but decreases the rendering performance by
ca. 3% - 15% due to larger lightcuts arising from less precise
error bounds. For the dynamic case, we need to be able to re-
construct and update the hierarchy efficiently. This is feasible
since we assume lighting and scene geometry is temporally
coherent such that only little changes in the hierarchy have to
be made per frame. Besides, it is desirable to keep the light-
ing temporally coherent since this reduces flickering, which

increases also the efficiency of the MPEG compression. As
in [WFA∗05] a cluster node in the light hierarchy has two
children and shares the geometric properties with one child
node, the representative child. The representative child is al-
ways chosen stochastically with the probability proportional
to the relative light source intensity. This is important because
it ensures that the induced rendering errors of individual clus-
ters are uncorrelated and do not accumulate (see Fig. 6b).
Because VPLs on dynamic objects violate our assumptions
about temporally coherent lighting, they are not inserted into
the light hierarchy but are handled separately as in standard
instant radiosity [WKB∗02, Kel97].

4.1.1. Updating the Light Hierarchy

At first, the intensity of all anchor lights at the leaf level of the
hierarchy is updated by photon density estimation. In order
to maintain temporal coherence, the raytraced photon paths
are regenerated for successive frames using the same Halton
number sequence when performing the random walk, i.e. in
the case of only static objects no lighting changes will ap-
pear. Even in the dynamic case the energy of most anchor
lights changes smoothly in time and abrupt lighting changes
are rather of local nature. Therefore updates in the light tree
structure and intensity affect mostly the lower levels in the
tree and propagate slowly up the hierarchy, which further sup-
presses temporal noise in the radiance computation. Although
changes in the light hierarchy are minor between successive
frames, they may accumulate in the long run and eventually
require a reconstruction of the entire hierarchy. Since higher
levels in the light tree keep the sum of the intensities of their
sub-trees, intensity changes in the anchor lights at the leaf
level are simply propagated up to the cluster nodes of the hi-
erarchy.

In the original lightcuts approach, the tree is built such
that the VPL with highest energy is most likely to be at the
top of the hierarchy, which cannot be ensured if we keep the
tree static. In case of occlusion, e.g. a dynamic object moves
in front of a cluster’s representative anchor light, the corre-
sponding node should descent the hierarchy according to the
tree construction metric [WFA∗05]. To model this behavior,
we swap the two children of a node in the light tree if the
intensity ratio of representative child to non-representative
child is smaller than a threshold (CI = 0.7), thus changing the
representative/non-representative relationship of parent and
child nodes. Only pointers to the representative child and an-
chor light need to be updated in a bottom-up manner. There-
fore the overall tree structure is kept static and updating the
tree becomes very efficient since the tree continuously reor-
ganizes itself over time.

5. Rendering Accuracy Control

Aligning the rendering errors with the compression errors as
imposed by the bandwidth of a given video streaming chan-
nel is an important goal of our Render2MPEG framework. A
simple strategy is to keep the rendering errors below the quan-
tization error imposed by the only lossy operation in video

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

encoding: the quantization of DCT coefficients. Such a quan-
tization error is determined for each DCT basis function used
to represent pixel values in 8× 8 pixel blocks. For a given
video-stream bandwidth controlled by the value of the qscale
parameter, the quantization error amounts to the product of
qscale · qi j, where qi j are predefined coefficients in the 8× 8
quantization matrix Q. In our current implementation we al-
ways use the default quantization matrix Q for intra-frame
coded blocks as specified in the MPEG-2 standard (ISO/IEC
13818) [MPE] and we let the user set qscale.

While the matrix Q takes into account the contrast sensi-
tivity function (CSF) attributed to the HVS, it does not adapt
the quantization error to the frame’s local content. It is well
known that the quantization errors are less visible in clut-
tered image regions due to visual masking, which decreases
the sensitivity for image details [BM95, FPSG97]. Also, the
visual sensitivity in terms of detection of absolute luminance
thresholds reduces in bright image regions due to luminance
masking [Dal93]. We model these effects locally for each
block, and we incorporate elevated sensitivity thresholds due
to masking into the quantization error qscale ·qi j. This enables
even more aggressive rendering. Note that while qscale is a
convenient parameter to control the compression bandwidth,
it correlates poorly with the optimum visual quality that can
be achieved at a given bit rate [Wat93].

This section is organized as follows. In Section 5.1 we
present the derivation of quantization error with incorporated
masking effects. In Section 5.2 we describe our approach to
transform the resulting quantization error from the frequency
domain into the spatial domain as required by our renderer.
Obviously, the most reliable estimate of quantization errors
can be achieved when the image content is fully known. For
this reason we apply the visual model to the previously com-
puted frames in order to predict the quantization error to be
used in the current frame rendering. We discuss various strate-
gies of transferring the quantization error from frame to frame
in Section 5.3.

5.1. Luminance and Contrast Masking Model

The visual model used by us to predict luminance and spa-
tial masking is inspired by research in image and video com-
pression [Wat93, ZDL00]. The luminance masking model as
proposed in [Wat93] requires luminance values, which are de-
pendent on the particular display characteristics such as the
luminance range and gamma correction. Since the masking
model needs to consider observed luminance of pixels on a
particular display device, we have to consider the γ of such
display (e.g. γ = 2.0) before applying the luminance masking
model to our DCT coefficients. Since the luminance masking
model proposed in [Wat93] is a simple power function, the
display gamma is easily accounted for by multiplying γ with
the luminance masking exponent (0.649) [Wat93].

tk
i j = qi j ·

(
ck

00
c̄00

)γ·0.649

, (1)

where ck
00 denotes the DC coefficient of block k and c̄00

the average DC coefficient of all blocks. Intuitively, this lu-
minance masking model increases the threshold of tolerable
quantization errors qi j for brighter image regions and de-
creases in darker regions as predicted by the Weber’s law.

Then, we estimate the tolerable elevation of quantization
error mk

i j due to contrast masking [Wat93] as:

mk
i j = tk

i j ·max

1,

∣∣∣∣∣ c
k
i j

tk
i j

∣∣∣∣∣
0.7
 , (2)

where ck
i j denotes the i j-th DCT coefficient of block k. Fol-

lowing [Wat93] we ignore contrast masking for the DC co-
efficient ck

00, i.e., we assume that mk
00 = tk

00. Intuitively, this
contrast masking model increases the threshold of a tolerable
quantization error for regions with high contrast patterns of a
spatial frequency represented by the given coefficient ck

i j.

The localized quantization error mk
i j can be used to control

rendering accuracy for each block in order to make the dis-
tribution of the perceptual error uniform across all blocks of
the image. Note that at the compression stage we could also
use the localized quantization error mk

i j to modify the matrix
Q for each block as proposed in [RW96], but at present op-
timizing video bandwidth is less important than speeding up
rendering.

5.2. Maximum Tolerable Error in Rendering

From the rendering perspective the localized quantization er-
ror mk

i j derived in Eq. (2) expresses the maximum tolerable
rendering error as imposed by the quantization matrix and
the local masking effects. This error must be then re-scaled
by qscale to mirror the user-imposed compression bandwidth.
Since each block k is quantized by dividing all its coefficients
ck

i j by mk
i j ·qscale and rounding to the nearest integer, the max-

imum possible quantization error is 1
2 ·m

k
i j ·qscale. By exploit-

ing the linearity property of the DCT transform and preserv-
ing the polarity of DCT coefficients using the sign(ck

i j) func-
tion, we can conservatively construct the worst case distorted
frame with DCT coefficients ĉk

i j by adding the maximum pos-
sible quantization error to the original frame:

ĉk
i j =

{ 1
2 sign(ck

i j) ·qscale ·min
i j

(qi j) if ck
i j < 1

2 qi j ·qscale

ck
i j +

1
2 sign(ck

i j) ·qscale ·mk
i j otherwise,

(3)
which after compression should be visually equivalent to the
original frame (ck

i j) when both are compressed with the same
qscale value.

When computing ĉk
i j for the coefficients ck

i j that do not van-
ish as the result of lossy compression (case 2 in Eq. (3)), the
quantization error including the masking effects are consid-
ered. However, the signal represented by the remaining ck

i j
coefficients (case 1 in Eq. (3)) is removed from the com-
pressed image (i.e. c̃k

i j = 0) and therefore contrast masking
for the corresponding frequencies as predicted by Eq. (2) is

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

not valid. In this case, even considering only the quantiza-
tion error resulting purely from the MPEG compression (i.e.
ĉk

i j := 1
2 qi j · qscale) may lead to overestimated errors and re-

duced rendering quality for higher qscale values. Since the
largest quantization errors qi j are assigned to high frequency
coefficients (which usually vanish as the result of lossy com-
pression), they tend to dominate in the tolerable rendering
error estimate. Because this error estimate is finally used as
upper bound for the rendering error in the spatial domain
(see Fig. 2), its spatial frequency selectivity inherent for the
DCT domain is lost. Consequently, such high quantization er-
rors may also contribute to excessive tolerance for errors in
the lower frequency signals (higher eye sensitivity), which
leads to visible image distortions. Note that low-frequency
quantization errors may also generate high-frequency ren-
dering errors, which is less critical since quantization er-
rors increase for higher frequencies. One solution is to leave
those coefficients that are invisible after quantization unal-
tered [WPG02]. However, such approach does not scale well
with higher qscale values where most frequencies are removed
from the signal. Therefore, we set those coefficients to the
minimum quantization for AC coefficients (min(qi j) = 16),
which is adaptively tuned to the current video bandwidth by
the qscale multiplier. Although this approach may still be too
conservative, it produces good results in terms of rendering
efficiency and robustness.

After performing the inverse DCT on ĉk
i j and inverse tone-

mapping to get the distorted luminance Ŷxy for every pixel
(x,y), we compute the maximum tolerable pixel errors exy:

exy = max(0.02 ·Yxy, |Ŷxy−Yxy|). (4)

as the absolute difference between the luminance Yxy of the
original undistorted pixel and Ŷxy. In order to avoid too
small error thresholds, we clamp the result at a “perceptu-
ally conservative” lower bound of 2% of the pixel’s luminance
Yxy [WFA∗05].

Figure 2: Pixel luminance (black), error thresholds (red), and ren-
dering errors (green) along a scanline in the left image (green line).

The error exy can change from frame to frame as a function
of image content, but also can be affected by variable network
bandwidth. In the following section we discuss temporal as-
pects of handling exy.

5.3. Temporal Handling of Tolerable Rendering Error

In this section we discuss the problem of re-using the maxi-
mum tolerable error exy from the previous frames to steer the

current frame computation. Another important issue is tempo-
ral coherence of the error between subsequent frames, which
is necessary to reduce video flickering. Such temporal co-
herence is improved by blending the tolerable error between
previous (t − 1) and current frame t, such that the blending
weights fall-off exponentially for older frames. The final ren-
dering error-thresholds that are then stored in the threshold
map are computed as:

∆Yxy(t) =
{

exy if (x,y) 67→ (x′,y′)
(1−w)exy +w∆Yx′y′(t−1) otherwise,

(5)
where the mapping (x,y) 7→ (x′,y′) to the corresponding er-
ror threshold in the previous frame is obtained through back-
projecting the current frame’s pixel sample (effectively the
camera and object motion compensation is performed). When
occluded/disoccluded/non-existing region in frame (t − 1)
is identified by the backprojection (case (x,y) 67→ (x′,y′))
then we simply use the error exy estimated for frame t. The
blending weight w is a trade-off between temporal coherence
and error propagation. When using a larger blending weight
our error thresholds can become less accurate for successive
frames while lighting errors are kept coherent and vice versa.
We set w = 0.5 which, according to our tests, does not seem
to bias the error in our threshold map for future frames.

The resulting error thresholds ∆Yxy(t +1) are then used for
the future frame (t + 1) to decide upon the stopping condi-
tion in the lightcut computation: if the maximum upper error
bound of all clusters in the pixel’s current lightcut is below
our error threshold or the lightcut size exceeds a maximum
of 1,000 clusters, we stop refining the lightcut. The lightcut
is computed as in [WFA∗05] using a priority queue. A light-
cut sample for one pixel with 3% error threshold is shown
in Fig. 6b. Error thresholds and actual lightcut rendering-
errors for a scanline are visualized in Fig. 2. Note that render-
ing errors (green curve) alternate around zero but are coherent
for neighboring pixels with similar error threshold.

The entire flow of the threshold computation is shown
in Fig. 3.

We applied the processing flow as shown in Fig. 3 to two
basic strategies of the error handling with respect to the pre-
vious frames:

1. Quantization-dependent masking computation without
motion compensation.

2. Quantization-independent masking computation with mo-
tion compensation.

The first case means applying the masking model in Eq. (1)
and Eq. (2) to the quantized DCT coefficients c̃k

i j, thus also
considering quantization errors in the masking prediction,
which results in more relaxed rendering errors. This is be-
cause quantization errors in the final image such as blocking
artifacts are also included in the contrast masking. This ap-
proach is only valid for scenes with slow camera and object
motions where block boundaries from the previous frame are
aligned with blocks in the current frame.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

 tonemap

Masking

Motion Comp.

Quantization
+

-

+

 DCT-1

tonemap-1

MPEG

DCT

*w

*(1-w)

blend

qscale

c
∧

ij
k t

cij
k t

 cij
k t

Y xy
k t

e xy t

c

ij
k t

Y
∧

xy t

Y x ' y ' t−1

x , y

Y xyt1

Figure 3: The computation flow for deriving error thresholds
∆Yxy(t) for all pixels (x,y) in the frame computed at time t. ∆Yxy(t +1)
is used to steer rendering of the subsequent frame at time (t + 1).

The second approach is more conservative when comput-
ing the error thresholds at the expense of having smaller ren-
dering errors in particular for higher MPEG compression set-
tings, where masking due to quantization dominates. In this
case the DCT coefficients ck

i j are directly used to predict
masking as it is shown in Eq. (1) and Eq. (2). Motion compen-
sation helps in aligning masking with image details and even
significant motion of camera and rigid objects can be success-
fully handled. The same motion compensation procedure as
between frames (t − 1) and (t) is now applied to frames (t)
and (t + 1). For pixels that do not find a feasible sample in
the four nearest neighbor pixels of the previous frame, a max-
imum relative rendering error of 2% is assumed. A pixel sam-
ple is assumed to be feasible if its pixel depth and surface
normal are similar.

6. Results

We have tested our framework on 4 scenes with different
lighting, frequency content, and complexity. For visualiza-
tion and validation purposes the results of the CONFER-
ENCE scene, shown in Fig. 4, are computed at a per pixel
basis in order to compare with the original lightcuts algo-
rithm [WFA∗05] that uses a maximum luminance error per
pixel of 2%, which we have used as the reference in our eval-
uations. Since the original lightcut algorithm has been de-
signed for high-quality rendering with a large number of point
light sources (VPLs), we compare our error metric also us-
ing a larger number (150,000) of VPLs in the CONFERENCE
scene. The other scenes, CORNELL BOX, SPONZA ATRIUM,
SIBENIK CATHEDRAL, were generated in a dynamic scenario
and the videos are provided at [Web08]. The relevant statis-
tics for the animated scenes shown in Fig. 5 are given in Ta-
bles 1. To speedup rendering, the irradiance caching algo-
rithm [WRC88, KGPB05] has been used. Note that for effi-
ciency reasons the MPEG-2 encoder [MPE] uses simple in-
teger arithmetic in the quantization. Therefore, the provided

50 500

(a) reference (b) lightcut size (c) (2%) thresholds
50 500

(d) Render2MPEG (e) lightcut size (f) adaptive thresholds

Figure 4: Comparing original lightcuts sampling using 2% error
metric (first row) with our MPEG-driven perceptual error metric (sec-
ond row) where the rendering is adapted to compression level with
qscale = 16. (MPEG-encoded frames are shown in Fig. 8.) The color-
encoded number of considered lights per pixel is given in the second
column with an average of 281 lights for the reference and 152 using
our method, respectively. The error threshold maps (scaled by 32 and
displayed with γ = 2.6) are shown in the third column. The average
error threshold is 26% in our case.

qscale values in the results, which are given as input to the en-
coder, should be divided by 16 to corresponds to the actual
quantization errors used in Section 5.2.

Figure 5: Animated test scenes (left to right): textured CORNELL

BOX, indirectly lit SIBENIK, SPONZA ATRIUM. Videos are provided
at [Web08].

Our numerical results were computed on a single PC
equipped with an Athlon 64 2.4 GHz with 4 GByte of mem-
ory and a GeForce 6800 based graphics card. The statistics
in Table 1 show (from left to right): scene settings includ-
ing number of direct and indirect anchor lights (VPLs) and
the number of photon splats to update the indirect VPL inten-
sities, the qscale quantization multiplier given by the MPEG
encoder, the average relative error-threshold per frame (i.e.
divided by pixel luminance), the average number of swapped
cluster nodes in the light tree per frame, the average lightcut
size with respect to the total number of anchor lights (VPLs),
the average computation times in seconds per frame for pho-
ton tracing and energy splatting to anchor lights (Tlight), for
computing the shadow maps for direct and dynamic indirect
light on the GPU (Tgpu), for primary (eye) ray casting (Teye),
for the lighting computation including lightcut evaluation and
irradiance caching (Tcut), the average total rendering time in
seconds per frame, and the speedup of the indirect lighting

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

computation relative to the reference solution, which uses a
constant error threshold of 2% of the pixels luminance value
(see Fig. 4c for an example). Our error-threshold computa-
tion including a discrete cosine transforms of all blocks and
motion compensation takes 0.2 sec per frame for all three an-
imations. The memory utilization is less than 50 MBytes for
the tested scenes. Since the SIBENIK scene is shown in a walk-
through animation, lighting changes and updates of the light
tree are not necessary. The only cost is the initial lighting com-
putation and the light tree construction. The main bottleneck
so far is the random photon walk (Tlight), which uses the same
data structure (uniform grid) for Monte Carlo ray tracing that
is actually optimized for packet-ray tracing of primary eye
rays (Teye).

In Fig. 6a we show per pixel statistics of render-
ing/compression error and relative lightcut (LC) size for the
textured CONFERENCE scene shown in Fig. 4 for various
compression settings. The lightcut size (black dashed curve)
is given relative to the reference using 281 clusters on average.
It directly mirrors the saving in computation time for this par-
ticular scene, which range from approximately 30% to 60%
with increasing qscale. Fig. 6b shows the upper bounds and
real lightcut errors for one pixel with a cut size of 253 and 3%
error threshold. Note that the computed upper error bounds
(blue) are always greater than the real cluster errors (red) but
not necessarily greater than the sum over the individual clus-
ter errors (green), whose distribution is presented in Fig. 7a.
Fig. 7a shows that for the vast majority of pixels the rendering
errors introduced by the lightcut computation are smaller than
their error thresholds (green points). Nevertheless, there are
a few outliers occasionally (red points). Fortunately, outliers
are mainly pixels that have a relatively small error-threshold
as shown in Fig. 7b, which is often too conservative anyway
(see Eq. (4)). These observations hold also for the other scenes
we have tested.

In Fig. 8 we demonstrate how our rendering adapts to vary-
ing bit rates by means of the parameter qscale provided by
MPEG. In the first row the absolute error thresholds to be
used for the next frame are shown. Below are given the nu-
merical values for the average relative error-threshold ∆Yxy

Yxy
in

percent (i.e. absolute luminance threshold divided by pixel
luminance). The second row shows our compressed render-
ing results using the thresholds above and their peak signal-
to-noise ratio (PSNR), which are visually equivalent to the
compressed reference images. We observed that even though
the compressed images of reference and our solution differ
slightly (blue curve in Fig. 6a), their RMS error (RMSE) with
respect to the uncompressed reference is very similar (see red
and green curves in Fig. 6a) because the quantized pixel val-
ues fluctuate around the estimated reference value. The third
row shows the residual (the rendering error) of the reference
frame and our rendered frame before compression for visu-
alization purposes scaled by a factor of 32. The PSNR and
the average lightcut size per pixel are given below the images.
One can observe that the rendering error does not scale in the
same way as the compression error does. This is because the

enforced error thresholds are upper bounds for the rendering
error introduced by the lightcuts algorithm, which is usually
much smaller for most pixels (see Fig. 7a).

Scene+Setting
times in sec

qscale
∆Yxy
Yxy

LC-tree
changes

LC
size

Tlight Tgpu Teye TLC
Time/
frame

Speedup
only LC

CORNELLBOX 2 7.9% 1.1% 8.0% 2.5 0.8 0.1 3.0 6.6 ×1.5
2000 VPLs 48 14.4% 1.1% 2.7% 2.5 0.8 0.1 1.6 5.2 ×3.1
3·105 photons - 2.0% 1.1% 10.9% 2.5 0.8 0.1 4.0 7.5 ×1.0

SPONZA 2 5.7% 2.4% 5.1% 14.2 1.1 0.5 19.0 35.0 ×1.9
8900 VPLs 48 12.9% 2.4% 0.9% 14.2 1.1 0.5 9.1 25.1 ×5.2
106 photons - 2.0% 2.4% 6.8% 14.2 1.1 0.5 34.5 50.4 ×1.0

SIBENIK 2 7.0% 0.0% 5.5% (40.0) 0.0 0.7 6.5 7.4 ×1.7
9100 VPLs 48 15.4% 0.0% 1.6% (40.0) 0.0 0.7 4.4 5.3 ×3.3
106 photons - 2.0% 0.0% 7.4% (40.0) 0.0 0.7 12.4 13.2 ×1.0

Table 1: Statistics and computation times (in seconds) for the ren-
dering phases of our algorithm for the 3 animated test scenes shown
in Fig. 5. Image resolution is 512× 512. The shown speedup is only
for the lightcut (LC) computation without irradiance caching.

(a) (b)
Figure 6: (a): Root mean square errors (RMSE) and relative lightcut
size for varying qscale in the CONFERENCE scene shown in Fig. 8. (b):
Lightcut cluster-errors of a pixel in the image of the conference scene
with an error threshold of 3%. The graph visualizes the sorted light-
cut (size 253) with descending upper error bounds. The cumulative
sum (green curve) of the individual cluster errors (red curve) shows
the actual rendering error, which is close to 0 for this particular pixel
(see point 253 of the green curve). Since the individual cluster errors
can be considered as independent and identically-distributed random
variables with finite variance, the actual rendering errors are approx-
imately normal distributed (see Fig. 7a).

7. Discussion and Future Work

This work serves as a proof of concept and there are a few
limitations of our system. The choice of MPEG-2 [MPE] in-
stead of more suitable for streaming MPEG-4 was driven by
such factors as simplicity and availability of the source code.
The choice of lightcuts imposes a few restrictions on the light-
ing computation such as clamping of close VPLs and missing
caustics illumination. Besides, the separation of dynamic and
static objects and the irradiance caching limits the generality
of the lightcuts algorithm. The developed error thresholds for
rendering are too conservative with respect to the MPEG com-
pression error. We expect therefore that further investigations
about the correlation between the rendering error of lightcuts
and the quantization error in MPEG might enable even more
aggressive rendering.

Even though our rendering is too slow for interactive
streaming applications, we demonstrated that such properties
as temporal coherence, low noise level, and local (pixel or

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

masking only qscale =2 8 16 32
E

rr
or

T
hr

es
ho

ld
s

ēxy = 9% 13% 18% 26% 39%

C
om

pr
es

se
d

R
es

ul
ts

PSNR = 52dB 52dB 44dB 39dB 34dB

R
en

de
ri

ng
E

rr
or

(∗
32

)

PSNR/(cutsize)= 55dB(201) 54dB(197) 52dB(168) 51dB(152) 49dB(137)

Figure 8: Absolute rendering error thresholds (first row) for corresponding qscale value (columns) driving our global illumination rendering
and compression. The compressed images for varying qscale with their peak signal-to-noise ratio (PSNR) are shown in the second row. While
our compressed images stay visually equivalent to the compressed reference images, the rendering errors with respect to the reference solution
increase steadily for higher qscale. The absolute rendering error (difference between our rendered images and reference images) are shown in the
third row (magnified by factor 32). The values in brackets correspond to the average resulting lightcut size.

irradiance cache level) accuracy control are desirable in Ren-
der2MPEG applications. By mapping our lightcut algorithm

(a) (b)
Figure 7: (a) Histogram of the actual lightcut pixel-errors in the
image of the conference scene (qscale = 32). The x-axis represents
the ratio of actual rendering error and our maximum tolerated error-
thresholds for that pixel. The green points represent the valid pixels
for which the rendering error is below our imposed error thresholds.
Red points in the graph indicate outliers which have a higher actual
error than tolerated. A plot of the lightcut-error for a single pixel
is shown in Fig. 6b. (b) The average error threshold (y-axis) for the
corresponding rendering error ratio (same domain as in chart (a)).
Intuitively, the higher the pixel’s error-threshold, the more likely is
that the rendering error will be smaller than its threshold.

to a multi-processor architecture as in [WKB∗02] interactive
performance should be feasible due to similarities between
the instant global illumination and lightcut techniques.

By closely coupling rendering errors with qscale control-
ling the bandwidth of compressed streams, we can easily sup-
port two different encoding modes: CBR (constant bit rate,
which leads to variable quality) and VBR (variable bit rate,
which enables constant quality). Our error metric naturally
adapts the rendering quality to the required quantization level
no matter what encoding mode is used, although delayed by
one frame.

Since our metric operates on tone mapped pixels, implicitly
it takes into account tone mapping characteristics, which ide-
ally should be adjusted to each display device and surround-
ing lighting conditions at the client side.

In the current implementation we decided to estimate the
rendering error thresholds (refer to Section 5.2) for each
frame. As future work we leave experimentation with com-
puting the error map just for I-frames and propagating it along
motion compensation vectors for P and B frames. It can be ex-
pected that more relaxed error estimates could be considered
for P- and B-frames, but this also requires further studies.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Robert Herzog, Shinichi Kinuwaki, Karol Myszkowski, Hans-Peter Seidel / Render2MPEG

8. Conclusions

In this work we investigated the problem of simultaneous con-
trol of accuracy for rendered and compressed video frames.
We demonstrated that by taking into account MPEG’s quan-
tization mechanisms and basic HVS characteristics in deriv-
ing the perceptual error thresholds, we could significantly im-
prove the rendering performance by relaxing rendering er-
rors, while obtaining video streams with frames surprisingly
similar to the compressed high-quality reference frames. By
exploiting temporal coherence in rendered frames we could
acquire information required by our HVS model and suc-
cessfully predict the tolerable error map for frames to be
rendered, which is a notorious problem for many of exist-
ing perception-based rendering solutions. Our results clearly
show that stronger integration of rendering and compression
software is desirable to avoid redundant computation by ex-
isting frame-by-frame standalone renderers. In this context,
algorithms for temporally coherent global illumination com-
putation become important and our extension of the lightcut
algorithm aimed in this direction.

References

[BG00] BORDER P., GUILLOTEL P.: Perceptually adapted MPEG
video encoding. In IS&T/SPIE Conf on Human Vision and Elec-
tronic Imaging V (2000), Proceeding of SPIE, volume 3959,
pp. 168–175.

[BM95] BOLIN M. R., MEYER G. W.: A frequency based ray
tracer. In Proceedings of SIGGRAPH (1995), pp. 409–418.

[BM98] BOLIN M. R., MEYER G. W.: A perceptually based adap-
tive sampling algorithm. In Proceedings of SIGGRAPH (1998),
pp. 299–310.

[Bov05] BOVIK A. (Ed.): Handbook of Image and Video Process-
ing. Elsvier, Academic Press, 2nd ed., 2005.

[Chr99] CHRISTENSEN P. H.: Faster Photon Map Global Illumi-
nation. In Journal of Graphics Tools (1999), vol. 4, pp. 1–10.

[COMF99] COHEN-OR D., MANN Y., FLEISHMAN S.: Deep
compression for streaming texture intensive animations. In Pro-
ceedings of SIGGRAPH (1999), pp. 261–268.

[Dal93] DALY S.: The Visible Differences Predictor: An algorithm
for the assessment of image fidelity. In Digital Images and Human
Vision (1993).

[FPSG97] FERWERDA J. A., PATTANAIK S. N., SHIRLEY P. S.,
GREENBERG D. P.: A model of visual masking for computer
graphics. In Proceedings of SIGGRAPH (1997), pp. 143–152.

[HDMS03] HAVRAN V., DAMEZ C., MYSZKOWSKI K., SEIDEL

H.-P.: An efficient spatio-temporal architecture for animation
rendering. In Eurographics Symposium on Rendering (2003),
pp. 106–117.

[HPB06] HAŠAN M., PELLACINI F., BALA K.: Direct-to-indirect
transfer for cinematic relighting. ACM Transactions on Graphics
25, 3 (July 2006), 1089–1097.

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon
Mapping. AK, Peters, 2001.

[Kel97] KELLER A.: Instant radiosity. In Proceedings of SIG-
GRAPH (1997), pp. 49–56.

[KGPB05] KŘIVÁNEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. IEEE Transactions on Visualization and Computer
Graphics 11, 5 (2005).

[Lev95] LEVOY M.: Polygon-assisted jpeg and mpeg compression
of synthetic images. In Proceedings of SIGGRAPH (1995), pp. 21–
28.

[MB95] MCMILLAN L., BISHOP G.: Plenoptic modeling: An
image-based rendering system. In Proceedings of SIGGRAPH
(1995), pp. 39–46.

[MPE] MPEG-2: Free mpeg-2 encoder software.
http://www.mpeg.org/MPEG/video/.

[RPG99] RAMASUBRAMANIAN M., PATTANAIK S. N., GREEN-
BERG D. P.: A perceptually based physical error metric for realis-
tic image synthesis. In Proceedings of SIGGRAPH (1999), pp. 73–
82.

[RW96] ROSENHOLTZ R., WATSON A. B.: Perceptual adaptive
JPEG coding. In IEEE International Conference on Image Pro-
cessing (1996), pp. 901–904.

[SKDM05] SMYK M., KINUWAKI S., DURIKOVIC R.,
MYSZKOWSKI K.: Temporally coherent irradiance caching
for high quality animation rendering. Proceedings of Eurograph-
ics 2005 24, 3 (2005), 401–412.

[WABG06] WALTER B., ARBREE A., BALA K., GREENBERG

D. P.: Multidimensional lightcuts. ACM Transactions on Graphics
25, 3 (2006), 1081–1088.

[Wat93] WATSON A.: DCT quantization matrices visually opti-
mized for individual images. In Human Vision, VisualProcessing,
and Digital Display IV (1993), SPIE, volume 1913-14, pp. 202–
216.

[Web08] WEBSITE: Render2mpeg project, 2008. http://www.mpi-
inf.mpg.de/resources/anim/EG08/.

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D.: Lightcuts: A scalable approach
to illumination. In Proceedings of SIGGRAPH (2005), pp. 1098 –
1107.

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive global illumination using fast ray trac-
ing. In Eurographics Workshop on Rendering (2002), pp. 15–24.

[WKC94] WALLACH D. S., KUNAPALLI S., COHEN M. F.: Ac-
celerated mpeg compression of dynamic polygonal scenes. In Pro-
ceedings of SIGGRAPH (1994), pp. 193–197.

[WPG02] WALTER B., PATTANAIK S. N., GREENBERG D. P.:
Using perceptual texture masking for efficient image synthesis.
Computer Graphics Forum 21, 3 (2002), 393–399.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A
ray tracing solution for diffuse interreflection. In Proceedings of
SIGGRAPH (1988), pp. 85–92.

[YPG01] YEE H., PATTANAIK S., GREENBERG D.: Spatiotem-
poral Sensitivity and Visual Attention for Efficient Rendering of
Dynamic Environments. ACM Transactions on Graphics 20, 1
(January 2001), 39–65.

[ZDL00] ZENG W., DALY S., LEI S.: Visual optimization tools in
JPEG 2000. In IEEE Intern. Conf. on Image Processing (2000),
pp. 37–40.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

