
Spatio-Temporal Upsampling on the GPU

Robert Herzog∗

MPI Informatik
Elmar Eisemann†

Saarland University / MPI / Télécom ParisTech
Karol Myszkowski‡

MPI Informatik
H.-P. Seidel

MPI Informatik

Reference Temporally-amortized Upsampling Spatial Upsampling Our Spatio-temporal Upsampling

2 fps 15 fps (PSNR 65.6) 24 fps (PSNR 66.5) 22 fps (PSNR 67.4)

Figure 1: Comparison of different upsampling schemes in a fully dynamic scene with complex shading (indirect light and ambient occlusion).

Abstract

Pixel processing is becoming increasingly expensive for real-time
applications due to the complexity of today’s shaders and high-
resolution framebuffers. However, most shading results are spa-
tially or temporally coherent, which allows for sparse sampling and
reuse of neighboring pixel values. This paper proposes a simple
framework for spatio-temporal upsampling on modern GPUs. In
contrast to previous work, which focuses either on temporal or spa-
tial processing on the GPU, we exploit coherence in both. Our al-
gorithm combines adaptive motion-compensated filtering over time
and geometry-aware upsampling in image space. It is robust with
respect to high-frequency temporal changes, and achieves substan-
tial performance improvements by limiting the number of recom-
puted samples per frame. At the same time, we increase the quality
of spatial upsampling by recovering missing information from pre-
vious frames. This temporal strategy also allows us to ensure that
the image converges to a higher quality result.

1 Introduction

Shader units are a substantial element of modern graphics cards and
lead to significant visual improvements in real-time applications.
Despite the tendency towards more general processing units, pixel
shading receives a constantly increasing workload. Much visual
detail today, such as shadows, ambient occlusion, procedural mate-
rials, or depth-of-field, can be attributed to pixel processing and a
faster execution often leads to a direct performance increase.

With the current trend towards enhancing the image resolution in
modern High Definition (HD) and forthcoming Super High Defi-
nition (SHD) imaging pipelines, one can observe that neighboring
pixels in spatial and temporal domains become more and more sim-
ilar. Exploiting such spatio-temporal coherence between frames to

∗e-mail: rherzog@mpi-sb.mpg.de
†e-mail: eisemann@mpi-sb.mpg.de
‡e-mail: karol@mpi-sb.mpg.de

reduce rendering costs, suppress aliasing, and popping artifacts be-
comes more and more attractive.

Our method is driven by the observation that high quality is most
important for static elements, thus we can accept some loss if strong
differences occur. This has been shown to be a good assumption,
recently exploited for shadow computations [Scherzer et al. 2007].
To achieve our goal, we rely on a varying sampling pattern pro-
ducing a low-resolution image and keep several such samples over
time. Our idea is to integrate all these samples in a unified manner.

The heart of our method is a filtering strategy that combines sam-
ples in space and time, where the time and spatial kernel can be
adapted according to the samples’ coherence. For static configu-
rations, the time window can be chosen to be large to produce a
high-quality frame. When drastic changes occur, our method auto-
matically favors consistent spatial samples. The result loses some
of the visual accuracy, but maintains temporal consistency.

A significant property of our algorithm is locality, meaning that a
good filtering strategy is chosen according to the actual image con-
tent. Here, we differ from other recent strategies, such as [Yang
et al. 2008]. Although our method’s overhead is small, we achieve
higher quality. Our approach runs entirely on the GPU, leaving the
CPU idle for other purposes which is important, e.g., for games.

2 Previous Work

There are several ways to reduce the pixel workload. It is possible to
reduce the amount of shaded pixels, using techniques such as early-
z/deferred shading, visibility tests [Koltun et al. 2000], or shader
culling units [Hasselgren and Akenine-Möller 2007]. In this paper,
we exploit coherence by reusing pixel values over space and time.

Temporal methods accelerate rendering by updating only a certain
amount of pixels per frame [Bishop et al. 1994], but are susceptible
to artifacts arising from changes in view or geometry. An improve-
ment can be achieved by adaptively sampling and reprojecting the
frame content [Dayal et al. 2005], but this is most efficient for ray-
tracing. In such a context, some solutions suggested 3D warping
to accelerate display and global illumination computations [Adel-
son and Hughes 1995; Mark et al. 1997; Walter et al. 1999] (we
refer to [Sitthi-amorn et al. 2008a] for a more complete list of ref-
erences). These sample-based reprojections can lead to significant
fluctuations of sample density in the derived frames. Better qual-
ity is obtained by applying per object 4D radiance interpolants with
guaranteed error bounds [Bala et al. 1999]. The reduced sampling

coherence, or the involvement of ray tracing (although steps in this
direction exist) make such solutions less GPU-adapted.

Reprojection caches [Nehab et al. 2007; Scherzer et al. 2007; Sitthi-
amorn et al. 2008a] are more GPU-friendly. Here, supplementary
buffers encode fragment movements. In contrast to image analysis,
for geometry, it is relatively cheap to obtain displacement informa-
tion by evaluation in the vertex shader and storage in the frame-
buffer. Given a current fragment, one can easily verify its pres-
ence in the previous frame and, if possible, reuse its value. This
recovered information is not necessarily a final color, but can be an
intermediate shader result, the so-called payload. The underlying
assumption is that, for a fixed surface point, such value should re-
main constant over time. Such an assumption gave rise to the idea
of integrating samples over time for static scene antialiasing [Ne-
hab et al. 2007], where static also excludes illumination variations
and changes introduce significant artifacts.

In concurrent work Yang et al. [Yang et al. 2009] extend this idea
and propose an adaptive method for antialiasing with reprojection
caching with a profound error analysis. They adapt the exponential
smoothing factor that determines the decay of previously computed
samples over time to temporal changes in shading and to blur due
to the bilinearly filtered reprojection cache. Similar to our method
they temporally interleave frames to virtually increase the spatial
resolution. They target antialiasing and, thus, use a 2× 2 sub-pixel
buffers which is sufficient for their purposes. In contrast, our up-
sampling method uses larger windows and we propose a multires-
olution approach depending on the payload. We further rely on a
geometry-aware upsampling which is important for our context as
it allows for a larger spatial support. We propose an efficient recov-
ery of the concerned supplementary information and exploit it in the
filtering process. This technique allows us to handle missing pix-
els and therefore we do not need to resort to a hole-filling per-pixel
rendering and we can deal with silhouettes that are recovered from
a higher resolution image, whereas Yang et al. [Yang et al. 2009]
do not exploit this possibility. We further propose a way to adapt
the filter kernel depending on the confidence of spatial or temporal
data and use a different filtering scheme for temporal antialiasing to
estimate the gradient for varying shading.

To detect almost constant shader components, one can use a learn-
ing stage with particular objects [Sitthi-amorn et al. 2008b]. This
requires a long preprocessing time and such a setup cannot exploit
coherence that might arise from the application itself. E.g., if the
shader is light-position dependent, but the light is stationary during
the execution. Our use of changing sample patterns enables a de-
tection of inconsistent payloads. Nevertheless, our method would
still benefit from a good shader decomposition, but we see such
strategies as orthogonal to our goal.

Yang et al. [Yang et al. 2008] deal with dynamic changes and re-
duce the shading workload by producing low resolution frames
that are upsampled to produce a complete frame. The downside
of such a solution is that high-frequency detail might not be cap-
tured in the low resolution frame, and hence it is not always possi-
ble to deduce the information needed for the current frame. Super-
Resolution techniques, e.g., [Calle and Montanvert 1998], deal with
this problem and attempt to add new frequencies recovered through
de-interlacing, image content analysis, or edge preserving interpo-
lation. In our solution, we work with low resolution information to
ensure a higher efficiency, and recover better high frequency esti-
mates with a temporal strategy.

We involve samples from previous frames by compensating for
motion and perform spatio-temporal filtering to exploit temporal
coherence. Such filtering is commonly used in video restora-
tion [Tekalp 1995; Bennett and McMillan 2005], and has been

successful in suppressing aliasing artifacts in ray tracing [Shinya
1993]. Temporal coherence has been used to greatest advantage
in a number of global illumination solutions discussed in the sur-
vey paper by Damez et al. [Damez et al. 2003]. Many of the pre-
sented techniques are off-line or even require knowledge of sub-
sequent keyframes which is unacceptable for interactive rendering
purposes. Other approaches exploit temporal coherence at a very
low level, e.g., single photon paths. Low-level coherence usually
gives more flexibility and enables the exchange of information be-
tween many frames at once. However, it is difficult to be efficiently
exploited on current GPUs. In our solution, we rely on more GPU-
compatible strategies that relate to interleaved sampling [Wald et al.
2002; Segovia et al. 2006] which has roughly similar goals in its
CPU and CPU/GPU incarnation.

3 Upsampling

In this section, we will explain our upsampling strategy. As it is
inspired by previous work, we will first review spatial upsampling
(Section 3.1) then temporally-amortized spatial upsampling (Sec-
tion 3.2), also referred to as reprojection caching. Step by step,
we will describe our modifications before presenting our spatio-
temporal solution (Section 3.3).

3.1 Spatial Upsampling

Yang et al. [2008] assume that expensive shader computations
are spatially slowly varying and can be reconstructed by sparse
sampling followed by interpolation. This is true for many low-
frequency shaders, e.g., lighting computation. The authors apply a
joint-bilateral filter [Eisemann and Durand 2004; Petschnigg et al.
2004] to perform an image upsampling [Kopf et al. 2007] where
the filter weights are steered by geometric similarity encoded in a
high-resolution geometry buffer. This means that samples which are
close in world space and have similar surface orientation are better
interpolation candidates. For simplicity, we will use 1D pixel in-
dices i or j in the following derivations. Given the high-resolution
geometry buffer and the low-resolution shading result l, the upsam-
pled payload h(i) can be computed as

h(i) =
1∑
ws

∑
j∈N{i}

ws(i, j) · l(ĵ), (1)

whereN{i} is a neighborhood around i, ĵ is the index of the nearest
pixel in the low-resolution image andws(i, j) is a spatial geometry-
aware pixel weight defined as:

ws(i, j) = n(max(0, 1− (~ni • ~nj))2, σ2
n) ·

d(|zi − zj |2, σ2
z) · k(i, j) (2)

The weight consists of a geometric weighting function involving
orientation n, linear depth d, and an image space filter k. For simple
spatial upsampling, k can be chosen arbitrarily, e.g., a linear hat
function [Yang et al. 2008]. The σ terms are user-defined variables.
Whereas we kept σn = 0.2, σz depends on the scene. Throughout
the paper, we used 3% of the difference between the near and far
frustum plane.

For higher efficiency, we choose N to cover only the four nearest
pixels in the low-resolution image l. One can choose n and d freely
as long as it favors similarity, but falls off quickly. The method
in [Yang et al. 2008] uses Gaussian filters, which can be relatively
expensive. We use a simpler yet similar function for both n and d:

g(x, σ, γ) = (max(ε, 1− (x/σ)))γ . (3)

σ represents the filter width, and γ controls the fall-off. We choose
γ = 3, which corresponds to the tri-weight kernel g(x2, σ2, 3). A
plot of the function for various σ is shown in Figure 4(left). It has
finite support and is clamped at a small epsilon which avoids zero
weights.

Fused High-Resolution Frame (4n x 4n pixels)16 frames (n x n pixels)

t= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2: Left: A regularly sampled low-resolution shaded image
is produced for each frame. The high-resolution output is then fused
from the previous frames.

3.2 Temporally-Amortized Spatial Upsampling

To increase the final image quality, one can also look back in time.
Instead of interpolating within the current frame, missing pixels are
resurrected from past frames. This is most beneficial if frames cor-
respond to differing pixel subsets. Otherwise, for the static case,
no new information is gained over time and accurate convergence
becomes impossible.

A random pattern was proposed in [Nehab et al. 2007], but it costs
some efficiency because it implies a supplementary rendering pass
to fill in the missing information, slightly accelerated via early-z
termination. For our method, we want to avoid the computation
of extra samples in order to ensure a relatively constant cost per
frame, just like [Yang et al. 2008]. To make updates efficient on
the GPU, we use a spatially regular pattern as shown in Figure 2.
To render a sample set, we apply translations in post perspective
space which can be encoded in the projection matrix and come at
no supplementary rendering cost. The regularity will also be helpful
for the spatio-temporal filtering (Section 3.3). We will concentrate
on a 4×4 window for the rest of this section, but discuss other sizes
in Section 4. The process is illustrated in Figure 2.

If pixels were simply reused from previous frames, visible distor-
tions are likely to appear. Any camera movement or scene changes
result in ghosting trails following the objects. One can compensate
for this effect by computing pixel displacements between frames,
referred to as motion flow. Motion flow is inexpensive because
all the necessary 3D information is available [Sitthi-amorn et al.
2008a]. To improve quality, and because it is cheap, we compute
the 2D motion flow in a high-resolution texture, always consider-
ing only two successive frames. For brevity we will refer to the
q-frames motion-compensated pixel i at time t as i(t − q) (i.e.,
i(t) = i).

In standard temporally-amortized upsampling one can keep the
payload of the updated pixel set in the final output and let the other
pixels search in the previous frame:

h(i, t) = (1− wt(t, i)) h((i(t− 1), t− 1) + wt(t, i) l(̂i, t), (4)

where h(i, t) is the high resolution image payload for the current
pixel index i at time t, which is composed of the currently com-
puted low-resolution image payload l(̂i, t), î is the nearest low-res.
pixel index of i, and the previous image payload h(i(t− 1), t− 1)
at the motion compensated position i(t− 1). Special care has to be
taken if i(t−1) is pointing to a pixel outside the screen or if the 3D

point corresponding to the pixel i(t−1) is disoccluded (i.e. has not
been visible in the previous frame). Those pixels cannot be fetched
from the previous frame h(·, t − 1) and, for temporally-amortized
upsampling, are usually recomputed. To identify disocclusions we
compare our warped depth values with the depth values from pre-
vious frame [Nehab et al. 2007]. Comparing only depth values
we may miss certain disoccluded pixels located at contact points
(see Fig. 3). To clear the ambiguity we also compare material IDs,
which we store anyway in the geometry pass of our deferred ren-
derer. For temporally-amortized upsampling, pixels are taken from

Figure 3: Dealing with disocclusions in temporal reprojection: re-
projection based on z-Buffer comparison may fail at contact points
(left). Additional criteria (here material IDs) help to reduce ambi-
guities (right).

the previous payload if they have not been computed in the current
frame. The binary weight wt determines for a given pixel whether
to fetch the payload from the current or the previous frame(s), by
setting wt(t, i) = 1 if the pixel i has been computed in the current
frame at time t, and zero respectively.

3.3 Spatio-Temporal Upsampling

The previously described upsampling schemes are not always well
suited. Constructing the image only spatially is very efficient, but
prone to undersampling and blurring of sharp image features. On
the other hand, temporal caching [Sitthi-amorn et al. 2008a; Nehab
et al. 2007] is sensitive to temporal changes, but it converges if the
scene is nearly static. Consequently, we would like to combine the
two approaches in a spatio-temporal upsampling framework:

h(i, t) =
1∑

wswtwf

T∑
q=0

∑
j∈N{i(t−q)}

ws(i(t− q), j) wt(t− q, j) wf (q) l(ĵ, t− q),(5)

where wf (q) is a temporal fadeout kernel to favor payloads that
have been computed recently (wf ∈ [0..1]). A good choice is
an exponential falloff, e.g., wf (q) := 0.9q , but we improve upon
this in Section 3.5. The other terms were explained in Equations 1
and 4. As indicated before, T is usually 16 (i.e. 4× 4 upsampling),
which is the amount of low-res textures needed to cover all sam-
ples of the high-resolution frame. Intuitively, we follow the sample
i back over time. For each time step t, wt ensures that only those
payloads are considered that have been computed at time t. The
contribution is then influenced by the weight ws that measures the
geometric difference and wf , that penalizes age. The pixel filter k,
computed in ws, has to be chosen carefully. Precisely, we define
k(i, j) := g(||x(i) − x(j)||, r, γ), where x(i) is the pixel posi-
tion on the screen, and r the low-res pixel diagonal length. For
γ = 0 filter k is constant and the results approach spatial upsam-
pling. For γ = ∞, k is a dirac-like filter (k(i, j) := 1 if (i = j),
0 otherwise) and, hence, is equivalent to temporally-amortized up-
sampling. Consequently, we want to use the function k to blend
between the two extrema depending on the temporal coherence, see

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

Geometric Weighting Function

g(x2, 12, 3)
g(x2, 22, 3)
g(x2, 32, 3)
g(x2, 42, 3)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Pixel Filter Function

g(x, 1, γ = 0.5)
g(x, 1, γ = 1.0)
g(x, 1, γ = 2.0)
g(x, 1, γ = 3.0)

Figure 4: Left: geometric weighting function n, d (triweight ker-
nel), right: image space filter function k.

Figure 5: Left: dynamic shading result, middle: sum of upsam-
pling weights ws (brightness represents confidence, yellow regions
have insufficient spatial weight, blue regions are disoccluded and
have no temporal weight, and red pixel are both), right: upsampled
image

Figure 4(right). A better convergence over time, is achieved with a
larger γ, while a lower value improves the temporal response. We
will present a temporal gradient-guided steering of γ in Section 3.5
and one can assume for the moment that γ = 3.

Figure 5(middle) visualizes the spatial upsampling weights ws of
4× 4 pixel regions. Pixels marked as blue are disoccluded. Conse-
quently, these cannot be taken from previous frames. Yellow pixels
indicate a small geometric weight for the current frame and are,
thus, likely to be undersampled. Here, previous frames should be
used. Pixels in red have neither spatial nor temporal confidence,
making them candidates for recomputation. In general, such pix-
els are sparse and our filtering mechanism ensures that a plausible
value is attributed, making it possible to avoid recomputation.

3.4 Exponential History Buffer

Our filtering in Equation 5 leads to better results than spatial or
temporal filtering alone, but it’s beyond question that it is compu-
tationally expensive because we need to perform many dependent
texture lookups repeatedly to produce one pixel. To improve per-
formance, we observe that the lookups are coherent over time. It is
thus possible to cache these lookup chains through previous frames.
This leads to the idea of an exponential history buffer. It stores the
previous upsampling result hr , and the previous spatio-temporal
upsampling weight hw. Ignoring the temporal component in Equa-
tion 5, we obtain a standard bilateral upsampling:

h̃(i, t) =
1∑
wswt

∑
j∈N{i}

ws(i, j)wt(t, j)l(ĵ, t) (6)

with weight w̃(i) =
∑
wswt. Given h̃, and our history buffers

hr and hw, we compute the actual output h via weight-dependent
blending:

h(i, t) =
h̃(i) w̃(i) + wf (1) hw(i(t− 1)) hr(i(t− 1))

w̃(i) + wf (1) hw(i(t− 1))
. (7)

The history buffer is updated for the next frame by storing hr(i) :=
h(i, t) and hw(i) := w̃(i)+wf (1) hw(i(t−1)). If one has chosen
wf as an exponential falloff, Equations 5 and 7 are equivalent. Note
that wf (0) = 1. This reduces the performance penalty with respect
to [Yang et al. 2008] to a single texture lookup and a few algebraic
operations. Furthermore, other simplifications are possible: we no
longer need 16 low resolution textures (one high-resolution history
buffer and one low resolution frame are enough), time dependence
vanishes in general, and in particular, for the function wf .

3.5 Temporal Weighting Function

In the previous section, we have seen an efficient way to involve
a longer temporal history. Nevertheless, in some cases this might
not be wanted. Fast changes, induced by, e.g., shadows, would
profit from the use of spatial upsampling instead of temporal. On
the other hand, to improve the quality of the shaded output, it is
necessary to integrate samples from previous frames. To this extent,
we will dynamically adapt the temporal weight wf and the image
space filter k locally.

Precisely, we want to address the following points:

1. Temporal flickering due to low resolution sampling of high-
frequency spatial signals;

2. Temporal ghosting artifacts due to fast temporal changes;

3. Higher-quality convergence for static elements.

To choose wf and falloff of k appropriately, we examine the vari-
ance of the temporal signal. We do this by relying on a tempo-
ral gradient. A weak gradient implies that more confidence can be
granted to the evaluation over time. Consequently, wf should be
large and k should reduce image blur by giving more weight to ac-
tually computed pixels in the history buffer. Contrarily, large gradi-
ents indicate that changes occurred and that the history is no longer
reliable. Accordingly, wf should fall off faster and k should favor
spatial upsampling by introducing more image blur. We achieve this
by scaling the exponential fall-off γ of our filter function k defined
in Section 3.3 with our confidence value wf , where a maximum of
γ · wf = 4 is a good choice and was used in all our experiments.

3.5.1 Estimating Temporal Gradients

We will assume that the payload h is one dimensional. Otherwise,
one could either compute a norm of the payload, or consider sepa-
rate gradients. We rely on finite differences to define a gradient. To
address the case where the value domain is unknown, we realized
that it usually makes sense to compute relative gradients. In par-
ticular, for colors, such a definition tends to capture contrast (when
reducing color to luminance).

∂

∂t
h(i, t) =

h(i, t)− h(i(t− 1), t− 1)

max(|h(i, t)|, |h(i(t− 1), t− 1)|) .

A more general definition according to time is not needed because
the previous section reduced the time dependence to a single frame.
We then define:

wf := a ·
(

1− | ∂
∂t
h|
)2

, (8)

where a steers the sensitivity between spatial and temporally-
amortized upsampling. Usually a is kept to 1 in our experiments.
The square in Equation 8 suppresseswf more aggressively for large
temporal gradients than for small fluctuations. One may notice that
wf depends on h(i, t), which is the result we currently want to

compute. Therefore, we approximate h based on h̃, the spatially
upsampled result we computed to make use of the history buffer.

Because our spatial upsampling h(i, t) may suffer from tempo-
ral flickering and finite differences are potentially always noisy,
we decided to use a low-pass filtering in time and space. Sim-
ple spatial filtering, e.g., using mipmapping, would not be an op-
tion since it cannot detect spatial aliasing artifacts (which might
result in low-frequency). However, spatial aliasing corresponds
to a periodic high-frequency temporal signal, which is greatly re-
duced when summing a few consecutive frames. Therefore, we
address this issue by making use of the current and the three
previous finite differences. These are stored in a vector ~∇ :=(
∂
∂t
h(i(t), t), . . . , ∂

∂t
h(i(t− 3), t− 3)

)
. To filter the gradient

temporally, we compute an absolute weighted sum ||~∇|| := |~∇ •
(0.4, 0.3, 0.2, 0.1)T |. The sum, as well as the current and the two
previous differences can be stored in a single RGBA texture.

While the finite differences will only be relevant for the next frame,
||~∇|| is used to control the temporal-spatial upsampling. Though
filtered over time, this value can still fluctuate spatially. To filter
it, we want to use a kernel that is slightly larger than the distance
between recomputed samples. Thus slightly larger than 4 × 4. In
practice, we found that tri-linearly filtered mipmaps deliver good
quality, when values are chosen from level 2.5. This leads to an
improved estimate, in particular, in the presence of aliasing as can
be seen in (Figure 7). This temporally and spatially filtered value
||~∇||, is then used in Equation 8.

Care has to be taken in the special case where pixel regions are dis-
occluded and cannot be reprojected to the previous frame. Here,
computing a temporal gradient is impossible. Simply ignoring the
gradients for such pixels may lead to visible discontinuities at the
transition boundaries between successfully reprojected pixels and
disoccluded pixels. In order to suppress these discontinuities, we
set the relative temporal gradient to its maximum for all disoc-
cluded pixels. In consequence, the temporal gradient spreads into
the neighboring pixels after the spatial low-pass filtering. This leads
to a gradually diminishing gradient and, hence, a smooth transition
between spatial and temporally-amortized upsampling (see Fig. 6).

Figure 6: Disoccluded pixels in this cropped screen-shot of a
running horse can cause discontinuities along motion boundaries
(left), which are smoothed when setting the maximum relative gra-
dient for all disoccluded pixels (right) since it is spread to neighbor
pixels during the spatial low-pass filtering.

It has to be pointed out, that whenever the gradient has been falsely
assumed to vary, our method does not break and instead falls back
to spatial filtering. The adaptation of wf only improves the quality
of the results. Even though, our algorithm is not ensured to con-
verge to the actual high-resolution solution, the increase of the tem-
poral window improves quality significantly as illustrated in Fig-
ure 7 (left) and the accompanying video.

Alternatively, temporal gradients could be obtained via joint-
bilateral spatial upsampling of the known temporal gradients based

on the newly computed values. In practice, this resulted in more
expensive and qualitatively less convincing results. Our solution
filters space and time, for very little cost and better handles disoc-
clusions. We investigated special cases, like zero motion vectors,
but found that quality remained similar, making the supplementary
memory load for storing these motion vectors unjustified.

D
yn

am
ic

 S
ce

ne
St

at
ic

 (c
on

ve
rg

ed
) S

ce
ne

Figure 7: Temporal gradients are important to detect changes in
illumination. The figure shows gradients in a static (frozen) scene
(top row) and the same frame in a fully dynamic scene (bottom
row) (red = negative, green = positive gradients). Simple finite
differences (center) are prone to aliasing and noise. Our filter-
ing (right) regularizes the gradient estimation (e.g., for the static
scene the gradient is almost zero (top right)). It eliminates flicker-
ing and achieves high quality. Some high-frequency gradients (bot-
tom right) might be lost, but this is almost invisible in a dynamic
context. Our upsampled result is shown on the left. (For demon-
stration purposes, we show signed gradients. Spatial smoothing
relies on absolute values ||~∇||.)

4 Implementation Details and Overview

So far, we considered upsampling windows of size 4 × 4, this is
a strong approximation and up to 16 frames are needed to produce
an accurate result in a static scene, although high-quality conver-
gence is often faster. For fluctuating payloads it can make sense to
decrease the window size. The algorithm easily extends to various
upsampling sizes, such as 2 × 2 or 8 × 8, but we found that for a
screen resolution of 1280 × 1024, 2 × 2 windows of varying val-
ues are better addressed with simple temporally-amortized upsam-
pling (not even spatial bilateral upsampling is needed) and bigger
windows take too much time to converge to a high quality result.
Nevertheless, for even higher resolutions, this might change. Fur-
ther, complex shaders often consist of several independent shading
terms, some of which can be of very low frequency and high com-
putational complexity. In fact, most high-frequency components
(such as textures, direct light shadows) are not expensive and could
be efficiently computed for every pixel. Hence, following [Sitthi-
amorn et al. 2008b], splitting the shader into individual components
enables even higher gains. To illustrate the effectiveness of our ap-
proach, we refrained from such decompositions in our results.

Our spatio-temporal upsampling is integrated into a deferred shad-
ing approach. In the initial pass all necessary geometry and ma-
terial information as well as the 2D motion vectors are written to
the high-resolution G-buffer. In the next pass all expensive shading
computations are performed at low resolution. The frustum is jit-
tered in a coherent sampling pattern (see Figure 2) corresponding
to a different subset of pixels. Next, we upsample the current shad-
ing result to high resolution taking into account the high-resolution
G-buffer and motion flow and solely the previous upsampling result

shade temporal spatial spatio-t. ref.
ms fps ms fps ms fps ms fps

Jeep (PCF) 1.6 244 1.0 239 1.1 191 2.1 171
stdev. 0.02 2.4 1.6 1.5
Horses (AO) 11.3 47.5 5.3 62.5 1.1 55.9 2.2 7.6
stdev. 0.09 0.69 0.36 0.26
Horses (AO+GI) 35.7 11.4 45.2 24.5 1.6 21.8 3.0 2.2
stdev. 0.27 3.2 0.56 0.78
Elephant (AO+DO) 80.3 5.9 76.1 12.3 1.8 11.9 2.9 0.7
stdev. 39.7 4.5 5.1 4.9

Table 1: Final average fps and standard deviation (stdev.)
for rendering a frame with spatial, temporally-amortized with
disocclusion-hole filling, spatio-temporal (spatio-t.) upsampling
and reference (ref.) for image resolution of 1280 × 1024 and a
4 × 4 upsampling window. The cost for the low-res input (shade),
and the time spent on upsampling only is given in [ms].

(thanks to Section 3.4) and the (mipmapped) temporal gradients ~∇.
Because the temporal gradient after filtering is assumed to be spa-
tially coherent, we do not need to compute the upsampled gradients
at a high resolution, but instead compute it at an intermediate reso-
lution (e.g., at 2× 2 pixels).

Antialiasing Our spatio-temporal upsampling is extendable to
antialiasing in the spirit of [Yang et al. 2009]. A common way
for antialiasing with deferred shading is to compute the results in a
m ×m higher resolution and then merge m ×m pixels to obtain
the average pixel color. Such scheme nicely fits to our proposed
upsampling. We only need to compute the geometry and material
buffer and the intermediate upsampling buffers at a higher resolu-
tion than the display buffer and down-sample the upsampled result
to the display resolution. To some extent this follows the hardware-
based antialiasing which computes shading values at a lower res-
olution. Nevertheless, the hardware antialiasing does cannot in-
volve previous frames, nor is it compatible with deferred shading
which results in a significant overhead and its quality depends on
the shader’s spatial frequency.

5 Results

For comparison, we implemented simple temporally-amortized up-
sampling as described in Section 3.2 with second-pass hole fill-
ing [Sitthi-amorn et al. 2008a] and spatial upsampling [Yang et al.
2008]. We used OpenGL with GLSL on a GeForce GT 280 and
performed tests on various challenging scenes at a resolution of
1280 × 1024. The timings are giving in Table 1 and the visual
results with statistical error measures (PSNR) are shown in Fig-
ure 8. The initial geometry pass of our deferred renderer deviates
only slightly throughout the different methods and is not explicitly
shown in Table 1. The overhead for computing the motion vectors
was always less than 1 ms in our experiments.

The first scene is a jeep with little geometry, but a mov-
ing light source, challenging texture, percentage-closer filtering
(PCF) [Reeves et al. 1987] with a 6 × 6 kernel, Figure 8(top).
The second scene, contains animated horses, Figure 8(bottom),
with a static camera and applies screen-space ambient occlusion
(SSAO) [Bavoil and Sainz 2008] with 8 × 8 randomized horizon
samples. In a different scenario, Figure 1, we added instant global
illumination by evaluating a large number (2000) of virtual point
lights (VPLs) without visibility generated with reflective shadow
maps [Dachsbacher and Stamminger 2005]. In this setup the cam-
era is moving and the indirect lighting is changing quickly. Our ap-
proach even suppresses the flickering due to temporal noise of the
VPL sampling. Please refer also to the video material provided with
this paper. Finally, the last scene shows a running elephant with a

large animated body which is rendered offline at fixed frame rate
(30 fps) with SSAO (32 × 24 samples), a spot-light with PCF, and
screen-space directional occlusion (SSDO) [Ritschel et al. 2009]
with direct light sampling (128 samples) from an environment map.
This scene is challenging as the viewpoint changes very quickly and
reveals large surfaces making it difficult to reproject old samples.
Furthermore, the shading is of high-frequency and cannot be accu-
rately reproduced by neither method. To favor spatial upsampling,
we set a = 0.7 for this scene. Temporally-amortized upsampling
completely fails in this scenario whereas our method, similar to spa-
tial upsampling, still produces decent results.

Results generally benefit from temporally-amortized and spatial up-
sampling. The horse scene shows that in static regions the SSAO
converges nicely whereas in dynamic regions, near the running
horses, more values are taken from the current spatial upsampling,
trading-off response for quality. The jeep’s texture (even when
not separating it from the payload) faithfully converges and the
shadow shows only minor artifacts that are hidden by its motion.
Temporally-amortized upsampling shows many ghosting artifacts
and spatial upsampling does not converge to a high-quality solu-
tion. This is visible near geometric details, e.g., in the background
of the cathedral where geometric discontinuities become smaller
and aliasing artifacts emerge. Moreover, flickering appears when
the camera moves because of high-frequency details that were un-
dersampled by the low-resolution payload. Temporally-amortized
upsampling cannot assure a constant framerate because the supple-
mentary rendering to fill disocclusion holes can have very differing
cost. Our approach is similar in performance to spatial upsampling,
as illustrated in Table 1 while maintaining a good image quality
overall. This makes our solution a good choice for dynamic and
static scenes.

6 Conclusion

Although spatio-temporal processing has been explored in differ-
ent contexts, it has received less attention in terms of GPU ren-
dering. In fact, GPUs inherently exploit spatial coherence in the
SIMD structure of the massively parallel processing pipeline. How-
ever, modern GPUs benefit very little from temporal coherence. In
this work, we proposed a relatively simple framework for spatio-
temporal rendering as a trade-off between efficiency and quality.
Compared to joint-bilateral spatial upsampling our algorithm pro-
duces higher quality and introduces only a small performance over-
head and keeps memory demands small. For dynamic scenes, our
algorithm is more robust than temporal reprojection caching. It
combines benefits from both methods. We demonstrated on rela-
tively complex shaders that our upsampling technique can reduce
the GPU’s shading costs. Our solution is well suited for increasing
screen resolutions and beneficial for various algorithms, e.g., global
illumination, soft shadows, or procedural textures.

7 Discussion and Future Work

Although our algorithm produces generally better and more robust
results than previous real-time upsampling techniques [Yang et al.
2008] for the GPU there are situations where it may also fail. First
limitation is that our reprojection caching is solely based on fast
computable “geometric” flow which might differ from optical flow.
As a worst case scenario imagine a fast moving object with a cam-
era attached to it moving at the same speed. A shadow cast by the
object on a static floor is completely decorrelated with the world-
space pixel positions and temporal reprojection can not help. In
such case mainly geometry-aware spatial upsampling is influenc-
ing the final pixel color as temporal gradients become large.

Reference Temporally-amortized Upsampling Spatial Upsampling Spatio-temporal Upsampling

171 fps 244 fps (PSNR 70.6) 239 fps (PSNR 83.2) 191 fps (PSNR 82.3)

56 fps (PSNR 80.1)62 fps (PSNR 73.0)48 fps (PSNR 82.3)8 fps

Je
ep

 (D
ire

ct
 L

ig
ht

 +
 P

C
F)

S
ib

en
ik

 (S
S

A
O

)

11.9 fps (PSNR 87.3)12.3 fps (PSNR 88.1)5.9 fps (PSNR 67.8)0.7 fps

E
le

ph
an

t (
S

S
D

O
+E

nv
.+

P
C

F)
Je

ep
 (4

 x
 D

iff
er

en
ce

)

Figure 8: Comparison of spatial, temporally-amortized, and spatio-temporal upsampling. The first two rows show screenshots and difference
images (4 times scaled) of simple shading (static geometry and dynamic light). This is a difficult case for our method, but it performs better
than amortized temporal upsampling. We obtain a smoother difference image than spatial upsampling. Geometric discontinuities are better
handled leading to a more visually pleasing result. The third row shows results of a more expensive shader (SSAO) (dynamic scene and static
camera). The background exhibits the high quality achieved by temporal convergence. The PSNR reflects the positive influence of our method.
The bottom row shows a dynamic scene with high-frequency shading. (More results are shown in Figure 1.)

Further, our algorithm relies on the assumption that temporal
changes in the shading are smooth and spatially coherent and can
therefore be low-pass filtered. And all quickly varying signals are
only due to aliasing or noise in the shading1. Otherwise, we could
not reliably estimate our temporal weighting coefficient wf , trad-
ing spatial with temporally-amortized upsampling, as our gradi-
ents would flicker. Hence, fine details in the shading that are also
quickly changing in time are hard to detect. Fortunately, fast tem-
poral changes are also hard to track by the human visual system and
may appear blurry due to the integration in our eye (e.g. hold-type
effect of modern LCD displays).

A second minor shortcoming is the influence of apparent motion
blur in the temporally-amortized upsampling, which arises from the

1Ideally, to avoid aliasing we would like to low-pass filter the input sig-
nal to the shading instead of the shading result itself. However, this way we
would have to interfere with the shader algorithm, which we want to treat as
a black-box decoupled from the upsampling

discretization in the bilinearly-filtered pixel flow accumulated over
the history of reprojected frames. Even though our motion vectors
are computed at high resolution, blur still appears when for example
moving the camera because small deviations from the pixel center
in the reprojection accumulate over several frames (see Fig. 9). A
simple remedy also proposed in [Yang et al. 2009] is to increase
the resolution of our exponential history buffer to sub-pixel accu-
racy. On the other hand, our spatio-temporal upsampling reduces
the temporal influence of old pixels and shortens the lookup-chain
leveraging the spatial coherence (even when shading is static pixels
always have a small influence on the spatial neighborhood).

Our work relies on temporal gradients solely to adapt the temporal
filter weights. Ideally, we would have wanted to extrapolate infor-
mation based on these gradients, but this did not proof to be robust
enough due to accumulated errors in those gradients.

Our algorithm produces better results with increasing frame-rates
because incorrect pixels are quickly refreshed by newly computed

t = 0 t = -1 t = -2

N
ea

re
st

ne

ig
hb

or
Bi

lin
ea

r

Figure 9: Precision loss in temporal reprojection: (top) near-
est neighbor reprojection results in discontinuities when the cor-
rect continuous motion flow (green arrows) and the approximate
nearest-neighbor pixel-flow (red arrows) point to different pixels.
(Bottom) bilinear texture filtering trades discontinuities with blur
since an ever-growing neighborhood influences the final result.

ones. A downside are the temporal patterns, that at least in
screen shots, are clearly recognizable as the deterministic temporal
sampling pattern. However, more sophisticated adaptive methods
would easily annihilate our gained speedup. A dynamic change in
sampling patterns could help to hide the problems behind noise, but
we believe that more complex adaptations of the spatial-temporal
weighting might be a better choice that we keep as future work.

References

ADELSON, S. J., AND HUGHES, L. F. 1995. Generating Ex-
act Ray-Traced Animation Frames by Reprojection. IEEE Com-
puter Graphics & Applications 15, 3, 43–53.

BALA, K., DORSEY, J., AND TELLER, S. 1999. Ray-Traced Inter-
active Scene Editing Using Ray Segment Trees. In Proceedings
of the 10th Eurographics Workshop on Rendering.

BAVOIL, L., AND SAINZ, M. 2008. Image-space horizon-based
ambient occlusion. In SIGGRAPH 2008, Talk Program.

BENNETT, E. P., AND MCMILLAN, L. 2005. Video enhancement
using per-pixel virtual exposures. ACM Transactions on Graph-
ics 24, 3, 845–852.

BISHOP, G., FUCHS, H., MCMILLAN, L., AND ZAGIER, E. J. S.
1994. Frameless rendering: double buffering considered harm-
ful. In Proceedings of SIGGRAPH ’94, 175–176.

CALLE, D., AND MONTANVERT, A. 1998. Super-resolution in-
ducing of an image. Image Processing, International Conference
on 3, 232.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In I3D ’05: Proceedings of the symposium on
Interactive 3D graphics and games, 203–231.

DAMEZ, C., DMITRIEV, K., AND MYSZKOWSKI, K. 2003.
State of the art in global illumination for interactive applications
and high-quality animations. Computer Graphics Forum 22, 1
(Mar.), 55–77.

DAYAL, A., WOOLLEY, C., WATSON, B., AND LUEBKE, D. P.
2005. Adaptive frameless rendering. In Rendering Techniques,
265–275.

EISEMANN, E., AND DURAND, F. 2004. Flash photography
enhancement via intrinsic relighting. In ACM Transactions on
Graphics (Proceedings of Siggraph Conference), ACM Press,
vol. 23.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2007. PCU: the
programmable culling unit. In Proc. of SIGGRAPH ’07, ACM.

KOLTUN, V., CHRYSANTHOU, Y., AND COHEN-OR, D. 2000.
Virtual occluders: An efficient intermediate pvs representation.
In 11th Eurographics Workshop on Rendering, 59–70.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Transactions on
Graphics 26, 3 (July).

MARK, W., MCMILLAN, L., AND BISHOP, G. 1997. Post-
rendering 3D warping. In 1997 Symposium on Interactive 3D
Graphics, ACM SIGGRAPH, 7–16.

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N.,
AND ISIDORO, J. R. 2007. Accelerating real-time shading with
reverse reprojection caching. In Graphics Hardware.

PETSCHNIGG, G., SZELISKI, R., AGRAWALA, M., COHEN, M.,
HOPPE, H., AND TOYAMA, K. 2004. Digital photography with
flash and no-flash image pairs. ACM Transactions on Graphics
(Proceedings of Siggraph Conference) 23, 3, 664–672.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. In Proc. of Sig-
graph’87.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approx-
imating Dynamic Global Illumination in Screen Space. In Proc.
of ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games.

SCHERZER, D., JESCHKE, S., AND WIMMER, M. 2007. Pixel-
correct shadow maps with temporal reprojection and shadow test
confidence. In Rendering Techniques, 45–50.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PROCHE, B.
2006. Bidirectional Instant Radiosity. In Rendering Techniques,
389–397.

SHINYA, M. 1993. Spatial Anti-aliasing for Animation Sequences
with Spatio-temporal Filtering. In Proceedings of SIGGRAPH
’93, 289–296.

SITTHI-AMORN, P., LAWRENCE, J., YANG, L., SANDER, P. V.,
AND NEHAB, D. 2008. An improved shading cache for modern
gpus. In Graphics Hardware.

SITTHI-AMORN, P., LAWRENCE, J., YANG, L., SANDER, P. V.,
NEHAB, D., AND XI, J. 2008. Automated reprojection-based
pixel shader optimization. In SIGGRAPH Asia ’08, ACM, 1–11.

TEKALP, A. M. 1995. Digital video Processing. Prentice Hall.

WALD, I., KOLLIG, T., BENTHIN, C., KELLER, A., AND
SLUSALLEK, P. 2002. Interactive global illumination using fast
ray tracing. In Rendering Techniques, 15–24.

WALTER, B., DRETTAKIS, G., AND PARKER, S. 1999. Interactive
Rendering using the Render Cache. In Proceedings of the 10th
Eurographics Workshop on Rendering, 235–246.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-
aware framebuffer level of detail. In Rendering Techniques.

YANG, L., NEHAB, D., SANDER, P. V., SITTHI-AMORN, P.,
LAWRENCE, J., AND HOPPE, H. 2009. Amortized supersam-
pling. Proc. of SIGGRAPH Asia ’09.

