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Abstract. We present a verification system for Creol, an object-oriented
modeling language for concurrent distributed applications. The system
is an instance of KeY, a framework for object-oriented software verifica-
tion, which has so far been applied foremost to sequential Java. Building
on KeY characteristic concepts, like dynamic logic, sequent calculus, ex-
plicit substitutions, and the taclet rule language, the system presented
in this paper addresses functional correctness of Creol models featuring
local cooperative thread parallelism and global communication via asyn-
chronous method calls. The calculus heavily operates on communication
histories which describe the interfaces of Creol units. Two example sce-
narios demonstrate the usage of the system.

1 Introduction

The area of object-oriented program verification made significant progress during
the last decade. Systems like Boogie [6], ESC/Java2 [23], KeY [9], and Krakatoa
[22] provide a high degree of automation, elaborate user interfaces, extensive tool
integration, support for various specification languages, and high coverage of a
real world target language (Spec# in case of Boogie, Java in case of the other
mentioned tools).

However, this development mostly concerns sequential, free-standing appli-
cations. When it comes to verifying functional properties of concurrent and dis-
tributed applications, the situation is different. Even if there is a rich literature
on the verification of ‘distributed formalisms’ (based for instance on process cal-
culi [35, 27, 36]), there are hardly any systems yet matching the aforementioned
characteristics. Moreover, many formalisms lack a connection to the dominating
paradigm of today’s software engineering, object-orientation, which is an obstacle
for the integration into software development environments and methods.

This work is a contribution towards effective and integrated verification of
concurrent, distributed systems. We present a verification system that is built
on two foundations: the Creol modeling language for concurrent and distributed
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object-oriented systems [32], and the KeY approach and system for the verifi-
cation of object-oriented programs [9]. By combining KeY’s proving technology
with Creol’s novel approach to modular modeling of components, we achieve a
system for highly modular verification of concurrent, distributed object-oriented
applications. While being a prototype system yet, past experience with the tech-
nological and conceptual basis justifies the perspective of future versions to enjoy
similar features as state-of-the-art sequential verification systems already do.

Creol is an executable object-oriented modeling language. It features con-
currency in two ways. First of all, different objects execute truly in parallel,
as if each object had its own processor. Objects have references to each other,
but cannot access each other’s internal state. Consequently, there is no remote
access to attributes, like ‘o.a’ in other languages. The only way for objects to
exchange information is through methods. Calls to methods are asynchronous
[31], in the sense that the calling code is able to continue execution even before
the callee replies. Mutual information hiding is further strengthened by object
variables being typed by interfaces only, not by classes. The loose coupling of
objects, their strong information hiding and true parallelism, is what suggest
distributed scenarios, with each object being identified with a node. The second
type of concurrency is object internal. Each call to a method spawns a separate
thread of execution. Within one object, these threads execute interleaved, with
only one thread running at a time. Here, the key to modularity is the coopera-
tive nature of the scheduling: a thread is only ever interrupted when it actively
releases control, at ‘release points’.

Altogether, Creol allows highly modular verification. Within one class, the
various methods can be proved correct in isolation, in spite of the shared memory
(the attributes), by guaranteeing and assuming a class invariant at each release
point in the code. At the inter-object level, the vehicle to connect the verification
of the various classes is the ‘history’ of inter-object communications. Interface
specifications are expressed in terms of the history, and class invariants relate
the history with the internal state. The fact that each object has only partial
knowledge about the global communication history is modeled by projecting the
global history onto the individual objects [30].

Our system is based on the KeY framework for verifying object-oriented soft-
ware. The most elaborate instance of KeY is a verification system for sequential
Java [9]. Other target languages of KeY are C [39], ASMs [40], and hybrid systems
[42]. All these have in common that they use dynamic logic, explicit substitutions,
and a sequent calculus realized by the ‘taclet’ language. These concepts, to be
introduced in the course of the paper, have proved to be a solid foundation of a
long lasting and far reaching research project and system for verifying functional
correctness of Java [9]. Dynamic logic features full source code transparency, like
Hoare logic, but is more expressive than that. Explicit (simultaneous) substitu-
tions, called updates, provide a compact representation of the symbolic state,
and allow a natural forward style symbolic execution. Apart from verification,
updates are also employed for test case generation and symbolic debugging. Se-
quent calculi are well-suited for the interleaved automated and interactive usage.



And finally, taclets provide a high-level rule language capturing both the logi-
cal and the operational meaning of rules. They are well suited both for the base
logic and for the axiomatization of application specific operations and predicates.
KeY has been used in a number of case studies, like the verification of the Java
Card API Reference Implementation [38], the Mondex case study (the most sub-
stantial benchmark in the Grand Challenge repository) [44], the Schoor-Waite
algorithm [12], and the electronic purse application Demoney [37]. The system
is also used for teaching in various courses at Chalmers University and several
other universities.

However, the KeY approach has so far almost only been applied to the se-
quential setting.3 It is precisely the described modularity of Creol that allowed us
to base our verification system on the same framework. The main challenges for
adjusting the KeY approach to Creol were the handling of asynchronous method
calls, the handling of release points, and, most of all, the extensive usage of the
communication history throughout the calculus.

The structure of the paper is as follows. Sect. 2 introduces Creol, and gives
examples of its usage. In Sect. 3, we describe the logic and calculus character-
istic for KeY, insofar as they are (largely) independent of the particular target
language. Thereafter, Sect. 4 presents a KeY style logic and calculus for Creol
specifically. Sect. 5 discusses system oriented aspects of KeY for Creol, including
a small account on taclets. Sect. 6 then demonstrates the usage of the systems
in examples. In Sect. 7, we discuss related work, and draw conclusions.

2 Overview of Creol

In this section, we introduce our slightly adapted version of Creol, using an
automated teller machine scenario adapted from [29]. The example will also be
used to discuss Creol verification in later sections.

The scenario we consider has three kinds of actors. There are several teller
machines (class ATM), several users (class User), and one server (class Server).
In the course of a certain session, a teller machine communicates with one user,
and with the server, as depicted in Fig. 1.

Fig. 1. Communication of the automated teller machine

The picture shows that, while User and Server implement one interface each
(USR resp. S), the class ATM implements two interfaces, ATMU and ATMS,

3 See Sect.7 for an exception.



dedicated for the communication in either of the directions. The Creol definition
of the interfaces is given in Fig. 2. (We omit ATMS, which is empty.)

interface USR
begin

with ATMU
op giveCode(in; out code:Int)
op withdraw(in; out amount:Int)
op dispense(in amount:Int; out)
op returnCard(in; out)

end

interface ATMU
begin

with USR
op insert(in cardId:Int; out)

end

interface S
begin

with ATMS
op authorize(in cardId:Int, code:Int; out ok:Bool)
op debit(in cardId:Int, amount:Int; out ok:Bool)

end

Fig. 2. The interfaces of the automated teller machine

We can observe that the signature of operations contains (possibly empty)
lists for in- and out-parameters. The operations offered by interfaces appear in
the scope of ‘with cointerface’, with the meaning that those operations can only
be called from instances of classes implementing that cointerface. For instance,
the server cannot call insert on a teller machine, not even if it was in the posses-
sion of an ATMU typed reference. Another consequence of cointerfaces is that the
implementations of operations have a well-typed reference to the caller, without
that reference being passed explicitly as an input parameter.

The class ATM in Fig. 3 is an example for a class definition. Variables are im-
plicitly initialized with false or 0 for primitive types, and null for labels and object
references. Some variables are declared of type Label[...], like var li:Label[Int].
Later, the execution of the call li!caller.giveCode(), for instance, allocates a new
label, and assigns it to li. The label is later used in the reply statement li?(code),
to associate the reply with the respective call. The effect of the reply is that
code is assigned the output of the (li-labeled) call to giveCode, provided that
the corresponding reply message has already arrived. Otherwise, the statement
blocks, without the thread releasing control. (This ‘busy waiting’ can be avoided
by the await statement, see below.) The effect of li?(x) is similar to treating x as
a future variable [15, 5] or promise [34]. In a label type Label[T ], the T indicates
the type of the output of the called operation.

Note that the calls to dispense and returnCard are executed before any of the
replies is asked back. This allows the two called methods to execute interleaved
on the processor of the called object. (Note that the calls went to the same



class ATM implements ATMS, ATMU
begin

var server : S;
with USR

op insert(in card:Int; out) ==
var li:Label[Int]; var lb:Label[Bool]; var l:Label[];
var l2:Label[]; var code:Int; var ok:Bool; var am:Int;
li!caller.giveCode(); li?(code);
lb!server.authorize(card,code); lb?(ok);
if ok
then li!caller.withdraw(); li?(am);

lb!server.debit(card,am); lb?(ok);
if ok
then l!caller.dispense(am); l2!caller.returnCard(); l?(); l2?()
else l!caller.returnCard(); l?() end

else l!caller.returnCard(); l?() end; return()
end

Fig. 3. The class implementing the teller machine

object.) In general, arbitrary code can be executed in between a call and the
corresponding reply. We want to highlight that the implementation of insert ex-
tensively uses the caller reference, which is known to be of type USR, for callbacks.
This style of coupling communicating objects might clarify the distribution of
operations over interfaces in the teller machine scenario (cf. Fig. 2).

We discuss further features of Creol not captured by the above example. New
objects are created by x := new C(e∗), where C is a class identifier supplied with
a list of class parameters. As indicated earlier, l?(x∗) blocks execution, without
releasing control, until the corresponding reply message has arrived. In contrast,
the command await l? releases control if the reply for l has not yet arrived,
such that the scheduler can pass control to another thread of this object. Other
release points are await b, releasing control if the Boolean expression b is false,
and the unconditioned release. The example code above did not contain release
points, but see the buffer example in Sect.6.1 (Fig. 7).

In Creol, expressions have no effect on the state. We model errors, like division
by zero, by non-terminating (and non-releasing) blocking. The same holds for a
call on the null reference and a reply on the null label.

3 The KeY approach: Logic, Calculus, and System

3.1 Dynamic Logic with Explicit Substitutions

KeY is a deductive verification system for functional correctness. Its core is a the-
orem prover for formulas in dynamic logic (DL) [25], which, like Hoare logic [26],
is transparent with respect to the programs that are subject to verification. DL



is a particular kind of modal logic. Different parts of a formula are evaluated
in different worlds (states), which vary in the interpretation of functions and
predicates. The modalities are ‘indexed’ with pieces of program code, describing
how to reach one world (state) from the other. DL extends full first-order logic
with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and [ . ] . (box). In both
cases, the first argument is a program (fragment), whereas the second argument
is another DL formula. A formula 〈p〉φ is true in a state s if execution of p
terminates when started in s and results in a state where φ is true. As for the
other operator, a formula [p]φ is true in a state s if execution of p, when started
in s, either does not terminate or results in a state where φ is true. In other
words, the difference between the operators is the one between total and partial
correctness.4

DL is closed under all logical connectives. For instance, the following formula
states equivalence of p and q w.r.t. the “output”, the program variable x.

∀ v . ( 〈p〉 x
.= v ↔ 〈q〉 x

.= v )

A frequent pattern of DL formulas is φ → 〈p〉ψ, stating that the program p,
when started from a state satisfying φ, terminates with ψ being true afterwards.
The formula φ → [p]ψ, on the other hand, does not claim termination, and
corresponds to the Hoare triple {φ} p {ψ}.

The main advantage of DL over Hoare logic is increased expressiveness: pre-
or postconditions can contain programs themselves, for instance to express that
a linked structure is acyclic. Also, the relation of different programs to each other
(like the correctness of transformations) can be expressed elegantly.

All major program logics (Hoare logic, wp calculus, DL) have in common that
the resolving of assignments requires substitutions in the formula, in one way or
the other. In the KeY approach, the effect of substitutions is delayed, by having
explicit substitutions in the logic, called ‘updates’. This allows for accumulating
and simplifying the effect of a program, in a forward style. Elementary updates
have the form x := e, where x is a location (in the case of Creol, an attribute
or local variable) and e is a (side-effect free) expression. Elementary updates
are combined to simultaneous updates, like in x1 := e1 |x2 := e2, where e1
and e2 are evaluated in the same state. For instance, x := y | y := x stands for
exchanging the values of x and y. Updates are brought into the logic via the
update modality { . } . , connecting arbitrary updates with arbitrary formulas,
like in x < y→ {x := y | y := x} y < x. A typical usage of updates during proving
is in formulas of the form {U}〈p〉φ, where U is an update, accumulating the
effects of program execution up to a certain point, p is the remaining program
yet to be executed, and φ a postcondition. A full account of KeY style DL is
found in [11].

4 Just as in standard modal logic, the diamond vs. box operators quantify existentially
vs. universally over states (reached by the program). In case deterministic programs,
however, the only difference between the two is whether termination is claimed or
not.



3.2 Sequent Calculus

The heart of KeY, the prover, uses a sequent calculus for reducing proof obliga-
tions to axioms. A sequent is a pair of sets of formulas written as φ1, ..., φm `
ψ1, ..., ψn. The intuitive meaning is that, if all φ1, ..., φm hold, at least one of
ψ1, ..., ψn must hold. Rules are applied bottom-up, reducing the provability of
the conclusion to the provability of the premises. In Fig. 4 we present a selection
of the rules dealing with propositional connectives and quantifiers (see [24] for
the full set). φ[v/e] denotes a formula resulting from replacing v with e in φ.

impRight
Γ, φ ` ψ,∆
Γ ` φ→ ψ,∆

andRight
Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆
allRight

Γ ` φ[v/c],∆

Γ ` ∀v.φ,∆
with c a new constant

Fig. 4. A selection of first-order rules

When it comes to the rules dealing with programs, many of them are not
sensitive to the side of the sequent and can even be applied to subformulas. For
instance, 〈skip; ω〉φ can be rewritten to 〈ω〉φ regardless of where it occurs. For
that we introduce the following syntax

bφ′ c
bφ c

for a rule stating that the premise sequent bφ′ c is constructed by replacing φ
with φ′ anywhere in the conclusion sequent bφ c. In Fig. 5 we present some
rules dealing with statements. (assign and if are simplified, see Sect. 4.1.) The
schematic modality 〈[·]〉 can be instantiated with both [·] and 〈·〉, though con-
sistently within a single rule application. Total correctness formulas of the form
〈while ...〉φ are proved by combining induction with unwind.

assign
b {x := e}〈[ω]〉φ c
b 〈[x := e; ω]〉φ c

if
b (b→ 〈[s1; ω]〉φ) ∧ (¬b→ 〈[s2; ω]〉φ) c
b 〈[if b then s1 else s2 end; ω]〉φ c

unwind
b 〈[if b then s; while b do s end end; ω]〉φ c

b 〈[while b do s end; ω]〉φ c

Fig. 5. Dynamic logic rules

Because updates are essentially delayed substitutions, they are eventually
resolved by application to the succeeding formula, e.g., {u := e}(u > 0) leads to
e > 0. Update application is only defined on formulas not starting with box or
diamond. For formulas of the form {U}〈s〉φ or {U}[s]φ, the calculus first applies
rules matching the first statement in s. This leads to nested updates, which are



in the next step merged into a single simultaneous update. Once the box or
diamond modality is completely resolved, the entire update is applied to the
postcondition.

4 A Calculus for Creol Dynamic Logic

Building on the logic and the calculus presented in the previous section, we
proceed with the sequent rules handling Creol statements. For the full set of
rules, see [20].

4.1 Sequential Constructs

We start with assignments. As soon as the right side is simply a variable or literal
(summarized as ‘terminal expression’, te) the assignment can be transformed to
an update, such that the effect will eventually (not immediately) be applied to
the postcondition. The same applies for implicit assignments in variable decla-
rations. We give only the rule for integer variable declaration.

assign
b {x := te}〈[ω]〉φ c
b 〈[x := te; ω]〉φ c

intDecl
b {i := 0}〈[ω]〉φ c
b 〈[var i : Int; ω]〉φ c

The same mechanism can be used for operator expressions, as long as all argu-
ments are terminal and errors can be excluded. For instance, a division can be
shifted to an update iff the divisor is not zero. Otherwise, execution blocks. This
semantics is captured by the following rule.

DivTerminal
b (¬te2

.= 0→ {x := te1/te2}〈[ω]〉φ) ∧ (te2
.= 0→ 〈[block; ω]〉φ) c

b 〈[x := te1/te2; ω]〉φ c

An error could occur arbitrarily deep in an expression. Therefore, expressions
are unfolded until they consist only of a top level operator applied to terminal
expressions. This is exemplified by the following rules (x′ and x′′ are new program
variables).

b 〈[x′ := e1; x′′ := e2 ; x := x′ + x′′; ω]〉φ c
b 〈[x := e1 + e2; ω]〉φ c

b {x := te1 + te2}〈[ω]〉φ c
b 〈[x := te1 + te2; ω]〉φ c

In the left rule ei are non-terminal expressions. As all expressions are unfolded,
nested divisions will eventually be analyzed by DivTerminal. Other statements
using expressions, like if, are unfolded in the same way, until the condition is
terminal and the following rule applies:

if
b (tb .= true→ 〈[p; ω]〉φ) ∧ (tb .= false→ 〈[q; ω]〉φ) c

b 〈[if tb then p else q end; ω]〉φ c

Note that application of this rule may lead to proof branching in subsequent
steps. As for while, the unwind rule was presented in Sect. 3.2. An alternative



rule using a loop invariant is discussed in section 4.3. That rule, however, only
covers the box operator. Finally, the rules for the block statement reflect the
fact that a non-terminating program is always partially correct, but never totally
correct:

blockBox
b true c

b [block; ω]φ c
blockDia

b false c
b 〈block; ω〉φ c

4.2 Interface and Class Invariants

The verification process of Creol programs is completely modular. This means
we verify only one method (of one class) at the time and do not consider any
other code during this process. Instead, we take into account the other threads
of the object by guaranteeing the class invariant at release points and assuming
it again when execution proceeds. As for the behavior of other objects, that is
represented by using specification of their interfaces. An additional construct in
the proof is the communication history, which both the specifications as well as
the class invariants talk about. These concepts for reasoning about Creol were
introduced in [17, 19].

The communication history can be viewed as a list of messages of method
invocations, method completions, and object creations. For modular reasoning
we always consider projections of the system wide history H. Every interface is
specified by an interface invariant inv I(H/o/I), with o ranging over objects of
type I. The system wide historyH is projected (H/o/I) to messages concerning o
and talking about methods declared in I. During verification at method calls and
replies, H/this/I is checked against the specification. Continuing the previous
example of Fig. 2 the interface USR is equipped with the following invariant:

H/o/USR ≤ (→ giveCode[· → withdraw[· → dispense]]· → returnCard)∗

where · is appending, → are invocation messages, ← are completion messages,
brackets are used for optional occurrence, and ∗ is the Kleene star. The parame-
ters and communication partners are omitted for brevity. The invariant expresses
that the history of the interface is always a prefix of this regular expression, such
that an interaction with the user always begins with requesting PIN code and
ends with requesting removal of the card. The interface S is specified by:

H/o/S ≤
(
→ authorize(cid , .) ·

(
← authorize(false)|
← authorize(true)· → debit(cid , .)· ← debit(.)

))∗
Communication partners are omitted. The dot ‘.’ is used as a wildcard for a
parameter. Parameters (including the card id cid) and communication partners
are quantified universally. The meaning of the invariant is that only after autho-
rization can the debit procedure be attempted.

We turn to the class invariant invC(H/this,W), which forms a contract be-
tween all threads of the object. W is the vector of class attributes. Those might
get overwritten by other threads during suspension of this thread, but the in-
variant expresses properties of W every thread is respecting. The class invariant



is parametrized by H/this which is the projection of the system wide history to
the object the invariant belongs to. It contains all messages sent to or by the
object this. A class invariant consists of several parts:

invC(H/this,W) , F (H/this,W) ∧Wf (H/this) ∧ ∀obj
∧
I

inv I(H/this/obj/I)

F (H/this,W) relates the state of the ordinary class attributes W with the his-
tory, reflecting the refinement of the fully abstract interface specification to the
local state. Wf (H/this) is a predicate being interpreted to true for well-formed
histories. A well-formed history starts with the creation message of this, con-
tains invocation messages for all completion messages, and does not include any
object references being null. Then, all invariants of all interfaces I invoked or
implemented by the class of this put in a conjunction to ensure that all meth-
ods respect them. obj are the objects known by this. Now we can formulate the
proof obligation for a method. The precondition is the class invariant, instan-
tiated with a history ending on an invocation of the method. After executing
the body the invariant holds again for the history ending with its completion
message.

` invC(H/this,W)→ [body ]invC(H/this,W) (1)

Let us proceed with an example for a class invariant. For class ATM of Fig. 3,
the formula F is:

FATM (H/this,W) , ¬server
.= null ∧ ∀cid .sumwd(H/cid) .= sumdeb(H/cid)

It states that the reference server is never null and the sum of all withdrawn
money for all cards cid equals the sum of the money debited. More detailed,
sumwd(h) calculates the sum of the money withdrawn in the history h. (In the
equations, msg is used as the ‘otherwise case’.)

sumwd(ε) = 0
sumwd(h· → withdraw(am)) = sumwd(h) + am

sumwd(h ·msg) = sumwd(h)

sumdeb(h) is the sum of the money debited from the corresponding bank account.
Only successful debit calls are counted.

sumdeb(ε) = 0
sumdeb(h· → debit(am, cid)· ← debit(true)) = sumdeb(h) + am

sumdeb(h ·msg) = sumdeb(h)

In the system such equations are realized as taclets (see Sect. 5).

4.3 Concurrent Constructs

There are two different levels of communication, namely inter-thread communi-
cation within one object via shared memory (the class attributes W) and inter-
object communication via method calls and replies. We start with the rules



concerning the first and focus on the latter further below. In this section we
abbreviate H/this by H.

The simplest form of a release point is release. As mentioned before the
class invariant forms a contract between all threads of an object. So the rule for
release forces us to show that the class invariant is established in the current
state, before releasing the processor. When this thread resumes, the invariant
can be assumed before the remaining code ω is executed.

release
Γ ` invC(H,W), ∆ Γ ` {UH,W}[ω]φ,∆

Γ ` [release; ω]φ,∆

Here, UH,W is the update H,W := some H,W.(invC(H,W ) ∧ H ≤ H). The
update UH,W represents an arbitrary but fixed system state satisfying the class
invariant in which execution continues. By H ≤ H we denote that the old history
H is a prefix of the new one H. The update is necessary because values of the
class attributes could have been overwritten by other threads, and because H
might have grown meanwhile.

Note that this rule, as well as all rules in this section, can also be applied
when the modality is preceded by updates, which is the typical scenario. These
updates are preserved in the instantiation of the premises (see [11]).

The await b statement is handled by a similar rule, with the additional as-
sumption that the guard b holds when execution resumes. A minor complication
is that we also must assume that evaluation of b does not block due to an error.
The two assumptions together are expressed via 〈x := b〉x .= true.

awaitExp
Γ ` invC(H,W), ∆ Γ ` {UH,W}(〈x := b〉x .= true→ [ω]φ), ∆

Γ ` [await b; ω]φ,∆

By replacing 〈x := b〉x .= true with Comp(H, l) in the above rule, we get a rule
for await l?. The predicate Comp(H, l) is valid if a completion message with the
label l is contained in the history H. The handling of Comp(H, l) in the proof
is discussed further below.

Partial correctness of a loop can also be shown with help of a loop invariant
inv loop(H,mod), where mod is the modifier set of the loop (all variables assigned
in the loop). To be most general, all class attributes could be included in the
modifier set. The history could be omitted as a parameter of the loop invariant
if there are no method calls, method completions or object creations in the loop
body.

loopInv

Γ ` 〈x:=b〉true → inv loop(H,mod) ∧Wf (H), ∆ (init. valid)
Γ ` {U loop

H,mod
}(〈x:=b〉x .= true→ [p]inv loop(H,mod)), ∆ (preserving)

Γ ` {U loop

H,mod
}(〈x:=b〉x .= false→ [ω]φ), ∆ (use-case)

Γ ` [while b do p end; ω]φ,∆

The update U loop

H,mod
is defined as:

H,mod := some H,m.(Wf (H) ∧H ≤ H ∧ inv loop(H,m))



It creates a new history H and a new modifier set, such that the loop invariant
holds. If the condition b of the loop contains an exceptions the implication of all
branches are true.

Analogous to Comp(H, l) there are predicates Invoc(H, l) and New(H, o)
which guarantee the existence of an invocation message with label l and an
object creation message with reference o in the history H, respectively. During
a proof, uncertainty is inherent in the projection of the history to this, as there
could be incoming method invocations at any time. When dealing with method
calls we only state the existence of a corresponding message in the history. We
do not append it to the history. In general all rules of Sect. 4.1 would need to
cover potential extensions, using the prefix predicate ≤. It is however equivalent
to extend the history on access (release points, method calls, etc.).

To exemplify some properties of the predicates dealing with the history we
give the following formula which is a tautology.

Comp(H0, l) ∧H0 ≤ H1 → Comp(H1, l) (2)

Besides Comp, New , as well as Invoc are monotonous w.r.t. ≤. Additionally, the
contra-position is used in our proof system.

We turn attention towards method invocation l!o.mtd(pin). Its execution
assigns a unique reference to l, and extends the history by the corresponding
invocation message:

invoc

Γ `Wf (H) ∧ inv I(H/o/I), ∆
Γ ` o .= null→ 〈[block; ω]〉φ,∆
Γ ` ¬o .= null→ {l := (this, o,mtd , pin, i)}{U invoc

H }〈[ω]〉φ,∆
Γ ` 〈[l!o.mtd(pin); ω]〉φ,∆

If o is null, execution blocks. In the first branch, the invariant of the remote
interface I must be shown (I being the type of o). The index i is new and
assures uniqueness of the label l. The abbreviation U invoc

H for the update, is in
its full form:

H := some H.(Wf (H)∧H ≤ H ∧ inv I(H/o/I, pin)∧ Invoc(H, l)∧¬Invoc(H, l))

The new history contains the invocation message Invoc(H, l). As the label l is
unique the invocation message must not be included in the previous history
(¬Invoc(H, l)), which prefixes the new one (H ≤ H). The new history H is
well-formed (Wf (H)) and it respects the interface invariant inv I(H/o/I, pin)
where the in-parameters pin are added as they occur in the appended invocation
message.

A completion statement l?(pout) assigns the return parameters of the method
call identified by the label l to pout. If the label l is null, execution blocks.

comp

Γ ` Invoc(H, l) ∧Wf (H) ∧ inv I(H/l.callee/I), ∆
Γ ` l .= null→ [block; ω]φ,∆
Γ ` ¬l .= null→ {U comp

H,pout
}[ω]φ,∆

Γ ` [l?(pout); ω]φ,∆



As we are extending the history with a completion message, we check the ex-
istence of the corresponding invocation message by Invoc(H, l) to ensure well-
formedness. The selector callee delivers the reference of the sender of the com-
pletion message. U comp

H,pout
is analogous to U invoc

H where the only difference is that
pout is overwritten and Comp is used instead of Invoc.

H, pout := some H, p̄.

(
Wf (H) ∧H ≤ H ∧ inv I(H/l.callee/I, p)

∧Comp(H, l) ∧ ¬Comp(H, l)

)
We omit the rule for object creation, mentioning only that the new reference

is constructed by the pair (this, i), here i is an object local, successively incre-
mented index. An alternative, fully abstract modeling of object creation in DL
is investigated in [4] and can be adapted also here.

Finally, we consider the return statement. It sends the completion message
belonging to the method call of the verification process and the thread terminates
afterwards. The class invariant is not explicitly mentioned in the following rule
as it is contained in φ (see previous section).

return
Γ ` Invoc(H, l) ∧Wf (H) ∧ inv I(H/caller/I), ∆ Γ ` {U return

H }φ,∆
Γ ` 〈[return(pout)]〉φ,∆

Here, l is the label of the message which created the thread subject to verification,
I the corresponding interface, and caller the corresponding caller. The update
U return
H adds the completion message to the history which must not occur in the

previous history.

H := some H.(Wf (H)∧H ≤ H ∧ inv I(H/caller/I)∧Comp(H, l)∧¬Comp(H, l))

5 A System for Creol Verification

The verification system for Creol is based on KeY[9]. Written in Java and pub-
lished under the GNU general public license, it is available from the project’s
website5. The current version is a prototype which provides the functionalities
presented in this paper. It has a graphical user interface where the proof tree and
open proof goals are displayed. Other features are pretty-printing and syntax-
highlighting of the subformula/subterm currently pointed at with the mouse
pointer. This enables a context sensitive menu offering only the rules applica-
ble to the highlighted subformula/subterm. Apart from the rule name, tool-tips
describe the effect of a rule. Besides interactive application of rules, automatic
strategies can be configured. A more detailed description of the KeY interface is
available in [3].

Problem files, logical rules, and axiomatizations of data types are written in
the taclet language [43]. In Fig. 6 the rule impRight from Fig. 4 and the equation
Eq. (2) are defined in the taclet language. A find describes the formula the rule

5 www.key-project.org



is applicable to, replacewith specifies the replacement for the find formula,
assumes characterizes further assumptions not subject to replacements, and add
causes its argument to be added. The arrow ==> indicates on which side of the
sequent the formulas are found, replaced or added. Writing a semicolon between
two occurrences of replacewith or add causes a branching. Taclets omitting the
sequence arrow ==> are rewriting rules applicable in all contexts.

impRight {\find(==> phi -> psi)

\replacewith(==> psi)

\add(phi ==>) }

compMon {\find(Comp(H1,L) ==>)

\assumes(Prefix(H1,H2) ==>)

\add(Comp(H2,L) ==>) }

Fig. 6. Rules in the taclet language

The theory explained in the previous section needed some small extensions
to be run in the system. First, the some quantifier was not implemented, but
is expressed by another formula. For example, the update formula like {H :=
some H.(Wf (H) ∧H ≤ H)}φ is rewritten to:

∀H0.(H
.= H0 → ∀H1.{H := H1}((Wf (H1) ∧H0 ≤ H1)→ φ))

The old value of H is saved in H0, and the new variable H1 is assigned to H.
The implication assures that H1 has the desired properties when evaluating φ.

Finally, there are different prefix predicates ≤I where I is an interface.
Thereby the interface invariant for I ′ is monotonous on ≤I if I ′ 6= I. The rules
invoc, comp, and return use ≤I where I is the interface the message the rule adds
corresponds to. Release points and the loop invariant use a prefix predicate ≤all

which is not monotonous for interface specifications.
The Creol parser is written in about 3900 lines of code using ANTLR as

parser generator. The adaptions in the KeY-system took another 5000 lines.
Finally, the rules written in the taclet language are about 1700 lines long.

6 Verification Examples

6.1 Unbounded buffer

We give an implementation for an unbounded first-in-first-out (FIFO) buffer.
This example is adapted from [18]. The interface contains two methods put and
get which can be used to put into and to obtain an element from the buffer.

interface FifoBuffer
begin with Any

op put(in x:Any; out)
op get(in; out x:Any)

end

The interface invariant expresses that the sequence of elements retrieved from
the buffer are a prefix of the elements put into the buffer. This ensures the FIFO



property. Additionally, no element must equal null. We define inv I(H, callee)
(slightly simplified) as:

out(H/I, callee) ≤ in(H/I, callee) ∧ ∀x.(x ∈ in(H/I, callee)→ ¬x .= null)

where I is FifoBuffer and in, out are defined as:

in(ε, o) = ε out(ε, o) = ε
in(h · o2 ← o.put(x; ), o) = in(h, o) · x out(h · o2 ← o.get(;x), o) = out(h, o) · x
in(h ·msg, o) = in(h, o) out(h ·msg, o) = out(h, o)

Note that we do not guarantee that a caller gets the same objects it has put into
the buffer. Such a buffer can be used for fair work balancing where a request is
put into the buffer and workers take them out again.

The implementation of the buffer, given in Fig. 7, uses a chain of objects
where each of them can store one element. The attribute cell is null if the object
does not store an element. In next the reference to the following chain of objects
is stored. Requests are forwarded to it if the object cannot serve them alone.
The variable cnt holds the number of elements stored in cell and all following
objects. Calls of get on an empty buffer are suspended until there are elements
in the buffer.

class BufferImpl implements FifoBuffer
var cell:Any; var cnt:Int; var next:FifoBuffer;
begin with Any

op put(in x:Any; out) ==
if cnt=0 then cell:=x

else if next=null then next:=new Buffer end;
var l:Label[]; l!next.put(x); l?()

end;
cnt:= cnt+1; return()

op get(in ; out x:Any) ==
await (cnt>0);
if cell=null then var l:Label[Any]; l!next.get(); l?(x)

else x:=cell; cell:=null
end;
cnt:=cnt−1; return(x)

end

Fig. 7. The class implementing the buffer

For the class invariant we define another term buf (o1, o2, h) which for an
object o1 and its next object o2 reconstructs from the history h the elements in



cell and all following objects.

buf (o1, o2, h) =


ε if h .= ε ∨ o1

.= null ∨ o2
.= null

buf (o1, o2, h′) · x if h .= h′ · o1 ← o2.put(x; )
rest(buf (o1, o2, h′)) if h .= h′ · o1 ← o2.get(;x)
buf (o1, o2, h′) otherwise h .= h′ ·msg

rest removes the first element of a sequence. Let us proceed with the class in-
variant. The attribute cnt equals the number of elements in cell and all following
buffer cells. The interface invariant of FifoBuffer has to hold for both the interface
called and implemented by the class. Additionally, we state that the sequence of
values put into the current cell equals the sequence of values obtained from the
buffer with the cell and the content of the following buffer appended.

|cell · buf (H/next, this, next)| .= cnt
∧(¬next

.= null→ inv I(H/next, next)) ∧ inv I(H, this)
∧in(H, this) .= out(H, this) · cell · buf (H/next, this, next)

In the above formula I, is instantiated by FifoBuffer and H is an abbreviation for
H/this. If cell is null it is omitted. The example with the given specifications was
proved interactively by the system. The method put was verified in 1024 proof
steps and 80 branches, whereas get needed 587 proof steps and 43 branches.
Great parts of the proof were transformations of the sequences the buffer was
specified with. However they went rather smoothly as the problem of the equality
of two sequences is human-readable even if the automated strategy gets stuck. It
seems that a logical toolbox expressing sets, relations and other well-understood
mathematical notions would simplify the process of specifying and verifying other
case studies.

6.2 Automated teller machine

The example of the automated teller machine distributed throughout the paper
was successfully verified in 2495 steps (27 branches) by the system. As the im-
plementation of the class makes heavy use of asynchronous method calls and
(co)interfaces, it has been shown that our system can deal with them. The
amount of method calls produces a chain of prefixed histories where the mono-
tonicity of properties has to be used often. This leads to a number of predicates
expressing properties of histories on the left-hand-side of the sequent. Hence, the
automated strategy must use the monotonicity with care to improve readability
if a branch cannot be closed by it. The experiences with specifications in form
of regular expressions were promising. They are easy to write down and a auto-
mated strategy can deal with them as the number of successor states is usually
limited which narrows the search space of the proof.

7 Discussion and Conclusion

Creol’s notion of inter-object communication is inspired by notions from pro-
cess algebras (CSP [27], CCS [35], π-calculus [36]), which however model syn-



chronous communication mostly. Moreover, Creol differs from those in integrat-
ing the notion of processes in the object-oriented setting, using named objects
and methods rather than named channels. This also introduces more structure to
the message passing (calls, replies, caller references, cointerfaces). The message
passing paradigm on the inter-object level is combined with the shared memory
paradigm on the local inter-thread level. Early approaches to the verification of
shared memory concurrency are interference freedom based on proof outlines [41]
and the rely/guarantee method [33]. Other approaches use object invariants as a
combined assumption/guarantee, both in the sequential setting to achieve mod-
ularity [7, 8], and in the concurrent setting [28]. Compared to the last mentioned
works, Creol is more restrictive in that it forces shared memory to be entirely
object internal. All knowledge of remote data is contained in fully abstract in-
terface specifications talking about the communication history. Communication
histories appeared originally both in the CSP as well as the object-oriented set-
ting [14, 27], and were used for specification and verification for instance in [45,
16].

KeY is among the state-of-the-art approaches to the verification of (at first)
sequential object-oriented programs, together with systems like Boogie [6], ES-
C/Java(2) [23], and Krakatoa [22]. In comparison to those, KeY is unique in
that it does not merely generate verification conditions for an external off-the-
shelf prover, but employs a calculus where symbolic execution of programs is
interleaved with first-order theorem proving strategies. This goes together with
the nature of first-order DL, which syntactically interleaves modalities and first-
order operators. The cornerstone for KeY style symbolic execution, the updates,
have similarities to generalized substitutions in formalisms such as the B method
[2]. Updates are, however, tailored to symbolic execution rather than modeling
(for instance, conflicts are resolved via right-win). The KeY tool uses these up-
dates not only for verification, but also for test case generation with high code
based coverage [21] and for symbolic debugging. The role of updates is largely
orthogonal to the target language, allowing us to fully reuse this machinery for
Creol.

As for Creol’s thread concurrency model, this differs from many other lan-
guages in that it is cooperative, meaning the programmer actively releases control
(conditionally). This simplifies reasoning considerably as compared to reasoning
about preemptive concurrency, where atomicity has to be enforced by dedicated
constructs. There is work on verifying a limited fragment of concurrent Java
with KeY [10]. Here, the main idea is to prove the correctness of all permuta-
tions of schedulings at once. In [1], concurrent correctness of Java threads is
addressed by combining sequential correctness with interference freedom tests
and cooperation tests.

Very related to our work is the extension of the Boogie methodology to con-
current programs [28], targeting concurrent Spec#. From the beginning, this
work is deeply integrated into an elaborate formal development environment,
with all the features mentioned the first paragraph of this paper. The methodol-
ogy requires users to annotate code with commands in between which an object



is allowed to violate its invariant. This is combined with ownership of objects
by threads. Just as in our system, invariants have to be established at specific
points, and can be assumed at others. Also similar is the erasing of knowledge,
there with the havoc statement, here with the some operator. Differences (apart
from the asynchronous method calls) are the purely cooperative nature of our
threads, and that our shared memory is object local, which makes ownership
trivial. Connected to this is the inherently fully abstract specification of remote
object interfaces, employing histories. The Boogie approach can simulate histo-
ries as well (see Fig. 1 in [28]), but it lies in the responsibility of the user whether
or not the simulated history reflects the real one.

The system presented in this paper is still a prototype. It supports Creol dy-
namic logic, but the front-end for loading code and generating proof obligations
is yet unfinished. This however will not be a real challenge, given the KeY infras-
tructure. Also, the automated strategies are very rudimentary yet. We currently
achieve an automation of 90% (automatic per total proof steps), which is very
low by our standards. As we are only at the beginning of the work on automated
strategies tailored to Creol, there is great potential here. The true challenge has
been the omnipresence of the history, and it is here that future research on veri-
fication in this domain will focus on. This concerns various levels: better support
for history based specifications, like a library of frequently used queries on histo-
ries, or the usage of specification patterns [13], extended and configurable proof
support for history based reasoning, and improved presentation on the syntax
level and in the user interface.

We consider Creol’s approach to modular object-oriented modeling as a good
basis for scaling ‘sequential formal methods’ to the concurrent distributed set-
ting, in particular when targeting functional correctness. The key is a very strong
separation of concerns, which however naturally follows ultimate object-oriented
principles. KeY has proved to be a good conceptual and technical basis for such
an undertaking, which we argue can lead to an efficient and user-friendly envi-
ronment for the verification of distributed object applications.
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22. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In W. Damm and H. Hermanns, editors, Conference on
Computer Aided Verification, volume 4590 of LNCS. Springer, 2007.



23. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Conference on Programming Language Design
and Implementation, Berlin, pages 234–245. ACM Press, 2002.

24. M. Giese. First-order logic. In Beckert et al. [9], pages 21–68.
25. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
26. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 583, Oct. 1969.
27. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
28. B. Jacobs, K. R. M. Leino, F. Piessens, and W. Schulte. Safe concurrency for

aggregate objects with invariants. In Conference on Software Engineering and
Formal Methods, pages 137–147. IEEE Computer Society, 2005.

29. E. B. Johnsen and O. Owe. A compositional formalism for object viewpoints. In
B. Jacobs and A. Rensink, editors, Proceedings of the 5th International Conference
on Formal Methods for Open Object-Based Distributed Systems (FMOODS 2002),
pages 45–60. Kluwer Academic Publishers, Mar. 2002.

30. E. B. Johnsen and O. Owe. Object-oriented specification and open distributed
systems. In O. Owe, S. Krogdahl, and T. Lyche, editors, From Object-Orientation
to Formal Methods: Essays in Memory of Ole-Johan Dahl, volume 2635 of LNCS,
pages 137–164. Springer, 2004.

31. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

32. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Theoretical Computer Science, 365(1–2), 2006.

33. C. B. Jones. Development Methods for Computer Programs Including a Notion of
Interference. PhD thesis, Oxford University, UK, 1981.

34. B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous
procedure calls in distributed systems. In Conference on Programming Language
design and Implementation, pages 260–267, New York, NY, USA, 1988. ACM.

35. R. Milner. A Calculus for Communicating Systems, volume 92 of LNCS. Springer,
1980.

36. R. Milner. Communicating and Mobile Systems: the Pi Calculus. Cambridge Uni-
verstity Press, 1999.

37. W. Mostowski. The demoney case study. In Beckert et al. [9], pages 533–568.
38. W. Mostowski. Fully verified Java Card API reference implementation. In B. Beck-

ert, editor, Verify’07, volume 259 of CEUR WS, July 2007.
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