

When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet Distance under Translation

Karl Bringmann, Marvin Künnemann, and André Nusser

Karl Bringmann, Marvin Künnemann, and André Nusser

Teaser

Fréchet Distance:

- traversal based
- fast in practice

Fréchet Distance Under Translation:

- traversal based
- only impractical algorithms (before)
- translation invariant

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Teaser

Fréchet under translation is 1-Lipschitz in τ **! Lipschitz Meets Fréchet:** Use continuous optimization: Fréchet Distance • branch & bound! au_2 au_2 au_1 au_1 max planck institut Karl Bringmann, Marvin Künnemann, Algorithm Engineering of the Discrete and André Nusser Fréchet Distance under Translation

Teaser

and André Nusser

End of Teaser

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Why Trajectory Similarity?

Handwritten Character Trajectories:

Question: What is the traversal that achieves the shortest leash length?

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Discrete Fréchet Distance Formal Definition

$$\delta_F(\pi,\sigma) \coloneqq \min_{f,g \in \mathcal{T}} \max_{t \in [0,1]} \left\| \pi_{f(t)} - \sigma_{g(t)} \right\|$$

 $\pi, \sigma = \text{ polygonal curves of length } n$ $\mathcal{T} = \text{ set of monotone and surjective functions from } [0, 1] \text{ to } \{1, \dots, n\}$

Intuition: Allow arbitrary translations $\tau \in \mathbb{R}^2$ of curve σ .

 $\delta_T(\pi,\sigma) \coloneqq \min_{\tau \in \mathbb{R}^2} \delta_F(\pi,\sigma + \tau)$

Intuition: Allow arbitrary translations $\tau \in \mathbb{R}^2$ of curve σ .

 $\delta_T(\pi,\sigma) \coloneqq \min_{\tau \in \mathbb{R}^2} \delta_F(\pi,\sigma + \tau)$

Intuition: Allow arbitrary translations $\tau \in \mathbb{R}^2$ of curve σ .

 $\delta_T(\pi,\sigma) \coloneqq \min_{\tau \in \mathbb{R}^2} \delta_F(\pi,\sigma + \tau)$

Intuition: Allow arbitrary translations $\tau \in \mathbb{R}^2$ of curve σ .

 $\delta_T(\pi,\sigma) \coloneqq \min_{\tau \in \mathbb{R}^2} \delta_F(\pi,\sigma + \tau)$

Decision Problem:

• Given π, σ, δ

•
$$\delta_T(\pi, \sigma) \leq \delta$$
?

Intuition: Allow arbitrary translations $\tau \in \mathbb{R}^2$ of curve σ .

 $\delta_T(\pi,\sigma) \coloneqq \min_{\tau \in \mathbb{R}^2} \delta_F(\pi,\sigma + \tau)$

Goal:

Performant implementation computing the discrete Fréchet distance under translation on practical inputs.

Related Work

Theory:

- Discrete Fréchet distance under translation in $\tilde{\mathcal{O}}(n^5)$
 - [Agarwal, Ben Avraham, Kaplan, Sharir arXiv'15]
- Discrete Fréchet distance under translation in $\tilde{\mathcal{O}}(n^{4.66})$

[Bringmann, Künnemann, N. SODA'19]

• SETH based lower bound of $n^{4-o(1)}$ for discrete Fréchet distance under translation [Bringmann, Künnemann, N. SODA'19]

Related Work

Theory:

- Discrete Fréchet distance under translation in $\tilde{\mathcal{O}}(n^5)$
 - [Agarwal, Ben Avraham, Kaplan, Sharir arXiv'15]

curve length

• Discrete Fréchet distance under translation in $\tilde{\mathcal{O}}(n^{4.66})$

[Bringmann, Künnemann, N. SODA'19]

• SETH based lower bound of $n^{4-o(1)}$ for discrete Fréchet distance under translation [Bringmann, Künnemann, N. SODA'19]

Practice:

- GIS Cup on (fixed-translation) Fréchet distance near neighbors search [Werner, Oliver; Baldus et al.; Buchin et al.; Dütsch et al. SIGSPATIAL'17]
- State of the art (fixed-translation) Fréchet distance implementation

[Bringmann, Künnemann, N. SoCG'19]

Arrangement

• Idea: Partition the plane into equivalent regions.

Algorithm Engineering of the Discrete Fréchet Distance under Translation

 au_2

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Algorithm Engineering of the Discrete Fréchet Distance under Translation

 au_2

 ${\mathcal T}$ 1

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Algorithm Engineering of the Discrete Fréchet Distance under Translation

 au_2

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Algorithm Engineering of the Discrete Fréchet Distance under Translation

 au_2

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Algorithm Engineering of the Discrete Fréchet Distance under Translation

 au_2

Arrangement

• Idea: Partition the plane into equivalent regions.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Arrangement

• Idea: Partition the plane into equivalent regions.

Observation: All translations in a cell of the arrangement have the same closeness relation.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

 π

Arrangement

• Idea: Partition the plane into equivalent regions.

 π

and André Nusser

Observation: All translations in a cell of the arrangement have the same closeness relation.

 \rightarrow for each cell, pick some τ and check $d_F(\pi, \sigma + \tau)$

max planck institut

Arrangement

• Idea: Partition the plane into equivalent regions.

Observation: All translations in a cell of the arrangement have the same closeness relation.

→ for each cell, pick some τ and check $d_F(\pi, \sigma + \tau)$

 $\mathcal{O}(n^4)$ complexity -

Karl Bringmann, Marvin Künnemann, and **André Nusser**

 π

• All known algorithms build an $\mathcal{O}(n^4)$ arrangement.

• All known algorithms build an $\mathcal{O}(n^4)$ arrangement.

• All known algorithms build an $\mathcal{O}(n^4)$ arrangement.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Approach I: Discrete Algorithms

• All known algorithms build an $\mathcal{O}(n^4)$ arrangement.

Karl Bringmann, Marvin Künnemann, and **André Nusser**

 au_1

Karl Bringmann, Marvin Künnemann, and André Nusser

Observation: Fréchet under Translation is 1-Lipschitz, i.e.,

$$|d_F(\pi, \sigma + \tau) - d_F(\pi, \sigma + \tau')| \le ||\tau - \tau'|$$

Lipschitz Optimization

Approach:

• branch & bound

For each box:

Fréchet Distance under Translation

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Lipschitz Optimization

Approach:

• branch & bound

For each box:

• if $d_F(\pi, \sigma + \bullet) \le \delta$ - return LESS

Fréchet Distance under Translation

Lipschitz Optimization

Approach:

• branch & bound

For each box:

- if $d_F(\pi, \sigma + \bullet) \leq \delta$ - return LESS
- if $d_F(\pi, \sigma + \bullet) > \delta + \checkmark$ - skip box

Karl Bringmann, Marvin Künnemann, and André Nusser

Lipschitz Optimization

Approach:

• branch & bound

For each box:

- if $d_F(\pi, \sigma + \bullet) \leq \delta$ - return LESS
 - if $d_F(\pi, \sigma + \bullet) > \delta + \checkmark$ - skip box
 - if both fail: split

Fréchet Distance under Translation

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Issues

• In general, only approximate decisions possible.

Issues

- In general, only approximate decisions possible.
- Locally highly non-convex:

Issues

- In general, only approximate decisions possible.
- Locally highly non-convex:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Issues

- In general, only approximate decisions possible.
- Locally highly non-convex:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Core Idea

Combine Both Approaches!

Core Idea

Combine Both Approaches!

1) Use Lipschitz optimization to identify important regions

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Core Idea

Combine Both Approaches!

- 1) Use Lipschitz optimization to identify important regions
- 2) Use arrangement algorithm inside these regions

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

exact decision! --

Issue: When to build the arrangement? **Main Ingredients:**

- 1. Arrangement size estimation
- 2. Threshold parameter

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

exact decision! -

Issue: When to build the arrangement? **Main Ingredients:**

- 1. Arrangement size estimation
- 2. Threshold parameter

modified kd-tree

Algorithm Engineering of the Discrete Fréchet Distance under Translation

-50

⁴ Fréchet Distance

35

30

Approach:

- augment branch & bound approach
- for each box:
 - estimate arrangement size
- if it is small: build arrangement

exact decision! --

Issue: When to build the arrangement? **Main Ingredients:**

- 1. Arrangement size estimation
- 2. Threshold parameter

Karl Bringmann, Marvin Künnemann, and **André Nusser**

modified kd-tree

Implementation Details

- Adaption of (fixed-translation) [SoCG'19] implementation to discrete case
- Lazy translation
- Parameter choice for arrangement size estimation

Approaches

Epsilon-approximate Set:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Approaches

Epsilon-approximate Set:

Binary Search via Decision Problem:

 \bullet Binary search over δ using decider

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Approaches

Epsilon-approximate Set:

Binary Search via Decision Problem:

 \bullet Binary search over δ using decider

Lipschitz-only Optimization:

• Use plain Lipschitz optimization

Approaches

Epsilon-approximate Set:

Binary Search via Decision Problem:

 \bullet Binary search over δ using decider

Lipschitz-only Optimization:

• Use plain Lipschitz optimization

Lipschitz-meets-Fréchet:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Lipschitz-meets-Fréchet

Approach:

- 1. Maintain local lower bound
- 2. Maintain global upper bound
- 3. Arrangement size estimation

For each box:

Lipschitz-meets-Fréchet

Approach:

- 1. Maintain local lower bound
- 2. Maintain global upper bound
- 3. Arrangement size estimation

For each box:

- update *global* upper bound:
 - $\min\{\mathsf{ub}, d_F(\pi, \sigma + \bullet)\}$

Lipschitz-meets-Fréchet

Approach:

- 1. Maintain local lower bound
- 2. Maintain global upper bound
- 3. Arrangement size estimation

adapt!

For each box:

- update *global* upper bound:
 - $\min\{\mathsf{ub}, d_F(\pi, \sigma + \bullet)\}$
- update *local* lower bound:
 - max{lb, $d_F(\pi, \sigma + \bullet) \checkmark$ }

Lipschitz-meets-Fréchet

Approach:

- 1. Maintain local lower bound
- 2. Maintain global upper bound
- 3. Arrangement size estimation

adapt!

For each box:

- update *global* upper bound:
 - $\min\{\mathsf{ub}, d_F(\pi, \sigma + \bullet)\}$
 - update *local* lower bound:
 - max{lb, $d_F(\pi, \sigma + \bullet) \checkmark$ }
 - if ub > lb + ϵ : split

max planck institut

Lipschitz-meets-Fréchet

Approach:

- 1. Maintain local lower bound
- 2. Maintain global upper bound
- 3. Arrangement size estimation

adapt!

For each box:

- update *global* upper bound:
 - $\min\{\mathsf{ub}, d_F(\pi, \sigma + \bullet)\}$
 - update *local* lower bound:
 - max{lb, $d_F(\pi, \sigma + \bullet) \checkmark$ }
 - if ub > lb + ϵ : split

Contribution II: From Decider to Value Computation Lipschitz-meets-Fréchet: Implementation Details

- Arrangement size estimation
- Initial estimates
- Priority queue on lower bound \rightarrow no regret strategy!

Data Sets

Data set	Туре	#Curves	Mean #vertices
SIGSPATIAL	synthetic GPS-like	20199	247.8
CHARACTERS	20 handwritten chars	2858 (142.9 per character)	120.9

Running Times

SAME-CHARACTERS:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Running Times

SIGSPATIAL:

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Running Times

SIGSPATIAL:

Black box calls vs. arrangement size

SAME-CHARACTERS:

Black box calls vs. arrangement size

SIGSPATIAL:

Black box calls vs. arrangement size

SIGSPATIAL:

Value Computation Times

Approach	Time	Black-Box Calls	
LMF	148,032 ms	13,323,232	
	(141.0 ms per instance)	(12,688.8 per instance)	
Binary Search	536,853 ms	45,909,628	
	(511.3 ms per instance)	(43,723.5 per instance)	
Lipschitz-only	4,204,521 ms	820,468,224	
	(4,004.3 ms per instance)	(781,398.3 per instance)	

Binary Search vs. LMF

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Binary Search vs. LMF

Karl Bringmann, Marvin Künnemann, and **André Nusser**

Karl Bringmann, Marvin Künnemann, and André Nusser

Future Directions:

- Apply approach to other problems
- Find optimal point of building the arrangement

Future Directions:

- Apply approach to other problems
- Find optimal point of building the arrangement

Code:

https://gitlab.com/anusser/frechet_distance_under_translation

Karl Bringmann, Marvin Künnemann, and **André Nusser**

