
Exact, Efficient, and Complete

Arrangement Computation for Cubic Curves 1

Arno Eigenwillig a, Lutz Kettner a,

Elmar Schömer b, and Nicola Wolpert a

aMax-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

bJohannes-Gutenberg-Universität Mainz, Institut für Informatik

Staudingerweg 9, 55099 Mainz, Germany

Abstract

The Bentley-Ottmann sweep-line method can compute the arrangement of planar
curves, provided a number of geometric primitives operating on the curves are avail-
able. We discuss the reduction of the primitives to the analysis of curves and curve
pairs, and describe efficient realizations of these analyses for planar algebraic curves
of degree three or less. We obtain a complete, exact, and efficient algorithm for
computing arrangements of cubic curves. Special cases of cubic curves are conics as
well as implicitized cubic splines and Bézier curves.

The algorithm is complete in that it handles all possible degeneracies such as
tangential intersections and singularities. It is exact in that it provides the mathe-
matically correct result. It is efficient in that it can handle hundreds of curves with
a quarter million of segments in the final arrangement. The algorithm has been
implemented in C++ as an Exacus library called CubiX.

Key words: Arrangements, algebraic curves, sweep-line algorithm, robustness,
exact geometric computation

Email addresses: arno@mpi-inf.mpg.de (Arno Eigenwillig),
kettner@mpi-inf.mpg.de (Lutz Kettner), schoemer@uni-mainz.de (Elmar
Schömer), wolpert@mpi-inf.mpg.de (Nicola Wolpert).
1 Partially supported by the IST Programme of the European Union as a Shared-
cost RTD (FET Open) Project under Contract No. IST-2000-26473 (ECG – Effec-
tive Computational Geometry for Curves and Surfaces).

Article published in Computational Geometry 35 (2006) 36–73

1 Introduction

1.1 Problem Statement

The Bentley-Ottmann sweep-line method [9] can be used to compute the ar-
rangement of planar curves. One only has to provide a number of geometric
primitives (break a curve into x-monotone pieces, given two curves compute
their intersections, compare two intersections or endpoints lexicographically,
etc.). The “only” is the crux of the matter; not in principle, but in terms of
efficient realization.

We discuss the mathematics of the primitives for cubic curves, i. e., planar al-
gebraic curves of degree three (or less), and derive efficient realizations. Conics
as well as implicitized cubic splines and Bézier curves are special cases of cu-
bic curves. We obtain a complete (it handles all possible degeneracies), exact
(it provides the mathematically correct result), and efficient (it can handle
hundreds of curves with a quarter million of resulting segments) sweep-line
algorithm for computing planar arrangements of cubic curves.

With only minor modifications our geometric primitives can also be used to
realize incremental approaches. Our implementation can be easily extended to
compute arrangements of cubic segments and to perform regularized boolean
operations on polygons bounded by them.

Fig. 1. A screenshot of our implementation showing a pencil of nine cubics with
four common tangential intersections.

2

1.2 Related Work

Complete, exact, and efficient implementations for planar arrangements of
straight line segments exist, e. g., in LEDA [62, ch. 10.7], and in the planar
map [34] and planar Nef-polyhedron [74] classes of CGAL. However, exist-
ing implementations for curved objects are either incomplete, inexact, or not
aimed at efficiency except for some recent work on circle and conic arcs (see
below). For cubic curves we are not aware of any complete, exact, and efficient
implementation.

Our work is influenced by results from three different communities: computer
aided geometric design (CAGD), computational geometry, and computer al-
gebra. The problem of computing intersections of curves and surfaces has a
long history in CAGD. The CAGD community concentrates on approximate
solutions by numerical methods which cannot distinguish, e. g., between a tan-
gential intersection and two intersections lying very close together. Complete
and exact implementations have been addressed recently: MAPC [50] is a li-
brary for exact computation and manipulation of algebraic curves. It offers
arrangements of planar curves but does not handle all degenerate situations.
Yap [82] uses separation bounds to make the traditional subdivision algo-
rithm for the intersection of Bézier curves exact and complete in the presence
of tangential and almost-tangential intersections.

Arrangements, mostly of linear objects, are also a major focus in computa-
tional geometry; see the survey articles of Halperin [43] and Agarwal/Sharir
[2]. Many exact methods for curved objects have been formulated for the
Real RAM model of computation [67], which allows unit-time operations on
arbitrary real numbers and conceals the high cost of exact arithmetic with
algebraic numbers.

Sakkalis [70,71], Hong [45], and Gonzalez-Vega/Necula [42] analyze the topol-
ogy of a single real algebraic curve. Their approaches, like ours, can be seen
as special forms of Cylindrical Algebraic Decomposition [23,5]. However, they
do not consider the interaction between pairs of curves, and the full algebraic
machinery they deploy is not necessary for cubic curves. The recent text-
book by Basu, Pollack, and Roy [8] is a very useful reference for the algebraic
background of those methods and also contains a curve topology algorithm.
Aspects of the crucial problem to capture behavior at irrational points by
rational arithmetic were treated by Canny [20] (Gap Theorem) and Pedersen
[66] (multivariate Sturm sequences).

Predicates for arrangements of circular arcs that reduce all computations to
sign determination of polynomial expressions in the input data are treated
by Devillers et al. [26]. Recent work by Emiris et al. [31,32] discusses some

3

predicates on conics in this style. However, these approaches do not extend
easily to more complicated curves.

Exact, efficient, and complete algorithms for planar arrangements have been
published by Wein [77] and Berberich et al. [11] for conic segments, and by
Wolpert [78,73] for special quartic curves as part of a surface intersection
algorithm. A generalization of Jacobi curves (used for locating tangential in-
tersections) is described by Wolpert [79].

The work presented here follows the Master’s thesis of the first author [28]
and has appeared as an extended abstract in [29].

1.3 Our Results

What are the difficulties in going from straight lines and straight line segments
to conics and further on to cubic curves? The defining equations and thus the
geometry of the basic objects and the coordinates of their intersections become
more complicated. For straight line segments with rational endpoints, all ver-
tices in their arrangement have rational coordinates. In the case of curves, the
intersections are solutions to systems of non-linear polynomial equations and
thus, in general, irrational algebraic numbers. We review polynomials, alge-
braic numbers, and elimination of variables among polynomial equations in
Section 2.

The sweep-line algorithm works on x-monotone segments. Lines and line seg-
ments are x-monotone, conics need to be split at points of vertical tangent,
and cubic curves need to be split at points of vertical tangent and at singular-
ities. These notions and other required elements of the geometry of algebraic
curves are introduced in Section 3. Cubic curves have a more diverse geome-
try than conics. Its analysis is a separate step in our algorithm, explained in
Section 4.1.

We turn to pairs of curves. Two lines intersect in a single point with rational
coordinates. Two conics intersect in up to four points. Each of the intersecting
conic arcs can be parametrized in the form y(x) using a single square root.
In the case of a tangential intersection, the x-coordinate of the intersection
can also be written as an expression involving a single square root. Therefore,
previous work on conics [77,11] could make heavy use of the existing efficient
methods for arithmetic within FRE [48,18], the field of real root expressions.
FRE is the closure of the integers under the operations +, −, ∗, /, and k

√
for

arbitrary but fixed k; it is a subfield of the real algebraic numbers. However,
the k

√
operation is restricted to extracting real-valued roots, thus general

polynomial equations of degree ≥ 3 are not solvable in FRE, severely limiting
its applicability to cubics. (The usability of recent additions for arithmetic

4

with all real algebraic numbers [55,19,72] remains to be investigated.) Hence
we need more powerful techniques. We discuss them and the geometric analysis
of curve pairs in Section 4.2.

The central idea of our approach to curve and curve pair analyses is to exploit
geometric properties of cubic curves in order to avoid arithmetic with irrational
numbers as far as possible.

In Section 5 we put everything together and discuss high-level issues of the
Bentley-Ottmann sweep for algebraic curves and how the required predicates
reduce to curve and curve pair analyses. This part applies to algebraic curves
of any degree.

We conclude with a discussion of running time from a theoretical (Section 6)
and especially an experimental (Section 7) point of view. We point out that
there is a full implementation of our algorithm.

2 Algebraic Foundations

The algorithmic handling of algebraic curves rests to a large extent on alge-
braic operations. We give a concise summary of the existing results we use,
just enough to make our presentation self-contained and accessible to non-
experts in symbolic computation. This summary also provides the necessary
context for describing the implementation choices we made.

As reference for the abstract algebra involved here we mention the textbook
by Lang [54]. The algorithmic aspects are covered in the computer algebra
books by Geddes/Czapor/Labahn [38], Akritas [4], Cohen [21], and von zur
Gathen/Gerhard [36]. The recent book by Basu/Pollack/Roy [8] combines the
viewpoints of real algebraic geometry and computer algebra.

2.1 Rings and Fields

Recall the algebraic notions of ring and field. All fields considered in the sequel
have characteristic zero, i. e., contain the rational numbers Q. A ring in modern
terminology is a commutative ring with unity. We additionally demand it to
contain the integers Z, and unless specifically stated otherwise, to be free
of zero divisors. With our terminology, every ring R possesses an essentially
unique quotient field Q(R), i. e., a ⊆-minimal field containing R as a subring.
For example, Q(Z) = Q.

We say d divides r and write d|r if there is c ∈ R such that r = cd. If u|1,

5

u is a unit of R. A non-unit r 6= 0 that cannot be written as product of two
other non-unit elements is called an irreducible element. A ring R is a unique
factorization domain (UFD) if any non-zero non-unit element r possesses a
factorization

r =
k∏

i=1

pi (1)

into irreducible elements pi that is unique up to reordering the pi and multi-
plying them by units. In any UFD R, the irreducible elements p are prime,
meaning that for all r, s ∈ R we have p|rs ⇒ p|r∨ p|s. (For a proof, see [54,
II.4].) Given r ∈ R and some irreducible element p, the maximal exponent
e ∈ N0 such that pe|r is called the multiplicity of p in r.

2.2 Polynomials

2.2.1 Basics

Adjoining an indeterminate x to a ring R yields the univariate polynomial
ring R[x]. We call f ∈ R[x] monic if its leading coefficient `(f) is 1. Iterated
adjunction of indeterminates leads to multivariate polynomials R[x1] · · · [xn] =
R[x1, . . . , xn]. The units of R[x1, . . . , xn] are the units of R.

A multivariate polynomial can be seen recursively as a univariate polyno-
mial in xn with coefficients in R[x1] · · · [xn−1], or flat as a sum of terms
ai1...inxi1

1 · · ·xin
n . Its total degree deg(f) is max{i1 + . . . + in | ai1...in 6= 0}.

A polynomial is homogeneous if all its terms have the same total degree.
Otherwise, it decomposes uniquely as a sum of its homogeneous parts f =
f0 + f1 + . . . + fdeg(f) where fd is homogeneous of degree d. The d-th order
terms fd are called constant, linear, quadratic, etc., part of f , for d = 0, 1, 2, . . .,
respectively.

Let k ≤ n and ξ ∈ Rk. Substituting values ξ1, . . . , ξk for x1, . . . , xk homomor-
phically maps f 7→ f |ξ = f(ξ1, . . . , ξk, xk+1, . . . , xn) ∈ R[xk+1, . . . , xn].

A polynomial f ∈ R[x1, . . . , xn] is called xn-regular if it contains a term cxdeg(f)
n

with 0 6= c ∈ R. Its degree does not change when substituting values for
x1, . . . , xk, k < n. The product of two xn-regular polynomials is xn-regular.
Any factor of an xn-regular polynomial is xn-regular.

2.2.2 Unique factorization and the GCD

Let K be a field. The univariate polynomial ring K[x] is a Euclidean ring by
virtue of division with remainder: For any two polynomials f, g ∈ K[x], g 6= 0,

6

there exists a unique quotient q and remainder r in K[x] such that

f = qg + r, deg(r) < deg(g). (2)

The constructive proof of this proposition yields a simple and reasonably ef-
ficient algorithm to compute these quantities. Iff g|f , then it produces the
remainder 0 and the quotient f/g.

Recall that in any ring R a greatest common divisor (gcd) of two elements
r, s ∈ R is an element d ∈ R such that d|r∧ d|s, and d′|r∧ d′|s ⇒ d′|d
for all d′ ∈ R. To compute a gcd in K[x], there is the Euclidean Algorithm:
Given two non-zero polynomials f, g ∈ K[x], repeatedly replace one of larger
(or equal) degree with its remainder modulo the other one, until zero occurs
as remainder. The last non-zero remainder d is gcd(f, g). By accumulating
intermediate results, the Extended Euclidean Algorithm (EEA) additionally
computes Bézout factors p, q ∈ K[x] with the property d = pf + qg. See [38,
2.4], [36, 3.2], [80, 2.2] or [21, 3.2.1].

The EEA demonstrates that K[x] is a principal ideal domain and hence a
UFD [54, II.4, V.4]. Thus any non-zero polynomial f ∈ K[x] has a unique (up
to order) factorization

f = `(f) ·
k∏

j=1

q
ej

j (3)

into its leading coefficient and powers of pairwise distinct monic irreducible
factors qj with their respective multiplicities ej > 0. This follows from (1) by
normalizing and grouping factors.

Let us now consider the divisibility properties of polynomials over a UFD R. In
this setting, non-unit constant factors are relevant. For a non-zero polynomial
f ∈ R[x], define the content cont(f) of f as the gcd of its coefficients. If
cont(f) = 1, then f is called primitive.

Proposition 1 (Gauss’ Lemma)
Let R be a UFD. Let f, g ∈ R[x] be non-zero. Then cont(fg) = cont(f) cont(g).

For a proof, see [54, V.6]. The following easy corollary relates the divisibility
properties of R[x] and Q(R)[x].

Corollary 2 Let R be a UFD, and let f, g ∈ R[x] be non-zero polynomials.
Then the following conditions are equivalent:

(i) g|f in R[x],

(ii) g|f in Q(R)[x] and cont(g)|cont(f) in R.

In particular, these two notions of divisibility by g are equivalent if g is prim-
itive.

Continuing that line of thought [54, V.6], one obtains:

7

Theorem 3 (Gauss’ Theorem)
If R is a UFD, then R[x1, . . . , xn] is a UFD.
If K is a field, then K[x1, . . . , xn] is a UFD.

Hence any non-zero f ∈ K[x1, . . . , xn] factors essentially uniquely into coprime
irreducible factors with their respective multiplicities. (We shall meet such
irreducible factors again later on for n = 2 as components of curves.) It follows
that there exists gcd(f, g) for non-zero f, g ∈ K[x1, . . . , xn]. The following easy
corollary to Proposition 1 is useful for its computation.

Corollary 4 Let R be a UFD, and let f, g ∈ R[x] be non-zero polynomials.
Then cont(gcd(f, g)) = gcd(cont(f), cont(g)).

Suppose we can compute gcds in a UFD R. Then we can also compute gcd(f, g)
for non-zero f, g ∈ R[x]: Because of Corollary 2, gcd(f, g) is, up to a constant
factor, the gcd of f, g regarded as elements of Q(R)[x], and we can compute
that with the Euclidean Algorithm. Using Corollary 4, the error in the constant
factor can then be corrected by adjusting the content to gcd(cont(f), cont(g)).
This allows us to compute gcds, for example, in Z[x]; and, by a recursive
application of this approach, in R[x1, . . . , xn] or K[x1, . . . , xn]. We refer to [38]
for details.

An efficient implementation of this scheme employs Q(R) only conceptually
and keeps all coefficients in R in order to avoid costly fractional arithmetic.
To obtain (constant multiples of) remainders in R[x], one changes Euclidean
division into pseudo division by replacing f with `(g)deg(f)−deg(g)+1f in (2), so
that all divisions of coefficients become possible within R. To curb coefficient
growth, one needs to predict a large constant factor of each remainder and
divide it out. To do this, we use the subresultant method due to Collins [22]
and Brown/Traub [17]. It is described by Loos [59, 4.5], Brown [16], and Knuth
[51, pp. 428+]. (A subsequent improvement has been obtained by Lickteig and
Roy [56, §4] [57, Thm. 4.1], see also [58], [8, 8.3] or [30].)

2.2.3 Multiplicities and Derivatives

Whenever we have unique factorization into irreducibles, we can formulate the
weaker notion of square-free factorization, or factorization by multiplicities as
we like to call it. Take (3) and group factors qi with equal multiplicities m = ei

into one factor sm:

f = `(f) ·
maxi ei∏

m=1

sm
m, where sm =

∏

ei=m

pi (4)

The factors sm are square free, meaning that all their irreducible factors occur
with multiplicity 1; and any two sm are coprime, i. e., the two have no non-unit

8

factor in common. Define the square-free part of f as
∏

m sm.

The significance of this weaker form of polynomial factorization lies in the rela-
tive ease of computing it, using derivatives. For a polynomial f =

∑n
i=0 aix

i we
define its (formal) derivative as f ′ :=

∑n
i=1 iaix

i−1. For multivariate polynomi-
als f ∈ R[x1, . . . , xn], partial derivatives are defined accordingly and denoted
by subscripts like fx1x2 . Partial differentiation of polynomials w. r. t. different
variables commutes. The result of differentiating f exactly r ≥ 0 times w. r. t.
some choice of variables is called an r-th partial derivative of f . The column
vector of all first partial derivatives of f is the gradient ∇f := (fx1, . . . , fxm

)T

of f .

The relation of derivatives and multiplicities is rooted in the following result.

Proposition 5 Let K be a field, let f ∈ K[x] be a non-zero polynomial, and
let f = `(f)

∏M
m=1 sm

m be its square-free factorization. Then

gcd(f, f ′, . . . , f (k)) =
M∏

m=k+1

sm−k
m (up to units) (5)

for all k ≥ 0. In particular, the square-free part of f is f/ gcd(f, f ′).

Proof. By induction on k. The base case k = 0 is obvious. The inductive
step is performed by applying the following observation separately to each
irreducible factor of f : Let f = grh, r ≥ 1 so that g is irreducible and does
not divide h. Then f ′ = rg′gr−1h + grh′ = (rg′h + gh′)gr−1, and g does not
divide rg′h + gh′, because it divides gh′ but neither g′ (which is of smaller
degree) nor h (by definition). 2

Square-free factorization, like gcd computation, does not depend on the choice
of K and applies equally to all fields containing the coefficients of f . Fur-
thermore, the statement of the proposition remains valid for an xn-regular
polynomial f ∈ K[x1, . . . , xn] when derivatives are taken w. r. t. xn.

The relation (5) of multiplicities and derivatives allows us to compute a square-
free factorization of f ∈ K[x] or of f ∈ R[x] for a UFD R by repeated
differentiation and gcd computation. Yun’s Algorithm [38, 8.2] does this in a
clever way to keep the coefficients of intermediate polynomials small.

This algorithm prompts an implementation choice concerning the computa-
tion of gcd-free parts; that is, passing from a pair (f, g) of polynomials to the
triple (f/d, g/d, d) where d = gcd(f, g). We choose the obvious implementa-
tion (compute d and divide by it). The alternative of executing the Extended
Euclidean Algorithm and obtaining the gcd-free parts as cofactors of the zero

9

polynomial at the end of the polynomial remainder sequence [8, Thm. 10.13]
did not seem to offer a better performance for the univariate instances of the
problem met in our application.

2.2.4 Roots of Polynomials

Let K be a field, and let f ∈ K[x]. As a consequence of division with re-
mainder, we have that f(ξ) = 0 at some point ξ ∈ K iff x − ξ is one of the
irreducible factors of f . This allows us to define the multiplicity of ξ as a root
or zero of f as the multiplicity of x− ξ as a factor of f . Furthermore, it allows
us to conclude that a polynomial f of degree n has at most n roots, counted
with multiplicity, and that an irreducible factor p of f is either linear, and
hence corresponds to a zero of f , or has degree larger than 1 and no zeroes
in K.

A field K is called algebraically closed if the second alternative does not occur.
For every field K there exists an essentially unique ⊆-smallest algebraically
closed field K containing K, called the algebraic closure of K. Each element
of K is a root of some polynomial with coefficients in K. See [54, VII.2]. The
algebraic closure of the reals R is the field C = R(i) of complex numbers. As
a proper subset, it contains the algebraic closure Q of the rationals Q.

Let ϑ be an algebraic number. Q(ϑ) denotes the ⊆-minimal subfield of Q con-
taining ϑ. Among all monic polynomials from Q[x] that vanish at ϑ, there
is one of minimal degree. It is uniquely determined and called the minimal
polynomial f of ϑ. The degree of ϑ is defined as deg(f). The kernel of the
evaluation homomorphism Q[x] → Q(ϑ), x 7→ ϑ, consists precisely of the mul-
tiples of f , so that the field Q(ϑ) is isomorphic to the quotient ring Q[x]/(f),
see [54, II.1, VII.1]. Now consider all roots ϑ1 := ϑ, ϑ2, . . . , ϑd of f . They are
algebraically indistinguishable insofar as Q(ϑi) and Q(ϑj) are isomorphic for
any 1 ≤ i, j ≤ d; hence a polynomial equation with rational coefficients is sat-
isfied by none or by all of the ϑi. We call the ϑi the algebraic conjugates of ϑ.
Observe the analogy with the usual complex conjugation defined by replacing
the imaginary unit i with the other root −i of its minimal polynomial x2 + 1.

The notion of algebraic conjugacy extends to n-tuples ξ of algebraic numbers
by choosing an algebraic number ϑ such that all ξi are rational expressions in
ϑ, and ϑ is conversely a rational expression in ξ1, . . . , ξn. (Such ϑ exists and
is called the primitive element of Q(ξ1) · · · (ξn), see [54, VII.6] for an abstract
and [60, Thm. 11] for a constructive proof.) The conjugates of ξ are the n-
tuples obtained by replacing ϑ with its conjugates. No two distinct conjugates
of ϑ produce the same ξ. If ξ is a solution to a system of polynomial equations
with rational coefficients, then any of the deg(ϑ) many conjugates is a solution
as well.

10

2.3 Resultants

Intersecting two algebraic curves f and g essentially means solving a system
f(x, y) = g(x, y) = 0 of two polynomial equations. For this purpose, we will
need some results from elimination theory.

2.3.1 The Sylvester Resultant

We start by looking at the solvability of a system of two equations in one
variable.

Proposition 6 Let K be a field. Let f =
∑m

i=0 aix
i, am 6= 0, and g =∑n

i=0 bix
i, bn 6= 0 be two polynomials in K[x]. Then the following conditions

are equivalent:

(i) f and g have a common zero in the algebraic closure K.

(ii) deg(gcd(f, g)) > 0.

(iii) There are non-zero u, v ∈ K[x] with deg(u) < deg(g) and deg(v) <
deg(f) such that uf + vg = 0.

(iv) The determinant of the (n + m) × (n + m) Sylvester matrix

Syl(f, g) =

am · · · · · · a0

. . .
. . .

am · · · · · · a0

bn · · · · · · b0

. . .
. . .

bn · · · · · · b0

(6)

vanishes.

Proof. The equivalence of (i)–(iii) is easy. The equivalence of (iii) and (iv)
follows by linear algebra, noting that the transpose Syl(f, g)T is the matrix of
a linear map taking a pair of coefficient vectors from Kn × Km, representing
degree-bound polynomials u and v, to the coefficient vector in Kn+m that
represents the polynomial uf + vg. The determinant vanishes iff there is a
non-zero vector that is mapped to zero. See [25, 3.5] for more details. 2

The determinant det(Syl(f, g)) is called the resultant res(f, g, x) of f and g
with respect to x. The following proposition is not surprising in the light of
(i) ⇔ (iv):

11

Proposition 7 Let K be a field. Consider the two non-zero polynomials f =
am

∏m
i=1(x − αi) and g = bn

∏n
j=1(x − βj) in K[x]. It holds that

res(f, g, x) = an
mbm

n

m∏

i=1

n∏

j=1

(αi − βj). (7)

Proofs can be found in [54, V.10] [60, Thm. 1] [21, 3.3.2].

Proposition 6 can be read as a statement on the Euclidean Algorithm executed
for f and g: Iff det(Syl(f, g)) vanishes, the polynomial remainder sequence of
f and g ends with zero before a constant gcd is reached. In fact, there is a deep
connection between subdeterminants of the Sylvester matrix and polynomial
remainder sequences; see [59], [80, 3.6–3.9] or [8, 8.3]. We state only its most
prominent part, using the following notion:

Let K be a field, and let f, g ∈ K[x] be two non-zero polynomials with degrees
higher than k ≥ 0. Then the k-th subresultant 2 sresk(f, g, x) of f and g is
defined as the determinant of the matrix obtained from Syl(f, g) by deleting
the last 2k columns of the matrix and the last k rows of each of the two
parallelograms of coefficients.

Proposition 8 With f , g and k as above, the remainder sequence computed
by the Euclidean algorithm for f and g contains a remainder of degree k iff
the k-th subresultant of f and g does not vanish. In particular,

sresi(f, g, x) = 0 for all 0 ≤ i < k ⇐⇒ deg(gcd(f, g)) ≥ k. (8)

A proof appears in [36, 6.10]. In the sequel, we will only need (8) specialized
to k = 2; for this a direct proof is given in [4, Thm. 5.2.5].

2.3.2 Elimination with the Resultant

Now consider bivariate polynomials f, g ∈ K[x, y]. Proposition 6 can help us
to solve f = g = 0 when we view f and g as polynomials in Q(K[x])[y]. The
solution proceeds in two stages [25, 3.1]:

(1) The projection step in which we determine the partial solutions ξ, i. e.,
the values of x for which the system f = g = 0 permits a solution (ξ, η).

2 The literature is divided between two definitions of subresultant. This article uses
the notion of a scalar subresultant. In the context of polynomial subresultants, these
are called principal subresultant coefficients. See [37] for a systematic comparison.
See [59], [80, 3.6–3.9], [8, 8.3] and [30] for the theory of polynomial subresultants.

12

(2) The extension step in which we extend a partial solution x = ξ by all
possible values η of y such that f(ξ, η) = g(ξ, η) = 0.

In this setting, res(f, g, y) is a polynomial from K[x], and we might hope that
its zero set is the set of partial solutions ξ, on the grounds that a vanishing re-
sultant indicates solvability of f |ξ = g|ξ = 0. However, the definition of the re-
sultant depends on the (univariate) degrees of f and g, and these degrees drop
when ξ is a zero of both `(f) and `(g). Then the Sylvester matrix Syl(f, g)|ξ
evaluated at ξ has a leftmost column full of zeroes, and so res(f, g, y)(ξ) = 0
irrespective of ξ being a partial solution or not. Because of these extraneous
zeroes, forming the resultant and evaluation in inner variables do not commute
in general. However, if one of the polynomials is y-regular, everything is fine:

Proposition 9 Let K be a field, and let f, g ∈ K[x, y] be non-zero polynomi-
als. Furthermore, let f be y-regular. Then for all ξ ∈ K the two conditions

(i) res(f, g, y)(ξ) = 0

(ii) There is η ∈ K such that f(ξ, η) = g(ξ, η) = 0

are equivalent.

Proof. We show that res(f, g, y)(ξ) = 0 is equivalent to res(f |ξ, g|ξ, y) = 0:
Observe that Syl(f, g)|ξ contains Syl(f |ξ, g|ξ) as a lower right submatrix S.
The d := deg(g) − deg(g|ξ) ≥ 0 columns left of S are zero below the diagonal
and contain the constant diagonal entries `(f) 6= 0. Thus det(Syl(f, g)|ξ) =
`(f)d det(Syl(f |ξ, g|ξ)), proving the claim. 2

This proposition extends in the obvious fashion to subresultants and their
property from Proposition 8.

When intersecting two curves, we aim for finitely many intersection points, so
we want to obtain a resultant which is not the zero polynomial.

Proposition 10 Let K be a field, and let f, g ∈ K[x, y] be non-zero polyno-
mials. Then res(f, g, y) 6= 0 iff f and g have no common factor of positive
degree in y.

Proof. Recall from §2.2.2 that K[x] is a UFD. Hence Corollary 2 implies
that f and g have no common factor of positive univariate degree as ele-
ments of K[x][y] iff they have no common factor of positive univariate degree
as elements of Q(K[x])[y]. By Proposition 6, this is in turn equivalent to
res(f, g, y) 6= 0. 2

13

Another practical concern relates to computations over the field of real num-
bers R which is not algebraically closed. A real zero of res(f, g, y) may arise
from a complex solution whose x-coordinate happens to be real. However,
complex solutions come in pairs of complex conjugates. We will later guaran-
tee uniqueness of solutions extending a given x-coordinate, so that real zeroes
of res(f, g, y) are certain to come from real solutions.

2.3.3 Computing the Resultant

We have considered three options for computing the resultant of two polyno-
mials f and g (up to sign):

(1) Compute the determinant of the Sylvester matrix Syl(f, g) defined above.
This is the most obvious approach.

(2) Compute the determinant of the Bézout matrix Bez(f, g) defined below.
This determinant is smaller and hence faster to compute.

(3) Compute a polynomial remainder sequence of f and g with the subresul-
tant algorithm mentioned in §2.2.2. It computes subresultants incremen-
tally along with the remainder sequence and uses them to curb coefficient
growth; in particular, it computes the zeroth subresultant, which is the
resultant.

In computing the determinant of a matrix with entries from a ring (in our case:
integers or polynomials), it is preferable to avoid arithmetic with fractions for
the sake of efficiency. We have considered two choices for fraction-free deter-
minant computations, namely, the algorithms of Gauss-Bareiss [21, 2.2.3] and
Berkowitz 3 [68]. Gauss-Bareiss needs O(n3) arithmetic operations, including
divisions that are possible within the ring of matrix entries; whereas Berkowitz
needs O(n4) arithmetic operations, none of them divisions. (Here, n is the row
and column dimension of the matrix.)

Our main application of resultants concerns y-regular bivariate polynomials
f, g ∈ Z[x][y] (viewed recursively) of degree at most 3. For this specific setting,
with our implementations of the various alternatives, and with our benchmark
data, we have observed that Berkowitz’ method for determinant computation
is faster than Gauss-Bareiss, despite the asymptotics; and that evaluating
the Bézout determinant with Berkowitz is faster than using the Sylvester
determinant or a subresultant remainder sequence. This is consistent with the
results of a recent study by Abdeljaoued et al. [1] for polynomials with higher
degrees and more inner variables.

3 This naming follows Rote [68, 2.8]. Others have attributed this algorithm to
Samuelson.

14

Hence let us take a look at the Bézout matrix of two polynomials f, g ∈ K[x]
both having degree m. Consider the polynomial f(x)g(z)−f(z)g(x) involving
the new indeterminate z. It vanishes whenever x = z and therefore is divisible
by x − z. The quotient is

Λ(x, z) :=
f(x)g(z) − f(z)g(x)

x − z
=

m−1∑

i,j=0

cij xizj. (9)

The Bézout matrix of f and g is the m × m coefficient matrix Bez(f, g) :=
(cij)

m−1
i,j=0 of Λ. The book by Gelfand/Kapranov/Zelevinsky [39, 12.1] records

the following classical results:

Proposition 11 Let K be a field. Let f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i be two
polynomials in K[x] of degrees m and n, resp., where m ≥ n.
The entries of the Bézout matrix Bez(f, g) = (cij)

m−1
i,j=0 are given by

cij =
min(i,j)∑

k=0

[k, i + j + 1 − k], where [i, j] := aibj − ajbi, (10)

with the convention that ai = 0 for i > m and bi = 0 for i > n.
The determinant of the Bézout matrix is

det(Bez(f, g)) = ±am−n
m res(f, g, x). (11)

For m > n, the extraneous power of am in (11) can be avoided by forming a
hybrid Bézout matrix of size m × m that consists of n Bézout-like rows and
m − n Sylvester-like rows [27] [46]. We compute the resultant of f and g as
determinant of this hybrid Bézout matrix using Berkowitz’ method.

The k-th subresultant can be expressed as an (m − k) × (m − k) subde-
terminant of the (hybrid) Bézout matrix [27] [46]. This is how we compute
subresultants. 4

We shall give two further references: The (sub)resultant property of (sub)de-
terminants of the Bézout matrix is derived from first principles (i. e., without
reference to the Sylvester matrix) by Goldman et al. [41]. The general Bézout
construction of resultants to eliminate several variables at once is treated
extensively by Bikker and Uteshev [12], including an explicit discussion of the
subresultant properties in the univariate case considered here. 5

4 The recent article [1] explains how to obtain all subresultants from one execution
of Berkowitz’ method. While quite interesting in general, this would not gain a lot
in our setting where m ≤ 3, k ≤ 1.
5 Be warned that the matrix B considered in [12] differs from our Bezoutiant

Bez(f, g) by a change of basis.

15

2.4 Finding and Handling Roots of Polynomials

2.4.1 Root Isolation

On the algorithmic side, our main concern about roots is to determine the real
roots of a polynomial f ∈ Q[x] in terms of isolating intervals with rational
boundaries. An interval [l, r] ⊆ R is called an isolating interval for a root
ξ ∈ R of f ∈ R[x] if {x ∈ [l, r] | f(x) = 0} = {ξ}.

Before anything else, we make the coefficients of f integral and factor f by
multiplicities (see §2.2.3). Then we determine the zeroes of each square-free
factor separately.

We shortcut the factorization by multiplicities if res(f, f ′, x) 6≡ 0 modulo some
prime, because res(f, f ′, x) 6= 0 is equivalent to f being already square free
(see §2.2.3 and §2.3.1). Checking this condition modulo a prime small enough
to allow arithmetic in a double’s mantissa (following [15]) is much faster
than computing gcd(f, f ′) = 1 from a polynomial remainder sequence over
the integers. In analogy to floating-point filters, we call this a modular filter.
Squarefreeness is the expected case in our uses of root finding. The modular
filter allows us to handle this case efficiently with high probability, and it is
simpler to implement than a full-blown modular gcd algorithm.

After factorization, we process each square-free factor
∑n

i=0 aix
i separately. We

compute an interval [−B, B] enclosing all its real roots as follows: Determine

k0 := min

{
k ≥ 0

∣∣∣∣∣ |an| 2nk >
n−1∑

i=0

|ai| 2ik

}
(12)

by successively trying k = 0, 1, 2, 3, . . .; then take B = 2k0 (see [63, p. 144]).

To perform the actual root isolation, we use the Descartes Method, 6 a divide-
and-conquer approach based on Descartes’ Rule of Signs. Its modern form goes
back to Collins and Akritas [24], see also Krandick [52] and Rouilliler/Zim-
mermann [69].

Proposition 12 (Descartes’ Rule of Signs)
Let f ∈ R[x] be a non-zero polynomial with exactly p positive real roots
(counted with multiplicities) and exactly v sign variations in its coefficient
sequence. Then v − p is non-negative and even.

Proofs can be found in [4, Thm. 7.2.6], [63, Thm. 5.5], and [53]. A sign variation
in a sequence a0, . . . , an of real numbers is a pair of indices 0 ≤ i < j ≤ n

6 The designation “Uspensky’s Method” is common but incorrect [3].

16

such that sign(ai) sign(aj) = −1 and ai+1 = . . . = aj−1 = 0. In other words,
the number of sign variations is obtained by deleting all zeroes and counting
how many pairs of adjacent numbers have opposite signs.

If v = 0 or v = 1, then v is known to be the exact number of positive real
roots. If v > 1, this count might include pairs of complex-conjugate roots close
to the positive real axis.

Descartes’ Rule extends to the number of real roots of f in an arbitrary open
interval]l, r[6= R, l, r ∈ R∪{±∞} by applying it to the composition f ◦T with
a Möbius transformation T (x) = ax+b

cx+d
taking]0, +∞[to]l, r[, see [4, 7.3.2].

(A reversed bracket indicates exclusion of the boundary point.)

The Descartes Method works as follows: Starting from the initial interval
enclosing all roots, recursively subdivide intervals at their midpoint until each
interval under consideration is known to be isolating (v = 1) or empty (v = 0).
The crux is to prove that v ∈ {0, 1} will hold eventually. The oldest proof is
from A. J. H. Vincent (1836). We refer the reader to [53] for a rediscovered
result of Ostrowski [65] that gives a particularly strong partial converse.

An alternative to the Descartes Method is provided by Sturm Sequences. These
are polynomial remainder sequences of f and f ′ with special arrangements for
signs of the remainders (see [4, 7.2.2], [63, 5.4.1] or [80, chap. 7]), so unless
the modular filter lets us skip that step, we essentially do compute a Sturm
sequence for f during its square-free factorization. Nevertheless, we do not use
it for root isolation. An empirical study by Johnson [47] indicates that root
isolation based on Sturm Sequences is often inferior to the Descartes Method,
even if the cost of obtaining the Sturm sequence is excluded.

2.4.2 Representing and ordering real algebraic numbers

Let the polynomial f0 ∈ Q[x] have a real root ϑ ∈ R. The procedure of §2.4.1
computes a representation ϑ =̂(f, [l, r]) for it consisting of a square-free factor
f ∈ Z[x] of f0 and an isolating interval with boundaries l, r ∈ Q. (In the field
of symbolic computation, this representation is standard [60].) Except for the
degenerate case l = r = ϑ, we make sure ϑ ∈]l, r[.

We want to compare numbers of that form. A key step is the bisection of a non-
degenerate isolating interval [l, r] at a point t ∈]l, r[. The squarefreeness of f
implies that f ′(ϑ) 6= 0, hence the continuously differentiable function f : R →
R does not have a local extremum at ϑ and consequently changes sign at ϑ. The
absence of further zeroes in [l, r] implies that ±1 = sign(f(l)) 6= sign(f(r)) =
∓1. By comparing sign(f(t)) against sign(f(r)), 0, and sign(f(l)), we can
decide whether ϑ ∈]l, t[, ϑ = t, or ϑ ∈]t, r[, and refine [l, r] to [l, t], [t, t] or
[t, r], respectively.

17

Let ϑ1 =̂(f1, [l1, r1]) and ϑ2 =̂(f2, [l2, r2]) be two algebraic numbers which we
intend to compare. If their isolating intervals overlap, we bisect each interval at
the boundaries of the other interval it contains to make the two intervals non-
overlapping or equal. The order of two algebraic numbers with non-overlapping
isolating intervals is apparent from their interval boundaries.

So let us assume that by now [l, r] := [l1, r1] = [l2, r2] with l < r. The polyno-
mials f1 and f2 are square free and each has exactly one zero in [l, r]. Consider
d := gcd(f, g), which is also square free. If sign(d(l)) 6= sign(d(r)), there is a
common zero ϑ1 = ϑ2 in [l, r] and we are done. Otherwise, d has no zero in
[l, r], hence ϑ1 6= ϑ2, and we alternately refine their isolating intervals [li, ri]
by bisection at the midpoint 1

2
(li + ri) until they are non-overlapping. Termi-

nation is guaranteed by the fact that the interval lengths converge to 0, so
that their sum has to drop below |ϑ1 − ϑ2| eventually.

After a comparison of ϑ1 and ϑ2, the isolating intervals in their representations
are replaced by their refinements. If we have computed a non-constant gcd d,
we also replace each fi by d or fi/d, respectively, whichever vanishes at ϑi, as
is discernible from the sign change.

As before in §2.4.1, the idea of a modular filter is applicable. When comparing
two algebraic numbers ϑ1 and ϑ2 of unrelated origin, the expected case is
that their defining polynomials are coprime. Hence before computing d :=
gcd(f1, f2), our implementation checks whether res(f1, f2, x) 6≡ 0 modulo some
prime (see §2.3.1). If this holds, we know d = 1. More on such optimizations
can be found in [44].

A variation of the method above allows to decide for ϑ =̂(f, [l, r]) whether
g(ϑ) = 0 or not: Compute d := gcd(f, g) and decide (by inspecting signs at l
and r) whether d vanishes at ϑ or not.

This representation of real algebraic numbers can be seen as a delayed form
of numerical root finding with a portion of symbolic computation to han-
dle equality accurately. Subsequent comparisons benefit from the refinements
done earlier. Past inequality results are cached in the form of non-overlapping
isolating intervals. The refinement of interval boundaries in a comparison of
unequal numbers ϑ1 < ϑ2 computes a rational number r ∈]ϑ1, ϑ2[∩Q along
the way.

One can implement a union-find scheme to cache equality. This causes all
logical consequences of transitivity, reflexivity and symmetry of = to be ev-
ident from unitedness. When uniting ϑ1 = ϑ2, replace the isolating intervals
[l1, r1], [l2, r2] by their intersection. All logical consequences of transitivity of
> previously reflected by [l1, r1] or [l2, r2] are also reflected by their intersec-
tion. Thus, any logical consequence of a sequence of three-valued comparisons
of algebraic numbers with union can afterwards be read off without further

18

interval refinements.

We will need one more operation on algebraic numbers, namely, refining the
isolating interval [l, r], l 6= r, of a zero ϑ of f against all zeroes of another
square-free polynomial g ∈ Z[x] different from ϑ. To achieve this, refine [l, r]
by bisection until one of two conditions holds: Either Descartes’ Rule of Signs
implies the absence of a zero of g in the interval; or Descartes’ Rule of Signs
implies the existence of exactly one zero of g in the interval, and a sign change
of gcd(f, g) between the boundaries implies the existence of a common zero
within the interval. (This zero must then be unique and identical to ϑ.)

For this operation, we want to retain an interval containing ϑ in its interior, so
the special case of hitting a zero exactly with the bisection point needs to be
resolved by choosing another bisection point. The modular coprimality check
mentioned above applies here, too.

2.4.3 Computing with square roots

In a few special cases of the geometric analyses of the next section, we need to
compute with square roots

√
D, D > 0, although most of the analyses (in par-

ticular the generic cases) are performed with integer and rational arithmetic
alone. Two approaches exist for computing with square roots:

Separation bound number types like CORE::Expr [48] and leda::real [18].
These number types support algebraic expressions, among others those built
up with field operations and

√
from integer operands. They implement com-

parisons by guaranteed numerical approximations combined with separation
bounds to determine at which point the precision suffices to detect equal-
ity. Comparisons work best for expressions of small nesting depth and large
difference in value.

Symbolic representation. The general method of computing modulo the min-
imal polynomial of an algebraic number (as mentioned in §2.2.4, cf. [60])
reduces in this case to the high-school “pencil and paper” representation
Q(

√
D) = {a+b

√
D | a, b ∈ Q} with the obvious implementation of field oper-

ations. After checking that D is not a square, one has a+b
√

D = a′+b′
√

D ⇔
(a, b) = (a′, b′). This representation is preferable for processes like the Eu-
clidean Algorithm in Q(

√
D)[x], because there is no issue of growing expression

trees.

Our implementation of the geometric analyses from Section 4 uses the sym-
bolic representation for algebraic algorithms. CORE::Expr or leda::real are
used to compare root expressions, but it turns out that at those occasions
the expressions will always be unequal. Here we just reuse their numerical
approximation routines but do not rely on separation bounds. See §4.2.4, case

19

“m = 4”, for an example how the use of both representations is combined.

3 Geometry of Algebraic Curves

This section summarizes those elements of the geometry of algebraic curves
that are necessary for our purposes. There are many books on algebraic curves.
Mostly, we follow Gibson’s excellent introduction [40]. The classic book by
Walker [76] is a very useful and well-readable source. Further references are
the textbooks by Bix [13] and Cox/Little/O’Shea [25] and also the advanced
books by Brieskorn/Knörrer [14] and Fulton [35].

3.1 Basics

Let K be a field. An affine algebraic curve (or just curve) is a non-constant
bivariate polynomial f ∈ K[x, y], up to multiplication by a non-zero scalar.
Often, we do not distinguish a curve f from its vanishing locus VK(f) :=
{(x, y) ∈ K2 | f(x, y) = 0}. We assume the reader is familiar with the
projective plane, projective algebraic curves F (x, y, z), and the correspon-
dence between affine and projective curves by homogenization F (x, y, z) =
zdeg(f)f(x/z, y/z) and dehomogenization f(x, y) = F (x, y, 1). (If not, see [40].)

Let A be an affine change of coordinates. Recall that A(VK(f)) = VK(f ◦A−1)
because f(v) = 0 ⇔ (f ◦ A−1)(Av) = 0. All quantities we define below
transform in the obvious fashion under coordinate changes.

Let f ∈ K[x, y] be an algebraic curve, and let K be the algebraic closure of
K. The polynomial f ∈ K[x, y] factors essentially uniquely into coprime irre-
ducible factors pi with multiplicities ei > 0 analogous to (3). This corresponds
to a decomposition of the zero set f into subsets pi, each of which we call an
(irreducible) component of f with multiplicity ei.

Let v ∈ K
2

be a point. The smallest m ≥ 0 such that there is an m-th partial
derivative of f not vanishing at v is called the multiplicity mult(v; f) := m
of v on f . In particular, mult(v; f) > 0 ⇔ v ∈ f . (Notice that f on the
left denotes the polynomial and on the right its vanishing locus.) By Taylor
expansion around v = (v1, v2), the multiplicity is the degree of the lowest-
order terms of f expressed in powers of (x + v1) and (y + v2). From this
characterization, it is immediate that

mult(v; gh) = mult(v; g) + mult(v; h); (13)

in particular, the multiplicity of a point is at least the sum of the multiplicities

20

of the components containing it. We call the points of multiplicity 1 the regular
points of f . The points v of multiplicity ≥ 2, i. e., those with ∇f(v) = (0, 0),
are called singular.

The linear factors over K of the lowest-order terms of f expressed in powers
of (x + v1) and (y + v2) are called the tangents of f at v. A point is called
vertical if it has a vertical tangent. If v is regular, the unique tangent of f at
v has the normal vector ∇f(v) and hence coincides with the notion of tangent
from differential geometry.

Multiplicities of components are irrelevant for the zero set, hence we simplify
matters and demand f to be square free from now on.

Proposition 13 Almost all points v of a square-free y-regular algebraic curve
f satisfy fy(v) 6= 0.

Proof. Given y-regularity, squarefreeness is equivalent to coprimality of f
and fy (cf. §2.2.3). Hence res(f, fy, y) 6= 0 has only finitely many zeroes ξ, and
there are only finitely many points (ξ, η) of f . 2

Corollary 14 Almost all points of a square-free algebraic curve are regular.

Now we turn to the intersection of two coprime algebraic curves f, g ∈ K[x, y].
Again, a notion of multiplicity will be important. By coprimality, f∩g is finite.
A generic choice of coordinates puts the points of f ∩ g into bijective corre-
spondence with the roots of res(f, g, y). We define the intersection multiplicity
mult(v; f, g) of f and g at an intersection point v ∈ f ∩ g as the multiplicity
of its x-coordinate v1 as a root of res(f, g, y), and as 0 for v /∈ f ∩ g. This def-
inition is independent of the concrete choice of generic coordinates, but that
is not obvious, see [25, 8.7] or [14, 6.1]. This definition extends to projective
algebraic curves by dehomogenization. Inspecting the degree of the resultant
used in the definition above [40, 14.4] yields:

Theorem 15 (Bézout’s Theorem)
Let K be an algebraically closed field, and let F, G ∈ K[x, y, z] be two coprime
projective algebraic curves. Then they have exactly deg(F) deg(G) intersection
points in the projective plane over K, counted with multiplicities.

Corollary 16 Let K be a field, and let f, g ∈ K[x, y] be two coprime affine
algebraic curves. Then they have at most deg(res(f, g, y)) intersection points
in K2, counted with multiplicities, and deg(res(f, g, y)) ≤ deg(f) deg(g).

Intersection multiplicity depends on the multiplicity of the point on either
curve [40, 14.5]:

21

Proposition 17 (Multiplicity Inequality)
Let K be a field, and let v ∈ K2 be a point. Let f, g ∈ K[x, y] be two coprime
algebraic curves. Then mult(v; f, g) ≥ mult(v; f) mult(v; g), and equality holds
iff f and g have no common tangent at v.

In particular, the tangent of f at a regular point v is the unique line h with
m := mult(v; f, h) ≥ 2. Generically, one has m = 2. In the special case m > 2,
the regular point v is called a flex. Unless f contains a line component, the
number of flexes is finite and bounded in terms of deg(f), see [40, 13.1].

3.2 Arcs of an Algebraic Curve

From now on, consider a y-regular curve f over the field R. Its vanishing locus
is a closed subset f ⊆ R2. Since the set f ∩ fy of critical points is finite, f \ fy

is an open subset of f . From the Implicit Function Theorem, it follows that
every connected component of f \ fy is a parametrized curve

γi :]li, ri[→ R2 (14)

x 7→ (x, ϕi(x))

with some analytic function ϕi (called the implicit function) and interval
boundaries li, ri ∈ R ∪ {±∞}. In particular, every connected component of
f \ fy is a C∞-manifold of dimension 1 which is homeomorphic to an open
interval. We call the topological closure Ai := cl(γi(]li, ri[)) in R2 of each such
component an arc of f . Since f is closed, Ai ⊆ f .

A generic change of coordinates makes fy(v) 6= 0 for a regular point v, demon-
strating that f is a manifold around a critical point v that is not a singular
point of f . A singular point v, however, is singular and hence critical in any
coordinate system.

The parametrization (14) involves a function ϕi which can be expressed as
a convergent power series locally around any x in its domain. Such a power
series is a special case of the more general notion of Puiseux series (a kind
of series involving fractional powers of x) that allow parametrizations even at
critical points, see [76, IV.] and [14].

The intersection multiplicity of two curves, defined above in terms of resul-
tants, measures the similarity of these implicit power series.

Proposition 18 Let K be R or C. Let f, g ∈ K[x, y] be two coprime y-regular
algebraic curves. Let v ∈ K2 be an intersection point of f and g that is critical
on neither of them. Then mult(v; f, g) is the smallest exponent d for which
the coefficients of (x − v1)

d in the implicit power series of f and g around v

22

disagree.

Proof. (Idea only.) Choose a generic coordinate system. Consider f and g
as univariate polynomials in y whose zeroes can be written as power series
in x − v1. Apply Proposition 7 to see that the multiplicity of v1 as zero of
res(f, g, y) is the vanishing order of the intersecting pair (α(x−v1)−β(x−v1))
of arcs. See [76, Thm. 5.2] for a generalization and its proof. 2

The following corollary is immediate.

Corollary 19 In the situation of Proposition 18 for K = R, the two arcs of
f and g intersecting at a point v change sides iff mult(v; f, g) is odd.

By changing coordinates, the proposition and its corollary extend to intersec-
tions in non-singular critical points.

Now let us inspect the endpoints of an arc Ai := cl(γi(]li, ri[)) more closely.
The y-regularity of f implies that f has no vertical asymptotes. If ri < +∞,
then Ai has a right endpoint (ri, limx→ri

ϕi(x)) ∈ R2 which is a critical point
of f . If ri = +∞ then Ai has a right endpoint at infinity. We use analogous
definitions for the left endpoint.

Criticality of a point (r, s) can be characterized in terms of substituting a
vertical line in parametric form t 7→ (r, s + t) info f . Taylor’s formula yields:

f(r + 0, s + t) = f(r, s) + fy(r, s)t +
1

2
fyy(r, s)t

2 + . . . (15)

We obtain:

Lemma 20 Let f ∈ K[x, y] be a y-regular algebraic curve, and let (r, s) ∈ K2.
Then the following two statements are equivalent:

(i) The point (r, s) is an intersection of f and fy.

(ii) The polynomial f(r, y) ∈ K[y] has a multiple root at y = s.

It follows immediately that no two critical points on a curve of degree ≤ 3 can
have the same x-coordinate.

Let us now distinguish several kinds of critical points. A critical point (r, s)
of f is either a singular or a regular point of f . In the latter case, the tangent
h to f at (r, s) is the vertical line h = x − r. By reasoning analogous to
Proposition 18, we see that mult((r, s); f, h) = mult(0; f(r, s + t)). From (15)
we obtain that (r, s) is a flex iff fyy(r, s) = 0. If (r, s) is not a flex, it follows
from Corollary 19 that f is locally on one side of the vertical tangent at (r, s),

23

Fig. 2. The three kinds of critical points: singularity (left), x-extremality (middle),
and vertical flex (right). The arrows indicate the gradient.

meaning that the point (r, s) has a locally minimal or maximal x-coordinate
on f , and we call it a left or right, resp., x-extreme point.

In the case of cubic curves, the tangent at (r, s) can intersect f with multi-
plicity at most 3, so that in case of (r, s) being a flex the curve must intersect
with multiplicity exactly 3 and change sides with its tangent.

In summary, we arrive at distinguishing the following kinds of critical points:

(1) Singularity: The point satisfies fy = fx = 0, and an arbitrary number
of arcs (maybe zero) meet there.

(2) x-Extremality: The point satisfies fy = 0 and fx, fyy 6= 0. Two arcs
meet there, both of which lie on the same side of the vertical tangent.

(3) Vertical Flex: The point satisfies fy = fyy = 0, fx 6= 0, and joins two
arcs. For cubics, the two arcs are known to lie on different sides of the
vertical tangent.

If the union of two arcs incident to a point v ∈ f form a C∞-manifold around
v, we call this pair of arcs a branch of f at v. A curve has exactly one branch at
any regular point (including those that are critical) and can have an arbitrary
number of branches at a singularity.

If a point v ∈ f is x-extreme, then mult(v; f, fy) = 1 by Proposition 17, be-
cause fyy(v) 6= 0 is equivalent to fy being regular at v with a non-vertical
tangent. The converse argument shows that mult(v; f, fy) ≥ 2 if v is a singu-
larity or a vertical flex. For cubics, we can be more precise:

Proposition 21 Let f ∈ C[x, y] be a y-regular cubic curve with a vertical flex
(r, s) ∈ C2. The multiplicity of r as a zero of res(f, fy, y) is exactly 2.

Proof. After a suitable translation, (r, s) = (0, 0). Then f can be written as
f(x, y) = y3 +a1xy2 +b2x

2y+c3x
3 +b1xy+c2x

2 +c1x with c1 6= 0. One obtains
res(f, fy, y) = 27c2

1x
2 + higher-order terms. 2

24

3.3 Classification of Cubic Curves

In the following paragraphs, we classify square-free real algebraic curves f ∈
Q[x, y] of degree at most 3 with respect to their decomposition into compo-
nents as well as number and kind of their singularities. The statements below
follow from three sources:

• The textbook classification of conics and cubics [40] up to complex-projec-
tive changes of coordinates.

• Conjugacy arguments to demonstrate that something is real or rational or
algebraic of at most a certain degree. For example, let the homogenization F
of f have exactly three singularities in the complex-projective plane. They
are the solutions of Fx = Fy = Fz = 0. Complex solutions come in pairs of
conjugates, so one of the three solutions must be real. Algebraic solutions
of degree d come in groups of d conjugates (as discussed in §2.2.4), so the
number of solutions, in this case 3, bounds their algebraic degree.

• Real-projective changes of coordinates to bring cubic curves with a singu-
larity into one of three normal forms [13, Thm. 8.4] that expose the real
geometry of the singularities.

3.3.1 Lines and Conics

Let f ∈ Q[x, y] be a line, i. e., deg(f) = 1. It is irreducible, real, and it possesses
no singularities.

Let f ∈ Q[x, y] be a conic. It is either irreducible or a pair of two distinct
lines. An irreducible conic possesses no singularities and is either the empty
set (like x2 + y2 + 1) or one of ellipse, parabola, or hyperbola.

By (13) in conjunction with Bézout’s Theorem, a line pair f = g1g2 has a
unique singularity in the projective plane, i. e., the unique intersection point
v of its two components g1 and g2, which is rational but may lie at infinity.
The two tangents at v are g1 and g2. If they are real, v is a crunode, and two
real branches intersect at v. If they are complex, v is an acnode, which is an
isolated point of f in the real plane.

3.3.2 Irreducible Cubics

Let f ∈ Q[x, y] be an irreducible cubic. It has at most one singular point v in
the projective plane. If v exists, f is called singular, otherwise non-singular.

The unique singularity v of a singular irreducible cubic f is rational but may
lie at infinity. The curve f has exactly mult(v; f) = 2 tangents at v. If the

25

(a) (b) (c)

(d) (e) (f)

Fig. 3. Kinds of singularities: (a) acnode, (b) crunode, (c) cusp, (d) tacnode,
(e) real triple point, (f) complex triple point

tangents are distinct, v is a crunode (two real branches and two real tangents)
or an acnode (two complex-conjugate branches and tangents). If there is one
double tangent, it is real, and v is called a cusp. At a cusp, two arcs converge
from one side and do not continue in the real plane. (They come out complex-
conjugate on the other side.)

3.3.3 Cubics with several components

Let f ∈ Q[x, y] be a cubic that is not irreducible. Then it has two components
(a line and an irreducible conic) or three components (three lines). Since lines
and irreducible conics have no singularities, by (13) all singularities of f are
intersections of its components. Some of these singularities may lie at infinity.

Assume f = gh consists of a line g and an irreducible conic h. By Bézout’s
Theorem, g and h intersect in exactly two complex-projective points without
common tangent or in exactly one point with a common tangent. In the former
case, the two intersections may be complex-conjugates, so that there are no
singularities in the real plane, or two real crunodes. In the latter case, g is a
tangent to h at the unique intersection point, and the resulting intersection
is a tacnode. By uniqueness, a tacnode is rational. The two crunodes are
rational, or they are algebraic of degree 2 and conjugates of each other. Both
components g and h have rational coefficients, because g = y + ax + b is the
unique solution to res(y + ax + b, f, y) = 0 and thus rational, and then the
same holds for h = f/g.

Now assume f = g1g2g3 consists of three distinct lines. Exactly one or three of
them are real; and in both cases, two or three of them might have algebraically

26

conjugate equations.

If these three lines are concurrent at one point v ∈ g1 ∩ g2 ∩ g3 (maybe
at infinity), then v is the unique (and hence rational) singularity of f with
mult(v; f) = 3 and with g1, g2, and g3 as its three distinct tangents. In this
case, we call f a star. Depending on all tangents being real or not, v is called
a real or complex triple point.

If the lines are non-concurrent, they form a real or complex triangle, i. e., for
all choices {i, j, k} = {1, 2, 3} of three distinct indices there is exactly one
intersection point sk ∈ gi ∩ gj, sk /∈ gk. The point sk is real (rational) iff
gk is real (or rational, resp.). A real triangle has three real singularities, at
most one of which may lie at infinity. Its singularities are crunodes whose
coordinates are algebraic of degree 1, 2, or 3. A complex triangle has exactly
one singularity in the real affine plane which is an acnode. Its coordinates are
algebraic of degree 1 or 3.

4 Geometric Analyses

This section describes methods to analyze the geometry of a real algebraic
curve f ∈ Q[x, y] of degree deg(f) ≤ 3, and of pairs of such curves. We can
restrict ourselves to integer coefficients for the sake of efficiency without limi-
tation of generality. The result of the analysis resembles a cylindrical algebraic
decomposition of the plane (cf. Arnon et al. [5,6] and the textbook [8, 12.5])
with additional information on adjacencies and intersection multiplicities, but
our method to obtain it is purpose-built and optimized for our application. It
avoids arithmetic with algebraic numbers of high degree by using geometric
properties of the curves themselves and, if necessary, auxiliary curves.

4.1 Analysis of a Cubic Curve

The general view we take on the geometry of f is as follows: For a given x-
coordinate ξ ∈ R, how many real points of f exist over ξ (that is, with an
x-coordinate equal to ξ), and how does this change as we vary ξ? In other
words: How does the intersection of f with a vertical line g = x − ξ evolve as
we sweep g from −∞ to +∞?

The answer was given abstractly in the previous section: Over almost all x-
coordinates, the arcs evolve smoothly according to their implicit functions and
do not change their number and relative position. Only at the x-coordinates of
critical points v ∈ f ∩fy, something happens. Hence we call these points (one-

27

f

Fig. 4. The event x-coordinates of a curve induce a partition of the plane into vertical
lines over event x-coordinates and vertical stripes over the intervals between them.

curve) event points and their x-coordinates (one-curve) event x-coordinates.

Below, we describe an algorithm that accepts an algebraic curve f ∈ Z[x, y]
of degree deg(f) ≤ 3 and determines:

• The decomposition of the x-axis into event x-coordinates and open intervals
between them.

• The number of arcs over any ξ ∈ R.
• The kind of each event, i. e., left/right x-extreme point or kind of singularity.
• The arcs involved in each event, and their position relative to the other arcs.

Since a line has exactly one arc and no events, we restrict our presentation to
the degrees 2 and 3.

Locating the event points amounts to intersecting f and fy. Our general ap-
proach is to compute the event x-coordinates with a resultant, but to avoid
the costly arithmetic involved in computing the symbolic representation of
the matching y-coordinates, where possible. Instead, we stick to a “y per x”
point of view and often determine the y-coordinate of a point just implicitly
by identifying the arc of f containing it. Some central ideas of how to do this
have appeared before in the last author’s thesis [78] and its references. In the
same fashion, we do not care about the actual parametrizations of arcs, just
their relative position. Computing numerical coordinate data can take place
as a post-processing step (cf. §4.4.3).

The following conditions are imposed on the curve f , besides the degree bound:

• The curve f is y-regular.
• The curve f is square free.
• No two points of VC(f) ∩ VC(fy) are covertical.
• There are no vertical flexes on f .
• There are no vertical singularities on f .

28

Two points (a, b), (a′, b′) are covertical if a = a′ ∧ b 6= b′. Recall that a point
is called vertical if it has a vertical tangent.

These conditions are checked by the algorithm as far as it needs to rely on
them. (The noncoverticality condition holds automatically by Lemma 20.)
Violations are signalled to the caller and cause the algorithm to abort. It is
then the caller’s responsibility to establish the conditions and to restart the
algorithm. The violation of a condition does not cause an incorrect result.

These conditions do not limit the range of permissible input curves (seen as
point sets), just the choice of an equation (squarefreeness condition) or of a
coordinate system (other conditions) to represent them. For a y-regular curve
f , squarefreeness can be obtained by replacing f with f/ gcd(f, fy), see §2.2.3.
For the genericity conditions on the coordinate system, see §4.4. Since the
conditions can be established mechanically, the resulting algorithm remains
complete. Choosing generic coordinates is a standard trick. It is ubiquitous in
proofs (cf. any of [76], [40] and [14]) and often used for algorithms (see, e. g.,
[70] or [42]).

4.1.1 Event x-Coordinates

If f is not y-regular, signal “not y-regular” and abort.
Compute Rf := res(f, fy, y). If Rf = 0, signal “not square free” and abort.
Compute a square-free factorization Rf =

∏M
m=1 Rm

fm. Isolate the real zeroes of
each non-constant factor and sort them to obtain the ordered sequence x1 <
x2 < . . . < xn of one-curve event x-coordinates. They correspond bijectively
to the one-curve event points f ∩ fy. Record the multiplicity mi of each xi.

The event x-coordinates induce a partition of the x-axis:

R =] −∞, x1[∪ {x1} ∪]x1, x2[∪ {x2} ∪ . . . ∪ {xn} ∪]xn, +∞[. (16)

Call]xi−1, xi[the i-th interval between events. For simplicity, let x0 = −∞,
xn+1 = +∞, and use the word “between” also for the first (i = 1) and last
(i = n + 1) interval between events.

Compute a rational sample point ri ∈]xi−1, xi[∩Q within each interval between
events. Count the real zeroes of f(ri, y) ∈ Q[y]. This determines the number
ki of arcs of f over the i-th interval between events. Since they are known
to be disjoint, this gives a complete description of the behaviour of f over
the interval. With respect to a specific interval between events, we identify
the arcs over it by arc numbers from 1 to ki, counted in ascending order of
y-coordinates.

In case deg(f) = 3, it remains to check the absence of vertical flexes v ∈

29

f ∩ fy ∩ fyy \ fx. If R := res(fy, fyy, y) 6= 0, this amounts to computing with
the intersection points of a line and a conic, involving coordinates of algebraic
degree ≤ 2, and checking that fx vanishes at these points if f does. If R = 0,
then fy = 1

2
f 2

yy is a double line; and we know there is no vertical flex iff the
number of real roots of Rf2 (cf. Proposition 21) is equal to the number of real
roots of gcd(Rf2, res(fx, fyy, y)). If a vertical flex exists, signal “vertical flex”
and abort.

4.1.2 Arcs over event points

The rest of this section is concerned with the analysis of f at event points
(xi, yi). We say an arc is involved in an event if the event point is contained
in the arc. (If this holds, the event is one of the arc’s endpoints.) Otherwise,
the arc is called uninvolved or continuing.

For each event x-coordinate xi, we will determine:

• The number k′
i of distinct points on f over xi.

• The kind of event (left/right x-extreme or kind of singularity).
• The arc number of the event point over xi.
• The range of arc numbers of the arcs involved in the event on either side (if

any).

Arc numbers over xi are defined by counting the points of f over xi in as-
cending order of y-coordinates without multiplicities and thus range from 1
to k′

i. For deg(f) = 2, we have k′
i = 1, and all arcs over incident intervals are

involved. For deg(f) = 3, we have either k′
i = 1, in which case all arcs over

incident intervals are involved, or we have k′
i = 2, so that there is exactly one

continuing arc, and we have to find out whether the non-event point (xi, y
′
i)

on it lies above or below the event point (xi, yi).

The analysis of an event is split into three parts. If mi = 1, use the method
of §4.1.3. For mi > 1, use the methods of §4.1.4 or §4.1.5, depending on
s :=

∑
m≥2 deg(Rfm), i. e., the number of singular points of f in C2.

4.1.3 Finding x-extreme points

A zero xi of Rf with multiplicity mi = 1 corresponds to an x-extreme point
(xi, yi) of f . We have to determine whether it is a left or right x-extreme point,
and which arcs it involves.

The first distinction is made easily by the sign of ki+1−ki = ±2. Let us assume
the sign is positive. Then we have a left x-extreme point. The opposite case is
symmetric. For deg(f) = 2, this completes the analysis.

30

fy

yyf

f

Fig. 5. The situation at interval boundaries [r−, r+] close to a left x-extreme point.

The second distinction amounts to deciding whether the uninvolved arc in
case deg(f) = 3 lies above or below the x-extreme point. We use fy and fyy as
auxiliary curves to make this decision. Over xi, there are two arcs of fy: one
containing (xi, yi), because it is a double root of f(xi, y), another in between
(xi, yi) and the continuing arc of f by the Mean Value Theorem. This implies
res(fy, fyy, y)(xi) 6= 0. Hence we can refine the interval]xi, xi+1[to an interval
]r−, r+[3 ri with rational endpoints such that [r−, r+] does not contain a root
of res(fy, fyy, y).

At xi and thus over the whole interval [r−, r+], both arcs of fy lie on the
same side of the continuing arc of f . Let us compute over r− which side
it is. Between the two zeroes of fy(r−, y) lies the unique zero c of the linear
polynomial fyy(r−, y) ∈ Q[y]. Its relative position to the unique zero of f(r−, y)
is determined by the sign of f(r−, c): The point (r−, c) and therefore also the
x-extreme point (xi, yi) lies above/below the continuing arc of f iff f(r−, c)
agrees/disagrees in sign with the leading coefficient of f .

4.1.4 Unique Singularities

Our task is to analyze a singularity (xi, yi) of f which we know to be the only
singularity of f in C2. As we go along, we have to check the requirement that f
does not have a vertical tangent in (xi, yi). The coordinates (xi, yi) are rational:
One can read off xi ∈ Q immediately from the linear resultant factor Rfmi

.
Next, yi ∈ Q can be obtained by factoring f(xi, y) ∈ Q[y] by multiplicities. Let
f̂(x, y) = f(xi + x, yi + y). Group the terms in f̂ = f̂3 + f̂2 by their degrees.
Constant and linear part vanish since mult((0, 0); f̂) ≥ 2. Either f̂3 or f̂2

might also be zero. Two observations allow us to take shortcuts in computing
f̂ : The highest-order terms of f are invariant under translation. For d = 3, the
quadratic part f̂2 can be computed by evaluating partial derivatives according
to Taylor’s formula.

For a conic f̂ = ay2 + bxy + cx2, the kind of singularity is all that needs to

31

be determined. Let σ = sign(b2 − 4ac). If σ > 0, then we have a crunode,
involving both arcs on both sides. Else σ < 0, we have an acnode, and there
are no arcs on either side.

For a cubic, compute f̂(x, y) = f3(x, y) + ay2 + bxy + cx2. If a = b = c = 0,
we have a triple point: It is a real triple for ki = 3 and a complex triple for
ki = 1, and it involves all ki = ki+1 arcs on both sides.

Otherwise, let σ = sign(b2 − 4ac) and distinguish these cases:
For a = 0, signal the error “vertical singularity” and abort.
For σ > 0, we have a crunode.
For σ < 0, we have an acnode.
For σ = 0 and |ki+1 − ki| = 2, we have a cusp.
For σ = 0 and |ki+1 − ki| = 0, we have a tacnode.
Factor f̂(0, y) = `(f̂)(y − y0)y

2 by setting y0 = −a/`(f).
If y0 > 0, the continuing arc runs above the singularity, else it runs below.

The sign of a discriminant of a quadratic (or cubic) equation can distinguish
the cases of 0 versus 2 (or 1 versus 3) simple real roots [8, Cor. 4.19]. At various
places in the method above one can trade computing arc counts ki against
determining the sign of a discriminant. One could even exploit that for all
ξ ∈ R, Rf (ξ) is the discriminant of f(ξ, y) ∈ R[y] up to a constant factor and
iteratively compute ki+1 from ki and mi mod 2. In terms of running time for
arrangement computation, all those choices do not make a difference, because
curve pair analyses dominate the analyses of individual curves.

4.1.5 Multiple Singularities

Assume the curve f has exactly s > 1 singular points in C2. Let exactly r of
them be real. For r = 0 there is nothing to be done. So let (xi, yi) ∈ R2 be
one of these singular points.

From §3.3, we know that deg(f) = 3 and that (xi, yi) is an acnode or crunode
resulting from the intersection of two components. By Lemma 20 we know
f(xi, y) = `(f)(y− y′

i)(y− yi)
2 for some y′

i ∈ R. The required nonverticality of
(xi, yi) is equivalent to yi 6= y′

i, because yi = y′
i implies a threefold intersection

and hence tangency of the vertical line x − xi by Proposition 17. Thus there
has to be a non-event point (xi, y

′
i) on a continuing arc of f over xi.

What we have to find out is:

• Does the nonverticality condition hold indeed?
• Does the continuing arc of f run above or below (xi, yi)?
• Is (xi, yi) a crunode or an acnode?

32

Let us begin with the second question. It is equivalent to computing sign(yi −
y′

i). We will first construct a polynomial δ(x) ∈ Q[x] such that δ(xi) = yi − y′
i.

Then we discuss its sign at xi.

Observe that the x-coordinates of all singularities of f in C2 are precisely the
zeroes of the square-free polynomial h = Rf2Rf3Rf4. Let ϑ be any of them. It
is well-known how to do arithmetic in the extension field Q(ϑ) by computing
in Q[x] modulo h (see §2.2.4, cf. [60]). With some care, this is possible even if
h is not irreducible. Our idea is to perform the Euclidean Algorithm for f |ϑ
and its derivative fy|ϑ modulo h to obtain linear factors for the double and the
simple root of f |ϑ. Dividing by fy w. r. t. y is easy since its leading coefficient is
a constant. We expect the remainder to be the linear factor αy+β belonging to
the desired double root −β/α. If no choice of ϑ is a root of α, we can compute
a representative for 1/α modulo h by an extended gcd computation. If, on the
other hand, one choice of ϑ makes α vanish, then it makes β vanish as well
(because deg(gcd(f |ϑ, fy|ϑ)) = 0 is impossible), and f |ϑ has a triple root. This
means ϑ is the x-coordinate of a complex vertical singularity. By y-regularity,
this cannot happen for a triangle, hence f is of type “conic and line” and the
offending singularity is real, violating the nonverticality condition.

Compute δ(x) as follows:
Do polynomial division f = qfy + g w. r. t. y to obtain g = αy + β.
Compute d, u, v ∈ Q[x] such that d = gcd(α, h) = uα + vh.
If d 6= 1, signal “vertical singularity” and abort.
Factor f |ϑ = `(f)ϕ1ϕ

2
2 by setting

ϕ2(y) := ug mod h = y + η2 and ϕ1(y) := f/(`(f)ϕ2
2) mod h = y + η1.

Let δ(x) = η1(x) − η2(x) ∈ Q[x].

With δ at hand, let us return to the problem of analyzing the singularity
(xi, yi). If s = deg(h) = 2, then both singularities are real, we solve h for xi,
and evaluate the non-zero sign of δ(xi) straight away. Since there is a real line
component joining the two real singularities, (xi, yi) is a crunode.

If s = 3, then f is a triangle with no vertex at infinity. Let us first consider the
case that all vertices are real and have x-coordinates x1 < x2 < x3. (All of them
are crunodes.) It is obvious from the shape of a triangle that sign(δ(x1)) 6=
sign(δ(x2)) 6= sign(δ(x3)). But we have deg(δ) ≤ deg(h) − 1 = 2, so that
sign(δ(x1)) = σ, sign(δ(x2)) = −σ, and sign(δ(x3)) = σ for σ := sign(`(δ)).
Hence σ contains the complete answer if all vertices are real: The continuing
arc runs above the singularity iff (−1)i`(δ) > 0.

In fact, the same holds if just one vertex (x1, y1) is real. (That vertex is an
acnode.) For brevity, we just sketch the proof: By translating (x1, y1) to (0, 0),
scaling coordinates with appropriate positive factors, and making f = gh
monic, one obtains a real line g(x, y) = y + ax + c with c = g(0, 0) 6= 0 and

33

g

f

Fig. 6. The event x-coordinates of a curve pair induce a partition of the plane into
vertical lines over event x-coordinates and vertical stripes over the intervals between
them.

a complex line pair h(x, y) = y2 + bxy + x2 with discriminant b2 − 4 < 0.
Following the construction of δ, one obtains

δ(x) =
3

c
(a2 − ba + 1)x2 + (4a − 2b)x + c. (17)

The factor λ(a) = a2 − ba + 1 of `(δ) has discriminant b2 − 4 < 0 and hence
is positive for all a. Thus sign(`(δ)) = sign(c), where c = δ(0) is precisely
the difference of y-coordinates between the real singularity (0, 0) of f and the
point (0,−c) on the continuing arc.

4.2 Analysis of a Pair of Cubic Curves

Let us turn to the geometric analysis of a pair {f, g} ⊆ Z[x, y] of real algebraic
curves with degrees ≤ 3. We take the same point of view as in the analysis of
one curve and ask: For a given x-coordinate ξ ∈ R, what is the number and
relative position of points of f and g over ξ, and how does this change as we
vary ξ? The two-curve event points at which this changes are the one-curve
event points on either curve and the intersection points, because f ∪ g has the
equation fg and the critical points

fg ∩ (fg)y = (f ∩ fy) ∪ (g ∩ gy) ∪ (f ∩ g). (18)

(This equality is easily derived from (fg)y = fyg + fgy.)

We give an algorithm that takes a pair {f, g} of algebraic curves f, g ∈ Z[x, y]
of degrees ≤ 3, subject to certain conditions, and determines:

• The decomposition of the x-axis into two-curve event x-coordinates and
open intervals between them.

• The number and relative position of arcs of f and g over any ξ ∈ R.

34

• For each two-curve event: whether it is an intersection; and what kind of
one-curve event it is on f and g (if any).

• The intersection multiplicity of each intersection.
• The arcs involved in each event, and the sorted sequence of arcs below and

above the event.

The conditions imposed on f and g, besides the degree bound, are as follows:

• f and g both satisfy the conditions of §4.1.
• f and g are coprime.
• No two points of VC(f) ∩ VC(g) are covertical.
• No two event points of {f, g} are covertical.
• No point of f ∩ g is an x-extreme point of f or g.
• The Jacobi curve J = fxgy − fygx of {f, g} (see §4.2.4) is y-regular. For

any v ∈ R2 with mult(v; f, g) = 2 it holds that: The complex intersections
VC(J) ∩ VC(f) and VC(J) ∩ VC(g) do not contain a point covertical to v,
and the set of complex one-curve events VC(J) ∩ VC((J/ gcd(J, Jy))y) does
not contain a point covertical or equal to v.

• If f is a complex triangle whose acnode v is a regular point of g, then fy

and g are coprime and mult(v; fy, g) is odd.

The algorithm checks these conditions and signals violations. For our goal
of arrangement computation, coprimality is not a restriction, since one can
replace two curves f, g in the input to arrangement computation by h :=
gcd(f, g), f/h, and g/h if h 6= 1. See §4.4 on how to establish the other
conditions.

4.2.1 Event x-Coordinates

Analogous to the analysis of one curve, the sorted sequence of two-curve event
x-coordinates induces a partition (16) of the x-axis, and again we use terms
like “interval between events” and so on. The analysis of a curve pair begins
as follows.

Invoke the analysis of one curve for f and g.
Compute Rfg := res(f, g, y). If Rfg = 0, signal “not coprime” and abort.
Factor Rfg by multiplicities and obtain Rfg =

∏M
m=1 Rm

fgm.

Merge the real zeroes of all square-free factors of Rfg, Rf , and Rg to yield
the sorted sequence of two-curve event x-coordinates x1 < x2 < . . . < xn and
record their respective multiplicities m

(fg)
i , m

(f)
i , and m

(g)
i .

If there is 1 ≤ i ≤ n such that m
(fg)
i = 0 ∧ m

(f)
i > 0 ∧ m

(g)
i > 0,

signal “covertical events” and abort.

Determine a rational sample point ri ∈]xi−1, xi[∩Q for each interval between

35

events.
Find and sort the real zeroes of f(ri, y), g(ri, y) ∈ Q[y] to determine the sorted
sequence of f -arcs and g-arcs over each interval between events.

Then the event points are analyzed, as detailed in the rest of this section.

4.2.2 One-curve events

Let xi be the x-coordinate of a two-curve event such that m
(fg)
i = 0. Then xi

originates from a one-curve event (xi, yi) on one curve, let us say f . We know
(xi, yi) /∈ g, and we know g has no one-curve event over xi.

If (xi, yi) is not an isolated point of f , then its position relative to the arcs of
f and g can be read off directly from the position of the arcs of f containing
(xi, yi) over an incident interval between events.

Now assume (xi, yi) is an isolated point of f . Such an acnode can occur on a
line pair, on a singular irreducible cubic, or on a triangle. In the latter case, it
can be algebraic of degree up to 3, discouraging arithmetic with xi. However,
we can use fy as an auxiliary curve that contains (xi, yi) and does not have a
one-curve event at xi. If deg(fy) = 2, the Mean Value Theorem tells us that
fy has two arcs over xi, a relevant one containing (xi, yi) and another one
between (xi, yi) and the continuing arc of f . We simply inspect the relative
position of the relevant arc of fy and the arcs of g over a “nearby” rational
x-coordinate. “Nearby” means closer than any two-curve event of {fy, g}, i. e.,
not separated from xi by a zero of res(fy, fyy, y), res(g, gy, y) or res(fy, g, y). If
the latter resultant is zero, fy has a common component h := gcd(fy, g) with
g. But h cannot contain (xi, yi), hence we can just replace fy by fy/h and
repeat.

4.2.3 Intersections in general

Let xi be the x-coordinate of a two-curve event such that m
(fg)
i > 0. By the

conditions on {f, g}, there must not be an x-extreme point of f or g over
xi: It may neither be covertical nor equal to the intersection point. Hence if
m

(f)
i = 1 or m

(g)
i = 1, we signal “x-extreme over intersection x-coordinate”

and abort. So from now on, one-curve events of f and g over xi, if any, are
singularities.

If both f and g have a singularity over xi, the situation is special insofar that
we have explicit y-coordinates for all points from the analyses of one curve
and that the noncoverticality condition requires the intersection point to be
equal to both singularities. We handle this case in §4.2.7.

36

In the remaining cases, at least one of the polynomials f |xi
, g|xi

∈ R[y] is
square free by Lemma 20 so that d := deg(gcd(f |xi

, g|xi
)) is the number of

their distinct common complex zeroes. Hence the noncoverticality condition
for intersection points holds iff d = 1. By Proposition 8 and y-regularity of f
and g, this is equivalent to sres1(f, g, y)(xi) 6= 0. We can check this condition
without explicit arithmetic in xi by verifying that the gcd of the subresultant
and the resultant factor defining xi has equal signs at ri and ri+1. If not, we
signal “covertical intersections” and abort. Once noncoverticality holds, the
intersection multiplicity is known to be m

(fg)
i .

The analysis of intersections splits into the following cases:

• Neither curve has a singularity over xi – §4.2.4.
• Exactly one of the curves has a singularity over xi for which a rational

representation is known – §4.2.5.
• Exactly one of the curves has a singularity over xi for which a rational

representation is not known – §4.2.6.
• Both curves have a singularity over xi – §4.2.7.

The descriptions of the two asymmetric cases assume w. l. o. g. that the singu-
larity is on f .

4.2.4 Intersection regular-regular

Let xi be a two-curve event x-coordinate with m := m
(fg)
i > 0 and m

(f)
i =

m
(g)
i = 0. If m = 1 or after checking sres1(f, g, y)(xi) 6= 0 (cf. §4.2.3), we know

there is exactly one intersection point of f and g.

By Corollary 19, the intersection over xi causes the intersecting arcs to change
sides iff m is odd. In that case, the two intersecting arcs are directly discernible
from the arc sequences over the incident intervals (see Figure 7(a)).

If m is even, the arc sequences over the incident intervals are equal. However,
since deg(Rfg) ≤ 9 by Corollary 16, the square-free factor Rfgm defining xi

has degree at most 2 for m = 4 and degree 1 for m = 6 and m = 8, allowing
us to compute explicitly with its zero xi in Q or Q(

√
D), D > 0: Compute

h := gcd(f |xi
, g|xi

) = y − yi, using symbolic arithmetic with
√

D if necessary.
Then sort the roots of f |xi

/h, g|xi
/h, and h. They are pairwise distinct and

can be expressed as rationals or as one-root numbers using leda::real or
CORE::Expr.

The remaining case m = 2 can be tackled using the Jacobi curve [78,79]. The
Jacobi curve J of f and g is the determinant of the Jacobi matrix of the map
(f, g) : R2 → R2, that is J := det(∇f, ∇g) = fxgy − fygx. The zero set of the
polynomial J consists of those points v ∈ R2 for which ∇f(v) and ∇g(v) are

37

collinear. For v ∈ f∩g this is equivalent to mult(v; f, g) ≥ 2 by Proposition 17.

Later, we need the following technical result that makes the Jacobi curve
well-defined without reference to a specific choice of coordinates.

Proposition 22 Let f, g ∈ C[x, y] be two algebraic curves and J their Jacobi
curve. Let M be a linear change of coordinates. The Jacobi curve of f ◦M and
g ◦M is equal to J ◦M , up to multiplication by the non-zero constant det(M).

Proof. ∇(f ◦ M) = MT((∇f) ◦ M) and det(MTN) = det(M) det(N). 2

Now we state the main theorem of [79] specialized to our case m = 2 and give
a more geometric proof:

Theorem 23 Let f, g ∈ Q[x, y] be two real algebraic curves, and let v be
a non-critical point of both f and g such that mult(v; f, g) = 2. Then their
Jacobi curve J = fxgy − fygx is indeed a curve (i. e., non-constant) and has
intersection multiplicities mult(v; f, J) = mult(v; g, J) = 1.

Proof. Let y = α(x) and y = β(x) be the implicit functions of f and g,
resp., around v. Differentiating both sides of 0 = f(x, α(x)) twice w. r. t. x,
one obtains

α′(x) =−fx

fy

(x, α(x))

α′′(x) =− 1

f 3
y

(
fxxf

2
y − 2fxyfxfy + fyyf

2
x

)
(x, α(x)).

Choose w. l. o. g. a scalar multiple of f such that fy < 0 around v. Then the
curvature of f at (x, α(x)) is

κf (x, α(x)) : =
α′′(x)

(1 + α′(x)2)3/2
=

fxxf
2
y − 2fxyfxfy + fyyf

2
x

(f 2
x + f 2

y)3/2
(x, α(x))

=
(1

‖∇f‖3
2

(∇f⊥)
T

Hf(∇f⊥)
)
(x, α(x)), (19)

where

Hf =

fxx fxy

fxy fyy

is the Hessian matrix of f , and (a, b)⊥ = (−b, a) denotes orthogonal com-
plement. By Proposition 18, mult(v; f, g) = 2 implies α′(v1) = β ′(v1) and

38

(a) (b)J (c)

fy

(d)

g

f

Fig. 7. Determining the arcs involved in an intersection v of f and g: (a) If v

is regular and m is odd, one can observe a transposition. (b) If v is regular and
m = 2, we use the Jacobi curve J . (c) If v is a crunode of f and regular on g, one
can observe a transposition. (d) If v is an acnode of f and regular on g, we use fy.

α′′(v1) 6= β ′′(v1). Hence there exists λ 6= 0 such that ∇f(v) = λ · ∇g(v),
demonstrating v ∈ J ; and furthermore, we have κf (v) 6= κg(v).

To prove J 6= const and mult(v; f, J) < 2, it suffices to show that the Jacobi
curve of f and J does not vanish at v. It can be written as

∣∣∣∣∣∣∣

fx Jx

fy Jy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

fx fxgxy − fygxx

fy fxgyy − fygxy

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

fx gxfxy − gyfxx

fy gxfyy − gyfxy

∣∣∣∣∣∣∣

= (∇f⊥)
T

Hg∇f⊥ − (∇f⊥)
T

Hf∇g⊥

By (19) and ∇f(v) = λ · ∇g(v), evaluating at v yields

∣∣∣∣∣∣∣

fx(v) Jx(v)

fy(v) Jy(v)

∣∣∣∣∣∣∣
= λ2 · ‖∇g(v)‖3

2 · (κg(v) − κf(v)) 6= 0,

as desired. 2

The theorem allows us to locate the arcs involved in an intersection (xi, yi)
of multiplicity m = 2 by detecting the side change of an arc of J with the
two touching arcs of f and g (see Figure 7(b)), provided that we can find an
interval I 3 xi such that the arc of J containing (xi, yi) extends over both
boundaries, and such that there are no events of {J, f} and {J, g} over I
except for the intersection in (xi, yi). In principle, this means that the event-
describing resultants have no zeroes except for the simple zero coming from
the intersection in (xi, yi). However, the resultants may vanish due to common
components, but these cannot contain (xi, yi) and can thus be deleted.

39

Our algorithm is this:
Compute J := fxgy − fygx. If J is not y-regular, signal this and abort.

Let RJ := res(J, Jy, y). If RJ = 0, let J := J/ gcd(J, Jy) and repeat.
Let RJf := res(J, f, y). If RJf = 0, let J := J/ gcd(J, f) and repeat.
Let RJg := res(J, g, y). If RJg = 0, let J := J/ gcd(J, g) and repeat.

If xi is a zero of RJ or a multiple zero of RJf or RJg,
signal “forbidden Jacobi event” and abort.

Refine the isolating interval]ri, ri+1[of xi to an interval [r−, r+] 3 xi containing
no zero of RJRJfRJg except xi.

Compute the sorted sequences of real zeroes of f(r−, y), g(r−, y), J(r−, y) and
f(r+, y), g(r+, y), J(r+, y). Compare them to detect the pair of an f -arc and
a g-arc that both change sides with the same J-arc.

4.2.5 Intersection regular-singular, rational case

Let xi be a two-curve event x-coordinate with m
(fg)
i > 0, m

(f)
i ≥ 2, and

m
(g)
i = 0. This means there is an intersection point of f and g, a singularity

of f , and no one-curve event of g over xi. Furthermore, let xi be known as
a rational number, which is certainly the case if f has a unique singularity
in C2.

Factorization of f(xi, y) ∈ Q[y] by multiplicities yields the singularity’s y-
coordinate yi ∈ Q and, if present, the y-coordinate y′

i ∈ Q of a continuing arc
of f . The noncoverticality condition holds iff g(xi, y

′
i) 6= 0 or y′

i does not exist.
If it is violated, we signal this and abort.

The continuing arcs of g correspond to zeroes of g(xi, y)/(y−yi) ∈ Q[y] which
has degree at most 2. The sorted sequence consisting of these zeroes and yi,
y′

i completely describes the geometry of {f, g} over xi.

4.2.6 Intersection regular-singular, algebraic case

Let xi be an event x-coordinate with m
(fg)
i > 0, m

(f)
i ≥ 2, and m

(g)
i = 0.

This means there is an intersection point of f and g, a singularity of f , and
no event of g over xi. Assume xi is represented with defining polynomial of
degree ≥ 2. Then the singularity of f is not unique in C2 and hence is an
acnode or a crunode, according to the classification from Section 3.3.

After checking m
(fg)
i = 2 or sres1(f, g, y)(xi) 6= 0 (cf. §4.2.3), we know there

is exactly one intersection point of f and g over xi. It remains to check that

40

the intersection occurs in the singularity and to determine which arc of g is
involved.

In a crunode (xi, yi) of f , two branches of f with different tangents intersect.
An arc of g passing through (xi, yi) can share a tangent with at most one of
the branches of f . Thus it changes sides with at least one of them, and we
know they change sides with each other. Therefore, a g-arc A intersects f in
(xi, yi) iff one of the following conditions holds:

• On one side, A lies between the two arcs of f containing (xi, yi).
• On one side, A lies below and on the other side, A lies above the respective

two arcs of f containing (xi, yi).

Hence the analysis of a crunode (xi, yi) reduces to inspecting the arc sequences
over incident intervals, see Figure 7(c) on page 39.

Let us now consider the case of an acnode (xi, yi). It occurs only for a complex
triangle. The acnode has no supporting arcs on f , but we can use fy instead,
similar to what we did in §4.2.2. (We described there which arc of fy contains
(xi, yi).) The situation is depicted in Figure 7(d). The conic fy contains the
three non-collinear points f ∩ fy but none of their connecting lines, so it is
irreducible. This entails res(fy, fyy, y) 6= 0.

We must check that the intersection of f and g over xi indeed occurs in the
acnode (xi, yi) (noncoverticality), and we check that fy and g are coprime
and intersect at (xi, yi) with odd multiplicity. The latter is satisfied iff we can
observe a transposition of the relevant arc of fy with an arc of g over “nearby”
rational points (where “nearby” means closer than any other event of {fy, g}),
and this then is the g-arc intersecting f . So our algorithm is this:

Compute R := res(fy, g, y). If R = 0, signal “coprimality violated” and abort.
If R(xi) 6= 0, signal “covertical events” and abort.

Refine]ri, ri+1[to]r−, r+[3 xi such that [r−, r+] contains no zero of R except
xi and no zero at all of res(fy, fyy, y).

Compare the arcs of fy and g over x = r− and x = r+:
If there is a transposition of the relevant arc of fy with some arc of g,
then that arc of g contains (xi, yi);
else signal “no intersection in acnode visible” and abort.

4.2.7 Intersection singular-singular

Let xi be an event x-coordinate such that m
(fg)
i > 0, m

(f)
i ≥ 2, and m

(g)
i ≥ 2.

41

If we have a rational representation for xi, factoring f(xi, y), g(xi, y) ∈ Q[y]
by multiplicities yields rational representations for all points of {f, g} over xi,
making the analysis trivial.

From h := gcd(R
fgm

(fg)
i

, R
fm

(f)
i

, R
gm

(g)
i

), we can always obtain a rational rep-

resentation, because necessarily deg(h) = 1 if the conditions on {f, g} are
met. This is seen as follows: If deg(h) ≥ 2, then there are common complex
zeroes r1, r2 of all three resultants, singularities (r1, s1), (r2, s2) of f , singu-
larities (r1, s

′
1), (r2, s

′
2) of g, and intersections (r1, s

′′
1), (r2, s

′′
2) of f and g. The

noncoverticality condition requires sj = s′j = s′′j for j ∈ {1, 2}. The line con-
necting these two singular intersection points is a component of both f and
g, contradicting their coprimality.

Coprimality has already been checked at this point, so we may conclude from
deg(h) > 1 that the noncoverticality condition has been violated.

4.3 Curves, curve pairs, and slices

We have implemented the geometric analyses as member functions of objects
that represent curves and curve pairs. A call to such a member function per-
forms the analysis only as far as necessary. All information is cached, so that
a costly computation is never done twice. A global table avoids multiple con-
struction of a curve pair object for {f, g} even if the pair {f, g} is considered
at several unrelated occasions.

A curve pair object presents the information on the relative position of arcs
over each cell in the decomposition (16) of the x-axis in the following unified
form: Given the index i of an event x-coordinate xi or of an interval]xi, xi+1[
between events, return a slice, that is a pair of tables such that the n-th entry
in the table for f gives the arc number of the n-th f -arc among all arcs of f
and g, and similarly for g (see Figure 8). Comparing arc numbers is equivalent
to comparing y-coordinates. In particular, intersections of f and g are reflected
by equal arc numbers of an f -arc and a g-arc. Instead of an index i, one can
also specify an algebraic x-coordinate ξ identifying one cell of (16), or the
special x-coordinate values ±∞, which we take to refer to the first and last
interval, respectively.

4.4 Choosing Coordinates

We imposed certain conditions on curves and curve pairs regarding the choice
of a coordinate system; or more precisely, on the choice of the vertical axis. In
this section, we will first derive a rough constant upper bound on the number

42

11

1 2

2 3
2 3

3 4

1

2

3

3

2

1

6

5

4

3

2

1

Fig. 8. Slices of a curve pair: over an interval between events (left); over an inter-
section point which is a crunode of one of the curves (right).

of forbidden directions of the y-axis per curve or curve pair. To do so, we
rephrase these conditions on the coordinate system as conditions that certain
lines (which are well-defined without reference to a specific coordinate system)
shall be non-vertical. Afterwards, we discuss how to change coordinates if a
curve or curve pair analysis aborts because of a condition violation.

4.4.1 Forbidden vertical directions

Let us first consider the conditions for a single curve f . The items below match
the items in the list of conditions given in §4.1, except for the squarefreeness
condition.

• A curve f is y-regular iff its highest-order terms are not divisible by x. The
highest-order terms form a homogeneous polynomial of degree deg(f) which
decomposes into linear factors over C. These are the complex asymptotes of
f . We obtain: f is y-regular iff none of its complex asymptotes is vertical.
A cubic curve has at most 3 distinct complex asymptotes.

• No two points of VC(f) ∩ VC(fy) are covertical by Lemma 20.
• A curve f has no vertical flexes iff the unique tangents in all flexes are

non-vertical. A cubic curve has at most 9 flexes [40].
• The non-verticality of tangents in the singularities of a y-regular curve f ex-

cludes at most 2 further directions: For an irreducible cubic we demand the
non-verticality of the two tangents in the singularity. For a cubic consisting
of a conic and a line intersecting in two distinct singularities we demand
non-verticality of the respective tangents to the conic component. A tangent
to a line component is the line itself which is non-vertical by y-regularity.

This yields an upper bound of 14 on the number of forbidden directions for a
single curve.

Now consider a curve pair {f, g} and the conditions imposed in §4.2 on rela-
tions between the curves, except coprimality.

• The noncoverticality of the ≤ 9 distinct complex intersection points is equiv-

43

alent to the nonverticality of the ≤
(

9
2

)
= 36 lines joining any two of them.

• The noncoverticality of intersection points to one-curve events of f is equiv-
alent to the nonverticality of any line h that both contains an intersection
point p ∈ f ∩ g and has a multiple intersection point q 6= p with f . This is
because a multiple intersection of h and f at q, that is mult(q; h, f) ≥ 2,
means that h is a tangent to f at q or that f is singular at q (Proposition 17).

The noncoverticality of one-curve events of f and one-curve events of g
is equivalent to the nonverticality of any line h that has points of multiple
intersection with both f and g, by the same argument.

For both parts, we will bound the respective number of lines below, after
introducing the necessary tools.

• There are ≤ 9 non-singular intersection points, each with a unique tangent
on f and on g, respectively. These points are not extreme iff their ≤ 2·9 = 18
tangents are non-vertical.

• The Jacobi curve J = fxgy − fygx is well-defined independent of a specific
choice of coordinates (Proposition 22). It has at most deg(J) ≤ 4 distinct
complex asymptotes whose nonverticality is equivalent to y-regularity.

There are k ∈ {0, . . . , 4} non-singular intersections v of f and g with
mult(v; f, g) = 2. For the noncoverticality of Jacobi intersections, no line
through any of them that also contains another intersection of J with either
f or g is allowed to be vertical. There are at most deg(f) deg(J)−k ≤ 12−k
of those other intersections with f ; same for g. This yields ≤ 2k(12−k) ≤ 64
forbidden lines.

For the absence of Jacobi one-curve events, no line through any of the
≤ 4 points v that also has a multiple intersection with J is allowed to be
vertical (as before because of Proposition 17). We will bound the number
of such lines below.

• Consider the acnode v of a complex triangle f . The discriminant D(x, y) of
the quadratic part of f(x+r, y+s) is D = f 2

xy −fxxfyy by Taylor’s formula.
Since v is an acnode, D(v) 6= 0. Notice that D is equal to the Jacobi curve
det(∇fy,∇fx). Hence ∇fx(v) and ∇fy(v) are linearly independent.

Partial differentiation after a change of coordinates induced by some
invertible matrix A = (aij)i,j yields the curve (((f ◦ A)y) ◦ A−1)(v) =
a12fx(v) + a22fy(v) with gradient a12∇fx(v) + a22∇fy(v). Hence just one
choice of a new vertical direction (a12 : a22) makes ∇fy(v) parallel to ∇g(v);
for all other choices they are non-parallel, so that coprimality of g and the
irreducible conic fy as well as mult(v; fy, g) = 1 are certain.

To obtain estimates on the number of lines h fulfilling a condition of the
form “h has a multiple intersection point with f (and we don’t care where)”,
we lift the scene to the complex projective plane by homogenizing f(x, y) to
F (x, y, z) = zdeg(f)f(x/z, y/z), and we consider the set of all complex-projec-
tive lines H that have a multiple intersection point with F . Their duals H∗

form an algebraic curve F̃ in dual space (unless F has a line component, but
we leave out this special case for brevity), which has degree deg(F)(deg(F)−1)

44

[14, pp. 252+]. For our setting, this means deg(F̃) ≤ 6. (Removing the line
components from F̃ , which reflect the intersections in singularities, gives the
well-known dual curve F ∗ of F [14, ibid.] [76, V.8] [40, 16.6].)

With these notions, we can now dualize “a line H through p having a multiple
intersection point with curve F” to “an intersection point H∗ of line p∗ and
curve F̃”. This yields an upper bound deg(F̃) on the number of such lines H.

Let us proceed to bound the number of lines H having a multiple intersection
with F outside some fixed non-singular point p of F . Let T be the tangent
to F at p. Recall that, for degree reasons, a line cannot have more than one
multiple intersection with a cubic. Hence “a line H through p having a multiple
intersection point with curve F outside p” is equivalent to “a line H 6= T
through p having a multiple intersection point with curve F”. We can dualize
the latter to “an intersection point H∗ of line p∗ and curve F̃ distinct from T ∗”.
It is known [14, p. 255] that the intersection of F̃ and p∗ at T ∗ has multiplicity
2. Hence we have an upper bound of deg(F̃) − 2 on the number of lines H.

Finally we can dualize “a line H having points of multiple intersection with
both F and G” to “an intersection point of F̃ and G̃”. Bézout’s Theorem
(p. 21) implies that no more than deg(F̃) deg(G̃) such lines H exist.

Returning to the original question, we obtain the following bounds:

• Through each of the ≤ 9 intersection points p of f and g, there are ≤
3 · 2 − 2 = 4 lines that have a multiple intersection point with f outside p;
same for g. This forbids ≤ 2 · 4 · 9 = 72 directions of lines.

• There are ≤ (3 ·2)2 = 36 lines that have points of multiple intersection with
both f and g.

• Through each of the ≤ 4 non-singular intersection points of f and g with
multiplicity 2, there are ≤ 4 · 3 = 12 lines that have a multiple intersection
with the Jacobi curve J . This forbids ≤ 4 · 12 = 48 directions of lines.

These three items forbid ≤ 72 + 36 + 48 = 156 directions. Together with the
≤ 36 + 18 + 68 + 1 = 123 forbidden directions from the preceding list, we
obtain that no more than 156+123 = 279 directions of a y-axis are forbidden
per analyzed curve pair.

4.4.2 Random Shearing

Since there are infinitely many possible y-axes, a random choice will pick one
that is permissible for all curves and curve pairs analyzed during the algorithm
with probability 1. Hence our strategy for finding a permissible coordinate
system (one that is generic w. r. t. our conditions) is this: Shear the input
scene with a random shearing parameter r ∈ Q and run the algorithm. Check

45

the conditions along the way. If a violation is detected, pick a new r and
restart. A shear is an invertible linear map Sr : (x, y) 7→ (x + ry, y) for a fixed
r ∈ Q. It leaves the x-axis fixed and tilts the y-axis.

From which range should the algorithm choose r? We do not recommend to
compute an a priori bound on the number of forbidden directions and define
a range larger than that, because most forbidden directions will lie outside
that range, being irrational or rational with large denominator, and choosing
from a large range comes at a price: A value r of binary encoding length s will
increase the coefficient size of a curve f by a factor of s deg(f). Instead, start
with a small range and increase its size with the number of past failures.

4.4.3 Shearing back

We will apply curve and curve pair analyses to implement predicates for
arrangement computation in Section 5. We propose to choose one global
generic coordinate system. Transforming input curves from the original into
the generic (sheared) system is not a problem. Analyzing curve and curve
pair geometry in the sheared system has been solved above. Topological data
like the graph representing the arrangement is valid in any coordinate system.
However, transforming event point coordinates back from the sheared into the
original coordinate system creates some complications.

Our algorithms for curve and curve pair analysis express y-coordinates in an
implicit fashion as arc numbers. This entails a representation of event points
that is not amenable to applying the inverse shear, because there are no explicit
y-coordinates.

Instead, we propose to obtain approximations of coordinates: Use numerical
methods (with or without guarantees) for solving univariate polynomials to ap-
proximate event point coordinates in the sheared coordinates, then transform
back. Numerical approximation is made easier by the fact that the algebraic
computations in the analysis of curves help to avoid solving for multiple zeroes.
(The defining polynomials for x-coordinates ξ are explicitly made square free.
The y-coordinate of a one-curve event, if not known rationally, is definable
with fy(ξ, y) instead of f(ξ, y).)

Generating correct topology and arbitrarily accurate numerical point coordi-
nates is consistent with the idea of Exact Geometric Computation (EGC) [81].
Using a generic coordinate system considerably reduces the number of cases
distinguished in the geometric analyses. However, there are two disadvantages:
First, the sheared back result itself is not represented exactly, complicating
further operations on it. Second, introducing a new curve may put the for-
merly generic coordinate system in violation of a position condition, requiring
the whole computation to restart with a new random choice of coordinates;

46

1
2 2

3

2

1

Fig. 9. Representations for a sweepable segment (left) and a point (right).

hence an incremental algorithm must retain history data to handle such an
incident.

5 Arrangement Computation

We show how to perform a Bentley-Ottmann-like sweep [9] of curves, in the
complete formulation from LEDA [62, ch. 10.7], based on the analysis of curves
and curve pairs. We emphasize that the following presentation is not restricted
to cubic curves, but works for all curves for which we can provide analyses
similar to §4.1 and §4.2 (essentially, a cylindrical algebraic decomposition with
information on adjacencies and intersection multiplicities).

As input, we accept a set of curves. As output, our method computes a planar
map labelled with points (including auxiliary points like extreme points) and
input curves, representing the arrangement.

In a preprocessing step, every input curve f is broken into sweepable segments
such that each segment s has no one-curve event in its interior and such that
all points in the interior of s have the same arc number i, meaning that β is
the i-th real root of f(α, y) for every (α, β) ∈ int(s).

A segment is represented by its endpoints, its supporting curve, and its re-
spective arc numbers in the interior and at the endpoints (Fig. 9 (left)). (This
representation also allows user-defined segments that are subsets of the curve’s
sweepable segments.) A point is represented by an x-coordinate, a support-
ing curve and an arc number (Fig. 9 (right)). To represent arcs extending to
infinity, we allow the special values −∞ and +∞ for the x-coordinate.

We outline the generalized Bentley-Ottmann algorithm for completeness (cf.
Figure 10). To compute a planar map representing an arrangement of seg-
ments, sweep a vertical line over them and preserve the following invariant:
Left of this sweep line, the planar map has already been constructed. The
segments intersecting the sweep line at its current position are stored in a se-
quence called the Y-structure. It is sorted in ascending y-order of intersection
points. Right of the sweep line, all segment endpoints and some intersection

47

Y−structure

X−structure

Fig. 10. Illustration of the Bentley-Ottmann sweep line algorithm.

points – at least those of segments being adjacent in the Y-structure – are
stored in a queue called the X-structure. The X-structure is sorted in lexico-
graphic order.

Intersections and endpoints of segments are collectively called event points,
because it is only at these points that the status of the sweep line changes.
A segment containing an event point is said to be involved in the event. The
conceptual sweep over the whole plane amounts to advancing the sweep line
over this finite number of points. Covertical event points are handled in the
order of their y-coordinates; hence the lexicographic sorting of events.

The algorithm performs the following steps until the X-structure has been
emptied:

(1) Extract the next event point from the X-structure. Find the segments
involved in the event by locating the event point in the Y-structure,
exploiting its order.
(Requires: Comparison of y-coordinates of point and segment.)

(2) Remove ending segments, i. e., those with target point equal to event
point.
(Requires: Comparison of event point and target points.)

(3) Reorder remaining intersecting segments according to multiplicity of in-

48

tersection (explained below in §5.1) such that the new order reflects the
situation right of the event.
(Requires: Segment overlap test. — Intersection multiplicity of non-over-
lapping segments.)

(4) Add starting segments to the Y-structure according to its ordering.
(Requires: Comparison of event point and source points. — Comparison
of segment y-order right of common point.)

(5) Add intersections of newly adjacent segments to the X-structure, obeying
its ordering.
(Requires: Computation of segment intersection points. — Lexicographic
comparison of event points.)

Observe how the use of predicates by the algorithm automatically reduces all
geometric analyses to at most two curves at a time, even if many segments
run through one event point. 7

In summary, we need the following predicates and constructions:

Lexicographic comparison of event points. If comparing x-coordinates
does not break the tie, slice the two supporting curves at their common
x-coordinate to compare the supporting arcs.

Comparison of y-coordinates of point and segment. Decide this using
the slice of the two supporting curves at the point’s x-coordinate.

Comparison of segment y-order right of common point. Inspect the
slice of the two supporting curves over the interval right of the intersection.

Segment overlap test. Since different curves are required to be coprime,
which is checked when the resultant of the corresponding curve pair is com-
puted, segments overlap if and only if they are non-trivial, their supporting
curves are the same, their interior arc numbers are the same, and their
x-ranges overlap.

Computation of segment intersection points. Analyze the two support-
ing curves over the intersection of the segments’ x-ranges. For each two-curve
event in that range, determine from the slice whether the supporting arcs
of the segments coincide.

Intersection multiplicity of non-overlapping segments. This is the
multiplicity of the corresponding root of res(f, g, y) by noncoverticality of
intersections.

7 Our representation of a point involves only one curve but an explicit x-coordinate,
so that this view is justified, even though, for example, the comparison of two
intersection points can be seen as involving four curves, i. e., the two pairs of curves
creating the intersections.

49

s1

s2

s3

s5

4s3

1

2
∞

Fig. 11. Segments changing their y-order in an intersection point. The numbers on
the left are the intersection multiplicities of adjacent segments.

5.1 Reordering segments passing through an event

The reordering step (3) of the Bentley-Ottmann algorithm requires further
explanation, especially since this is the one place where the treatment of curved
segments differs from the straight-line case on this level of abstraction. We
present the approach from [11] formalized with the notions of Section 3.

In the reordering step, depicted in Figure 11, only segments containing the
event point in their interior are involved. Let us call them s1, . . . , sk, numbered
in ascending y-order just left of the event. Since the si are sweepable segments,
the intersection occurs in the interior of arcs of the respective supporting
curves, and we can write a segment si locally as an analytic implicit function

y = ϕi(x) =
∞∑

d=1

a
(i)
d xd (20)

after translating the event point to (0, 0). The coefficients of the implicit func-
tions determine the y-order of segments just left and just right of the inter-
section.

Proposition 24 With notation as above:
Segment si lies below segment sj right of the intersection iff

(a
(i)
1 , a

(i)
2 , . . . , a

(i)
d , . . .) <lex (a

(j)
1 , a

(j)
2 , . . . , a

(j)
d , . . .).

Segment si lies below segment sj left of the intersection iff

(−a
(i)
1 , a

(i)
2 , . . . , (−1)da

(i)
d , . . .) <lex (−a

(j)
1 , a

(j)
2 , . . . , (−1)da

(j)
d , . . .).

(Here <lex is the lexicographic order relation on sequences of real numbers.)

Proof. It suffices to demonstrate the first part; the second part follows by
substituting −x for x. Iff the segments overlap, they coincide around the inter-

50

section and have equal coefficient sequences. Otherwise, a finite m = min{d |
a

(i)
d 6= a

(j)
d } exists, and ϕi(x) − ϕj(x) = (a(i)

m − a(j)
m)xm + . . . is negative for

small positive x iff a(i)
m < a(j)

m . 2

By Proposition 18, the quantity m considered in the proof for non-overlapping
segments is precisely the intersection multiplicity of the segments’ supporting
curves in the sense of §3.1. Incorporating the case of overlap, we define the
intersection multiplicity of segments si and sj as min({d | a

(i)
d 6= a

(j)
d }∪{∞}).

When we come to process the intersection of s1, . . . , sk, intersection multiplic-
ities will typically not have been computed for all 1

2
k(k−1) pairs of segments.

For 1 ≤ i < k let mi ∈ {1, 2, 3, . . . ,∞} denote the intersection multiplicity
of the adjacent segments si and si+1. These multiplicities have already been
computed when si and si+1 were found to overlap or intersect, resp., in the
current event. The following result allows us to infer all other intersection
multiplicities from them.

Proposition 25 With notation as above, the intersection multiplicity of si

and sj, 1 ≤ i < j ≤ k, is min{mi, . . . , mj−1}.

Proof. By induction on j. The base case j = i + 1 is clear. For the inductive
step from j to j+1, let m = min{mi, . . . , mj−1} be the intersection multiplicity
of si and sj. For mj = ∞, the claim is clear. Otherwise, distinguish three cases:

The first case is m > mj. It holds that a
(j+1)
d = a

(j)
d = a

(i)
d for d < mj and

a
(j+1)
d 6= a

(j)
d = a

(i)
d for d = mj, so that the intersection multiplicity of si and

sj+1 is mj = min{m, mj}.

For m < mj, we have equality for d < m and inequality a
(j+1)
d = a

(j)
d 6= a

(i)
d

for d = m, demonstrating the intersection multiplicity m = min{m, mj}.

However, if m = mj, then only a double inequality a
(j+1)
d 6= a

(j)
d 6= a

(i)
d holds for

d = m, but we need a(j+1)
m 6= a(i)

m . Proposition 24 helps: Since sj+1 lies above sj

and intersects with multiplicity mj = m, we know (−1)ma(j+1)
m > (−1)ma(j)

m .
By the analogous argument for sj and si, we know (−1)ma(j)

m > (−1)ma(i)
m .

Hence (−1)ma(j+1)
m > (−1)ma(i)

m , as required. 2

The proposition justifies the following way of performing step (3) (cf. [11]):

Let s1, . . . , sk be segments passing through a common event point, numbered
in ascending y-order left of the event point.
Let m1, . . . , mk−1 be the intersection multiplicities of adjacent segments.
Let M be an even upper bound of all finite mi.

51

For m = M, M − 1, . . . , 1, take all maximal subsequences si, si+1, . . . , sj with
the property mi, mi+i, . . . , mj−1 ≥ m and reverse their order.

Observe that the intersection multiplicities mi are not readjusted to reflect
the intersection multiplicity of si and si+1 once the segments are being moved.

To prove correctness, let us first consider two non-overlapping segments, ini-
tially numbered si and sj, which have been put into the same subsequence
exactly n times. This is equivalent to n = min{mi, . . . , mj−1}, since they were
first put together for m = n and then again in every subsequent iteration. The
segments have changed their relative position iff n is odd. By Proposition 25, n
is their intersection multiplicity. By Corollary 19, the segments have to change
their relative position iff n is odd. Hence they were rearranged correctly. Let
us now consider the special case of two overlapping segments si and sj. They
belong to a sequence of pairwise overlapping segments si, si+1, . . . , sj, so that
mi = mi+1 = . . . = mj−1 = ∞, which implies that si, sj have been put to-
gether M times and have not changed their relative position (because M is
even), which is also correct.

A reader still surprised by the fact that there is no need to reorder the mi

in accordance with the permutation of segments may want to verify that the
following invariant holds at the beginning of a loop iteration: If mi ≤ m, then
it is the actual intersection multiplicity of si and si+1. If mi > m, then the
actual intersection multiplicity is also > m.

The time complexity of segment reordering is O(M · k). In our context M is
at most 10, according to Bézout’s Theorem (p. 21) and M being even.

6 Runtime Analysis

The runtime of the sweep in the Real RAM model remains the known O((n+
s) log(n+m)+m) [62, ch. 10.7], where n is the number of curves, s the number
of nodes, and m the number of edges in the resulting planar map. Here it is
essential that we reorder all segments passing through an intersection point
in linear time.

We consider the effect of shearing on the runtime. We show in §4.4.1 that we
have only a constant number of forbidden directions for each analyzed pair of
curves. We conclude that a random choice among quadratically many direc-
tions will lead to an expected constant number of shears. Since bit-complexity
is of interest, we actually bias the choice towards directions of small bit size
representations.

52

Besides the Real RAM model, the bit-complexity is of obvious importance
here. However, a complete worst-case analysis is impractical (see the number
of case distinctions), and furthermore, we expect no promising result from the
known separation bounds that we would need to apply for the (cascaded) root
isolations [19].

Instead, we emphasize that our approach is not tied to the worst case. Our
methods benefit whenever a particular instance does not require the isolating
intervals to approach the separation bounds limit but can stop earlier. Not
only does the iteration stop earlier, e. g., in the Descartes Method, but also
the bit complexity of the interval boundaries becomes smaller and subsequent
steps are faster. Even more important, we do not use the separation bound
approach to detect equality between our algebraic numbers. This is in contrast,
e. g., to the leda::real and CORE::Expr implementations, where the equality
test is the most costly decision. Instead we detect equality of two algebraic
numbers by finding a common factor of their defining polynomials with a root
in the appropriate interval. This is much faster than refining the intervals to
their separation bounds.

On top of this, we use modular arithmetic to quickly filter out gcd computa-
tions in cases of coprime defining polynomials (§2.4.2). The same idea helps
to speed up factorization by multiplicities (§2.4.1).

In summary, we argue that the worst-case analysis of the bit complexity would
be non-representative for our approach. Instead, we illustrate its efficiency with
the experiments in the next section.

An alternative to the sweep-line algorithm is the randomized incremental con-
struction because of its better asymptotic runtime. We can realize the neces-
sary predicates with our approach. However, since we do not simply determine
signs of polynomial expressions, it is not clear whether the lower degree of
predicates 8 for the linear case carries over to our setting.

7 Implementation and Experiments

We have implemented our method in the project Exacus, Efficient and Exact
Algorithms for Curves and Surfaces. 9

Exacus is a collection of C++ libraries;
NumeriX provides the algebraic and numerical foundations, SweepX pro-
vides the generic sweep-line algorithm independent of the curve type, and
CubiX provides a full implementation of the curve and curve pair analyses

8 The degree of a predicate is the degree of the polynomial expression in the input
data whose sign yields the result of the predicate.
9 http://www.mpi-inf.mpg.de/projects/EXACUS/

53

of cubic curves and combines them with the sweep-line algorithm in a demo
program. The demo visualizes curves independent of arrangement computa-
tion with a subdivision method by Taubin [75] (see [61] for a survey of other
options). This is helpful for demonstration and debugging purposes and also
for interactive creation of test instances.

Exacus follows the generic programming paradigm [64]. Our C++ implemen-
tation is based upon design experience gained with C++ templates in this
paradigm with the Standard Template Library, Stl [7], and the Computa-
tional Geometry Algorithms Library, Cgal [33,49]. One example for a generic
reusable component in Exacus is the polynomial class template with the flex-
ibility of different coefficient types and efficiency at the same time. More on
the software structure and design can be found in [10].

We offer three series of benchmarks. Firstly, there is a series of random sets of n
cubic curves. Each curve f is defined by interpolation through 9 points chosen
uniformly at random from a set of 9n random points on the {−128, . . . , 127}2

integer grid. Every interpolation point results in a homogeneous linear con-
dition on the 10 unknown coefficients of f , so that generically 9 conditions
determine the equation of a curve uniquely, up to a constant factor. For each
input size n, we have generated an odd number of candidate input data sets
and picked the one with median average running time for inclusion in our
benchmark.

Secondly, there is a series of degenerate instances. It is obtained in a similar
fashion, except that

(1) There are only 54 interpolation points.
(2) At the first interpolation point of each curve, we demand with probability

0.2 that not only f but also fx and fy vanish, making this point a rational
singularity (yielding 2 additional linear conditions).

(3) For each interpolation point p, we pick random values for slope mp and
curvature κp. Whenever a curve f is interpolated through p, we make
its slope equal to mp (yielding one additional linear condition) and, with
probability

√
0.5, we also make its curvature equal to κp (yielding a fur-

ther linear condition).

The result is an arrangement of curves with (1) vertices of high degree, (2)
curves with singularities, (3) two- and threefold intersections.

Thirdly, there is a series with coefficient growth: We take the n = 60 instances
from the preceding random and degenerate series, scale each interpolation
point p by a factor s = 100, 10 000, or 1 000 000, and then perturb it to sp + ε
with offset vector ε chosen randomly from {−10, . . . , 10}2. (All occurrences of
an interpolation point are mapped in the same way such as to preserve degen-
eracies.) This increases the bit size of the curves’ coefficients but preserves the

54

Series n segments nodes half-edges bits time

random 30 226 2933 11038 99 6.1 s

60 454 11417 44440 99 25.1 s

90 680 26579 104474 100 62.2 s

120 940 46117 181978 100 114.8 s

150 1226 71594 283114 99 180.7 s

180 1460 102298 405312 101 260.2 s

200 1554 126278 500888 101 322.5 s

degenerate 30 243 2313 8604 116 11.1 s

60 534 7627 29284 116 40.8 s

90 722 17983 70378 120 95.6 s

120 1027 31504 123814 114 168.4 s

150 1292 48362 190698 116 258.9 s

Table 1
Running times in seconds for the random and degenerate benchmark instances.

combinatorial structure of the arrangement (if s is sufficiently large), allowing
us to measure the increased cost of arithmetic as a function of bit sizes.

We report average running times for arrangement computations measured on
a 1.2GHz Pentium IIIM system with 512 KB of cache running Linux. The
executable was compiled with g++ 3.1. LEDA 4.4 was used for the exact num-
ber types and the internal data structures of our sweep code. All benchmark
instances are computed in the original coordinate system; that is, they have
not been transformed with a random shear.

Table 1 reports the results for the random and degenerate instances. Each
row states number of input curves, total number of segments after splitting
of input curves, number of nodes and half-edges in the resulting graph, the
average bit length of a curve’s longest coefficient, and the average running
time in seconds. The running time is dominated by curve pair analyses (§4.2).
The fraction of time spent on curve analyses (§4.1) is well below one second
even for the largest instances.

The plot in Figure 12 shows the running times as a function of the number of
computed half-edges (output complexity). In accordance with the theoretical
analysis, the output complexity looks almost linear. However, the output size
is quadratic in the number of curves, as for the straight-line case.

The modular filter for gcd computations has been found to accelerate the
“random 30” instance by a factor of 9. This filter and the caching of curve

55

 0
 60

 120
 180
 240
 300
 360

 100000 200000 300000 400000 500000

tim
e

[s
]

half-edges

degenerate
random

Fig. 12. The running times from Table 1 as a function of the computed half-edges.

 0
 30
 60
 90

 120
 150
 180
 210

 50 100 150 200 250 300 350 400 450 500

tim
e

[s
]

bits

degenerate
random

Fig. 13. The running times from Table 2 as a function of average maximal coefficient
length.

and curve pair analyses for repeated use in predicate evaluations are important
sources of efficiency in our implementation.

As dominant reasons for slowdown in the degenerate instances we see: Multiple
intersections of f , g cause multiple zeroes in res(f, g, y). High-degree vertices
correspond to equality of event point x-coordinates. Both phenomena entail
the computation of gcds that are avoided by the modular filter in the generic
case. The analysis of a tangential intersection requires the consideration of a
Jacobi curve, involving the refinement of an isolating interval against three
additional resultants of degree 12.

Table 2 and Figure 13 show the results of the coefficient growth benchmark. In
this setup, the increase in running time is bounded by the growth of running
time for the exact arithmetic, especially multiplication. Our experiments used
LEDA with the O(N log2 3) Karatsuba multiplication. This superlinear growth
is well-visible for the degenerate instances, and indeed they invoke more sym-
bolic computations (such as gcds that are otherwise avoided and additional
resultants for Jacobi curves). For the random instances, the superlinear term
is less pronounced, reflecting the fact that the coefficients of curves and resul-
tants grow, whereas the interval boundaries in root isolation and comparison
do not, so that in these parts of the algorithm only one of the two operands
of multiplication grows.

Finally, we can report on a brief comparison with arrangement computation

56

Instance segments nodes half-edges bits time

random 60 454 11417 44440 99 25.1 s

with s = 102 454 11437 44520 233 47.3 s

with s = 104 454 11417 44440 361 63.8 s

with s = 106 454 11417 44440 492 84.5 s

degenerate 60 534 7627 29284 116 40.8 s

with s = 102 534 7639 29332 209 81.8 s

with s = 104 534 7627 29284 301 127.7 s

with s = 106 534 7627 29284 393 187.3 s

Table 2
Running times in seconds resulting from slight perturbations that increase coefficient
sizes but keep the geometry (almost) fixed.

for straight-line segments in LEDA 4.4.1. We have created sets of line segments
defined by pairs of points chosen randomly on the {−128, . . . , 127}2 integer
grid such that the resulting arrangement has around 105 000 half-edges, similar
to the “random 90” instance above. Computing such a straight-line arrange-
ment using unfiltered rational arithmetic is on average about 10 times faster
than our results for cubics. Switching on floating-point filtering accelerates the
straight-line arrangements by a further factor of 6 to 7. Recall that our code
does not contain floating-point filtering at this time. Considering the elabo-
rate algebraic methods deployed for cubics, one order of magnitude difference
between unfiltered implementations looks quite encouraging to us.

8 Conclusion

We have reduced systematically – in theory and in the form of generic C++
library code – all predicates necessary for arrangement computation of alge-
braic curves to the analysis of curves and curve pairs, and to the handling
of x-coordinates. For the specific case of degree ≤ 3, we have combined tech-
niques from symbolic computation with geometric observations to design and
implement these basic operations efficiently. Important parts of this design are
directly applicable to curves of higher degree, but others – in particular in the
treatment of singularities – are not.

To achieve completeness, we choose a generic coordinate system by shearing
the input data. Although clearly useful to curb case distinctions, changing
coordinates also has its disadvantages as discussed in §4.4.3. Most notably, we
cannot apply the inverse transformation on our exact implicit representation.

57

We have successfully deployed the modular filter (§2.4.1, §2.4.2) as a fast
probabilistic non-zero test. The impact of guaranteed floating-point methods
for filtering, in particular methods for finding isolating intervals for roots,
remains to be investigated.

As detailed in the introduction, the techniques used here are different from
those used previously for conic arcs. When we compared the CubiX imple-
mentation described here with the original ConiX implementation from [11],
CubiX proved to be several times faster for arrangements of conics. We re-
gard this as encouraging evidence for the applicability of the combination of
techniques used here. Furthermore, our understanding of how to implement
the geometric predicates, which information to cache, etc., has improved con-
siderably. The lessons learned here have been back-ported by Eric Berberich
to ConiX, which delivers the same performance now.

Our method for arrangement computation extends directly to arrangements
of user-defined segments of cubic curves and thus to boolean operations on
curvilinear polygons bounded by such segments.

Acknowledgements

The authors acknowledge the support by the following other members of the
Exacus team (past and present): Eric Berberich, Michael Hemmer, Susan
Hert, Kurt Mehlhorn, Joachim Reichel, Susanne Schmitt, and Evghenia Ste-
gantova. The authors acknowledge helpful conversations with M’hammed El
Kahoui.

References

[1] J. Abdeljaoued, G. M. Diaz-Toca, L. Gonzalez-Vega: “Minors of Bezout
Matrices, Subresultants and the Parameterization of the Degree of the
Polynomial Greatest Common Divisor”. Internat. J. of Computer Math. 81
(2004), pp. 1223–1238.

[2] P. K. Agarwal, M. Sharir: “Arrangements and their applications”. In J.-
R. Sack, J. Urrutia (eds.): Handbook of Computational Geometry, pp. 49–119.
Elsevier, 2000.

[3] A.G. Akritas: “There is no ‘Uspensky’s Method’ ”. Proc. 5th ACM Symp.
on Symbolic and Algebraic Computation (SYMSAC 1986), pp. 88–90, ACM,
New York, 1986.

[4] A.G. Akritas: Elements of Computer Algebra. Wiley, New York, 1989.

58

[5] D. S. Arnon, G. E. Collins, S. McCallum: “Cylindrical Algebraic
Decomposition I: The Basic Algorithm”. SIAM Journal on Computing 13:4
(1984) pp. 865–877.
Reprinted in: B. F. Caviness, J. R. Johnson (eds.), Quantifier Elimination and
Cylindrical Algebraic Decomposition, pp. 136–151, Springer, 1998.

[6] D. S. Arnon, G. E. Collins, S. McCallum: “Cylindrical Algebraic
Decomposition II: An Adjacency Algorithm for the Plane”. SIAM Journal
on Computing 13:4 (1984) pp. 878–889.
Reprinted in: B. F. Caviness, J. R. Johnson (eds.), Quantifier Elimination and
Cylindrical Algebraic Decomposition, pp. 152–165, Springer, 1998.

[7] M. H. Austern: Generic Programming and the STL. Addison-Wesley, 1998.

[8] S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry.
Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin, 2003.
See also http://www.math.gatech.edu/~saugata/bpr-posted1.html

[9] J. L. Bentley, T.A. Ottmann: “Algorithms for reporting and counting
geometric intersections”. IEEE Trans. Comput., C-28:9 (1979) pp. 643–647.

[10] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,
J. Reichel, S. Schmitt, E. Schömer, N. Wolpert: “EXACUS: Efficient and
Exact Algorithms for Curves and Surfaces”. Proc. 13th European Symp. on
Algorithms (ESA 2005), pp. 155–166, Springer LNCS 3669, Berlin, 2005.

[11] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, E. Schömer:
“A Computational Basis for Conic Arcs and Boolean Operations on Conic
Polygons”. Proc. 10th European Symp. on Algorithms (ESA 2002), pp. 174–
186, Springer LNCS 2461, Berlin, 2002.

[12] P. Bikker, A. Yu. Uteshev: “On the Bézout Construction of the Resultant”.
J. Symbolic Computation 28 (1999), pp. 45–88.

[13] R. Bix: Conics and Cubics: A Concrete Introduction to Algebraic Curves,
Springer UTM, New York, 1998.

[14] E. Brieskorn, H. Knörrer: Plane Algebraic Curves. Birkhäuser, Basel, 1986.
German original: Ebene algebraische Kurven, Birkhäuser, Basel, 1981.

[15] H. Brönnimann, I. Emiris, V. Pan, S. Pion: “Sign Detection in Residue Number
Systems”. Theoretical Computer Science 210 (1999), special issue on Real
Numbers and Computers, pp. 173–197.

[16] W. S. Brown: “The Subresultant PRS Algorithm”. ACM Trans. Math.
Software 4 (1978), pp. 237–249.

[17] W. S. Brown, J. F. Traub: “On Euclid’s Algorithm and the Theory of
Subresultants”. J. ACM 18 (1971), pp. 505–514.

[18] C. Burnikel, R. Fleischer, K. Mehlhorn, S. Schirra: “A strong and easily
computable separation bound for arithmetic expressions involving radicals”.
Algorithmica 27 (2000) pp. 87–99.

[19] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, S. Schmitt: “A separation
bound for real algebraic expressions”. Proc. 10th European Symp. on
Algorithms (ESA 2001), pp. 254–265, Springer LNCS 2161, Berlin, 2001.

59

[20] J. Canny: The Complexity of Robot Motion Planning. ACM–MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[21] H. Cohen: A Course in Computational Algebraic Number Theory. Springer
GTM 138, Berlin, 1993.

[22] G. E. Collins: “Subresultants and Reduced Polynomial Remainder Sequences”.
J. ACM 14 (1967), pp. 128–142.

[23] G. E. Collins: “Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition”. Proc. 2nd GI Conf. on Automata Theory and
Formal Languages, pp. 134–183, Springer LNCS 33, Berlin, 1975.
Reprinted with corrections in: B. F. Caviness, J. R. Johnson (eds.), Quantifier
Elimination and Cylindrical Algebraic Decomposition, pp. 85–121, Springer,
1998.

[24] G. E. Collins, A.G. Akritas: “Polynomial Real Root Isolation Using Descartes’
Rule of Signs”. Proc. 3rd ACM Symp. on Symbolic and Algebraic
Computation (SYMSAC 1976), pp. 272–275, ACM, New York, 1976.

[25] D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms, 2nd ed.
Springer UTM, New York, 1997.

[26] O. Devillers, A. Fronville, B. Mourrain, M. Teillaud: “Algebraic methods and
arithmetic filtering for exact predicates on circle arcs”. Proc. 16th Ann. Symp.
on Comp. Geom., (SCG 2000) pp. 139–147, ACM, New York, 2000.

[27] G. M. Diaz-Toca, L. Gonzalez-Vega: “Various New Expressions for
Subresultants and Their Applications”. Applic. Algebra in Engin., Commun.
and Computing 15 (2004), pp. 233–266.

[28] A. Eigenwillig: Exact Arrangement Computation for Cubic Curves. Master’s
thesis, Saarland University, Saarbrücken, Germany, 2003.

[29] A. Eigenwillig, L. Kettner, E. Schömer, N. Wolpert: “Complete, Exact, and
Efficient Computations with Cubic Curves”. Proc. 20th Ann. Symp. on Comp.
Geom. (SCG 2004), pp. 409–418, ACM, New York, 2004.

[30] M. El Kahoui: “An elementary approach to subresultants theory”. J. Symbolic
Computation 35 (2003), pp. 281–292.

[31] I. Emiris, A. Kakargias, S. Pion, M. Teillaud, E. Tsigaridas: “Towards an
Open Curved Kernel”. Proc. 20th Ann. Symp. on Comp. Geom. (SCG 2004),
pp. 438–446, ACM, New York, 2004.

[32] I. Emiris, E. Tsigaridas: “Comparing Real Algebraic Numbers of Small
Degree”. Proc. 12th European Symp. on Algorithms (ESA 2004), pp. 652–
663, Springer LNCS 3221, Berlin, 2004.

[33] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, S. Schönherr: “On the
Design of CGAL, a Computational Geometry Algorithms Library”. Software
– Practice and Experience 30 (2000) pp. 1167–1202.

[34] E. Flato, D. Halperin, I. Hanniel, O. Nechushtan, E. Ezra: “The design and
implementation of planar maps in CGAL”. ACM J. of Exper. Algor. 5 (2000).

[35] W. Fulton: Algebraic Curves, Benjamin/Cummings, 1969. Reprint by
Addison-Wesley, 1989.

60

[36] J. von zur Gathen, J. Gerhard: Modern Computer Algebra. Cambridge Univ.
Press, Cambridge, 1999.

[37] J. von zur Gathen, T. Lücking: “Subresultants revisited”. Theoretical
Computer Science 297 (2003), pp. 199–239.

[38] K.O. Geddes, S.R. Czapor, G. Labahn: Algorithms for Computer Algebra.
Kluwer, Norwell/Mass., 1992.

[39] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky: Discriminants, Resultants,
and Multidimensional Determinants. Birkhäuser, Boston, 1994.

[40] C.G. Gibson: Elementary Geometry of Algebraic Curves: an Undergraduate
Introduction, Cambridge University Press, 1998.

[41] R.N. Goldman, T.W. Sederberg, D. C. Anderson: “Vector elimination:
A technique for the implicitization, inversion, and intersection of planar
parametric rational polynomial curves”. Computer Aided Geometric Design
1 (1984), pp. 327–356.

[42] L. Gonzalez-Vega, I. Necula: “Efficient topology determination of implicitly
defined algebraic plane curves”. Computer Aided Geometric Design 19 (2002)
pp. 719–743.

[43] D. Halperin: “Arrangements”. Chapter 24 in J. E. Goodman, J. O’Rourke
(eds.): Handbook of Discrete and Computational Geometry, 2nd ed. CRC
Press, Boca Raton, 2004.

[44] M. Hemmer, L. Kettner, E. Schömer: Effects of a Modular Filter on Geometric
Applications. Technical Report ECG-TR-363111-01, Max-Planck-Institut für
Informatik, 66123 Saarbrücken, Germany, 2004.

[45] H. Hong: “An efficient method for analyzing the topology of plane real
algebraic curves”. Mathematics and Computers in Simulation 42 (1996)
pp. 571–582.

[46] X. Hou, D. Wang: “Subresultants with the Bezout Matrix”. Proceedings of
the Fourth Asian Symp. on Computer Mathematics (ASCM 2000), pp. 19–28,
World Scientific, Singapore New Jersey, 2000.

[47] J. R. Johnson: “Algorithms for Polynomial Real Root Isolation”. In
B. F. Caviness, J. R. Johnson (eds.), Quantifier Elimination and Cylindrical
Algebraic Decomposition, pp. 269–299, Springer, 1998.

[48] V. Karamcheti, C. Li, I. Pechtchanski, C. Yap: “A Core Library For Robust
Numeric and Geometric Computation”. Proc. 15th Ann. Symp. on Comp.
Geom. (SCG 1999), pp. 351–359, ACM, New York, 1999.

[49] L. Kettner, S. Näher: “Two Computational Geometry Libraries: LEDA and
CGAL”. Chapter 65 in J. E. Goodman, J. O’Rourke (eds.): Handbook of
Discrete and Computational Geometry, 2nd ed. CRC Press, Boca Raton,
2004.

[50] J. Keyser, T. Culver, D. Manocha, S. Krishnan: “MAPC: A library for efficient
and exact manipulation of algebraic points and curves”. Proc. 15th Ann.
Symp. on Comp. Geom. (SCG 1999), pp. 360–369, ACM, New York, 1999.

[51] D. E. Knuth: The Art of Computer Programming, vol. 2: Seminumerical
Algorithms, 3rd ed. Addison-Wesley, 1998.

61

[52] W. Krandick: “Isolierung reeller Nullstellen von Polynomen”. In: J. Herzberger
(ed.), Wissenschaftliches Rechnen, pp. 105–154, Akademie-Verlag, Berlin,
1995.

[53] W. Krandick, K. Mehlhorn: “New Bounds for the Descartes Method”.
Tech. Rep. DU-CS-04-04, Drexel University, Dept. of Computer Science,
http://www.cs.drexel.edu/static/reports/DU-CS-04-04.html

To appear in J. Symbolic Computation.

[54] S. Lang: Algebra, 2nd ed. Addison-Wesley, 1984.

[55] C. Li, C. Yap: “A New Constructive Root Bound for Algebraic Expressions”.
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 496–
505, ACM, New York, 2001.

[56] T. Lickteig, M.-F. Roy: “Cauchy Index Computation”. Calcolo 33 (1996),
pp. 337–351.

[57] T. Lickteig, M.-F. Roy: “Sylvester-Habicht Sequences and Fast Cauchy Index
Computation”. J. Symbolic Computation 31 (2001), pp. 315–341.

[58] H. Lombardi, M.-F. Roy, M. Safey El Din: “New Structure Theorem for
Subresultants”. J. Symbolic Computation 29 (2000), pp. 663–689.

[59] R. Loos: “Generalized Polynomial Remainder Sequences”. In B. Buchberger
et al. (eds.): Computer Algebra. Symbolic and Algebraic Computation, 2nd
ed., pp. 115–137. Springer, Wien, 1983.

[60] R. Loos: “Computing in Algebraic Extensions”. In B. Buchberger et al. (eds.):
Computer Algebra. Symbolic and Algebraic Computation, 2nd ed., pp. 173–
187. Springer, Wien, 1983.

[61] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, G. Wang: “Comparison of
Interval Methods for Plotting Algebraic Curves”. Computer Aided Geometric
Design 19:7 (2002), pp. 553–587.

[62] K. Mehlhorn, S. Näher: LEDA: A platform for combinatorial and geometric
computing. Cambridge Univ. Press, Cambridge, 1999.

[63] M. Mignotte: Mathematics for Computer Algebra. Springer, 1992.

[64] D. R. Musser, A. A. Stepanov: “Algorithm-oriented Generic Libraries”.
Software – Practice and Experience 24 (1994) pp. 623–642.

[65] A.M. Ostrowski: “Note on Vincent’s Theorem”. Annals of Mathematics,
Second Series, 52 (1950), pp. 702–707, 1950.
Reprinted in: A. Ostrowski, Collected Mathematical Papers, vol. 1, pp. 728–
733, Birkhäuser, 1983.

[66] P. Pedersen: “Multivariate Sturm Theory”. Proc. 9th Int. Symp. Appl.
Algebra, Algeb. Algor. and Error-Corr. Codes (AAECC-9), pp. 318–332,
Springer LNCS 539, 1991.

[67] F. P. Preparata, M. I. Shamos: Computational Geometry: An Introduction.
Springer, New York, 1985.

[68] G. Rote: “Division-free algorithms for the determinant and the Pfaffian”.
In H. Alt (ed.), Computational Discrete Mathematics, pp. 119–135, Springer
LNCS 2122, Berlin, 2001.

62

[69] F. Rouillier, P. Zimmermann: “Efficient isolation of polynomial’s real roots”.
J. Computational and Applied Math. 162 (2004), pp. 33–50.

[70] T. Sakkalis, R. Farouki: “Singular Points of Algebraic Curves”. J. Symbolic
Computation 9 (1990), pp. 405–421.

[71] T. Sakkalis: “The topological configuration of a real algebraic curve”. Bulletin
of the Australian Mathematical Society 43 (1991) pp. 37–50.

[72] S. Schmitt: “The diamond operator: Implementation of exact real algebraic
numbers”. Proc. 8th Internat. Workshop on Computer Algebra in Scient.
Comput. (CASC 2005), pp. 355–366, Springer LNCS 3718, Berlin, 2005.

[73] E. Schömer, N. Wolpert: “An Exact and Efficient Approach for Computing
a Cell in an Arrangement of Quadrics”. Computational Geometry 33 (2006)
pp. 65–97.

[74] M. Seel: Implementation of planar Nef polyhedra. Report MPI-I-2001-1-003,
Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany, 2001.

[75] G. Taubin: “Rasterizing Algebraic Curves and Surfaces”. IEEE Computer
Graphics and Applications 14 (1994), pp. 14–23.

[76] R. J. Walker: Algebraic Curves. Princeton University Press, 1950.

[77] R. Wein: “High-level filtering for arrangements of conic arcs”. Proc. 10th
European Symp. on Algorithms (ESA 2002), pp. 884–895, Springer LNCS
2461, Berlin, 2002.

[78] N. Wolpert: An Exact and Efficient Approach for Computing a Cell in an
Arrangement of Quadrics. Ph.D. thesis, Saarland University, Saarbrücken,
Germany, 2002.

[79] N. Wolpert: “Jacobi Curves: Computing the Exact Topology of Arrangements
of Non-Singular Algebraic Curves”. Proc. 11th European Symp. on Algorithms
(ESA 2003), pp. 532–543, Springer LNCS 2832, Berlin, 2003.

[80] C.K. Yap: Fundamental Problems of Algorithmic Algebra. Oxford University
Press, New York, 2000.

[81] C.K. Yap: “Robust Geometric Computation”. Chapter 41 in: J. E. Goodman,
J. O’Rourke (eds.): Handbook of Discrete and Computational Geometry, 2nd
ed. CRC Press, Boca Raton, 2004.

[82] C.K. Yap: “Complete Subdivision Algorithms, I: Intersection of Bezier
Curves”, extended abstract.
ftp://cs.nyu.edu/pub/local/yap/exact/bezier1.ps.gz

63

