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ABSTRACT
Cryptographic signatures can be used to increase the resilience

of distributed systems against adversarial attacks, by increasing

the number of faulty parties that can be tolerated. While this is

well-studied for consensus, it has been underexplored in the con-

text of fault-tolerant clock synchronization, even in fully connected

systems. Here, the honest parties of an 𝑛-node system are required

to compute output clocks of small skew (i.e., phase offset) despite

local clock rates varying between 1 and 𝜗 > 1, end-to-end commu-

nication delays varying between 𝑑 − 𝑢 and 𝑑 , and the interference

from malicious parties. Known algorithms with (trivially optimal)

resilience of ⌈𝑛/2⌉ − 1 improve over the tight bound of ⌈𝑛/3⌉ − 1

holding without signatures for any skew bound [13, 29], but incur

skew 𝑑 [2] or Ω(𝑛(𝑢 + (𝜗 − 1)𝑑)) [23]. Since typically 𝑑 ≫ 𝑢 and

𝜗 − 1 ≪ 1, this is far from the lower bound of 𝑢 + (𝜗 − 1)𝑑 that

applies even in the fault-free case [4].

We prove tight bounds of Θ(𝑢 + (𝜗 − 1)𝑑) on the skew for the

resilience range from ⌈𝑛/3⌉ to ⌈𝑛/2⌉ − 1. Our algorithm is, granted

that the adversary cannot forge signatures, deterministic. Our lower

bound holds even if clocks are initially perfectly synchronized,

message delays between honest nodes are known, 𝜗 is arbitrarily

close to one, and the synchronization algorithm is randomized. This

has crucial implications for network designers that seek to leverage

signatures for providing more robust time. In contrast to the setting

without signatures, they must ensure that message delay is at least

𝑑 − 𝑢, even on links with one faulty endpoint.
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1 INTRODUCTION
Synchronizing clocks is a key task in distributed systems, which has

received extensive attention over the years. Given that distributed

systems are prone to faults and attacks, a sizeable fraction of this lit-

erature is dedicated to studying fault-tolerant clock synchronization.
Under faults, the question of whether clocks can be synchronized

has a fundamental impact: A message passing system prone to

crash faults can simulate synchronous execution if and only if com-

munication delay satisfies a known bound and time can be locally

approximately measured. If either assumption fails to hold, the

FLP proof of impossibility of deterministic consensus applies [19].

Conversely, if both assumptions hold, a network synchronizer [3]

can be implemented by detecting crash faults via timeout. At the

same time, these conditions are necessary and sufficient to compute

logical clocks of bounded skew, i.e., bounded maximum difference

of concurrent clock readings, on each connected component of the

network.

Naturally, assuming crash faults is too optimistic in practice.

However, for any less benign fault model, the situation is similar.

On the one hand, from the above we know that it is necessary

to have bounded delay and a local sense of the progress of time

to be able to simulate synchronous execution. On the other hand,

these assumptions imply that if we are given a synchronizer, (i) it

is guaranteed to complete simulation of a round within bounded

time and (ii) we can enforce an arbitrarily large minimum duration

of each simulated round (by letting nodes sleep for some time).

Intuitively, this allows us to solve the clock synchronization task

by using the current round number as “target” logical clock value

and from this compute logical clocks of bounded skew and rates by

interpolation (this intuition is formalized in [14, Ch. 9, Sec. 3.3.4]).

In light of the above, the task of clock synchronization can be

seen as a more general and precise version of running a synchro-

nizer [3]:

• Logical clocks with bounded skew and rates of progress can

be readily used to implement a synchronizer. The maximum

duration of a simulated round then is 𝑟 (𝑑 + S), where 𝑟 is
the ratio between maximum and minimum clock rate, 𝑑 is

the (maximum) communication delay, and S is (the bound

on) the skew.

• In contrast to a synchronizer, clocks can also be used to

coordinate actions in terms of real time.

Note that both of these application scenarios share the property

that controlling the rates of the computed logical clocks as well as

their skew as precisely as possible matters.

To understand how well clocks can be synchronized under real-

istic faults or even malicious interference, the research community
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studied the clock synchronization task in the presence of Byzantine

(i.e., worst-case) faults. In striking similarity to consensus [24], it is

possible to synchronize clocks in a fully connected message passing

system with authenticated channels if and only if the number of

Byzantine faults is strictly less than one third [13, 29]. This is good

news: one can run synchronous consensus on top of clock synchro-

nization, without any negative impact on resilience! Even better,

this is also true with respect to performance: the same asymptotic

bounds on skew can be achieved as in the fault-free case, without

any loss in resilience [4, 26].

Concretely, denote by 𝑑 − 𝑢 the minimum communication delay,

i.e., the time between a message being sent and the receiving node

completing to process it is between 𝑑 − 𝑢 and 𝑑 , and let 𝜗 > 1 be

the maximum rate of the local reference clocks, whose minimum

rate we normalize to 1. The main result of [26] can then be read as

saying thatS ∈ 𝑂 (𝑢+(𝜗−1)𝑑) and 𝑟 ∈ 1+𝑂 (𝜗−1) can be achieved,
so long as 𝜗 < 𝜗0 for a constant 𝜗0 and strictly less than one third

of the nodes are faulty, cf. [22]. This means that using the computed

clocks to simulate synchronous execution, each simulated round

takes 𝑟 (𝑑 + S) ∈ 𝑑 +𝑂 (𝑢 + (𝜗 − 1)𝑑) time. Given that in practice

𝑢 ≪ 𝑑 and 𝜗 − 1 ≪ 1, we have that 𝑑 + 𝑂 (𝑢 + (𝜗 − 1)𝑑) ≈ 𝑑 . In

other words, synchrony can be simulated with negligible overhead

in time!

For these theoretical results to be of practical value, it is para-

mount to minimize the overheads incurred by achieving fault-

tolerance. While the resilience bound is tight under the assumption

of authenticated channels, it is a well-known result that when

messages are authenticated, consensus can be achieved in a fully

connected system when up to ⌈𝑛/2⌉ − 1 nodes are faulty [16]. In-

deed, also when synchronizing clocks the resilience can be boosted

to ⌈𝑛/2⌉ − 1 by authenticating broadcasts [21, 29]. However, these

algorithms have skew Θ(𝑑) ≫ 𝑢. Using signature-based consensus,

in [23] optimal resilience is achieved with skew𝑂 (𝑛(𝑢 + (𝜗 − 1)𝑑)),
where 𝑛 is the number of nodes; replacing the consensus routine

with a faster one could reduce, but not completely eliminate the

dependence on 𝑛. This begs the question

“Which skew can be obtained with signatures at optimal
resilience ⌈𝑛/2⌉ − 1?”

Our Contribution
In this work, we show that the answer to this question is nuanced.

To obtain an asymptotically optimal upper bound on the achievable

skew, we set out on the track that readers familiar with the litera-

ture might expect. The algorithm from [26] is based on simulating

iterations of synchronous approximate agreement.

Definition 1 (Approximate Agreement). Let Π be protocol exe-

cuted among 𝑛 nodes where each node 𝑣 holds an input 𝑟𝑣 ∈ R and

nodes terminate upon generating an output 𝑜𝑣 ∈ R. Denoting byH
the set of honest nodes, we say that Π is a (ℓ, 𝜖, 𝑓 )-secure protocol for
approximate agreement if the following properties hold whenever

at most 𝑓 nodes are corrupted and max𝑣,𝑤∈H{𝑟𝑣 − 𝑟𝑤} ≤ ℓ :

• 𝜖-Consistency: max𝑣,𝑤∈H{𝑜𝑣 − 𝑜𝑤} ≤ 𝜖 .

• Validity: For all all 𝑣 ∈ H , min𝑤∈H{𝑟𝑤} ≤ 𝑜𝑣 ≤ max𝑤∈H{𝑟𝑤}.

Without signatures, this task can be solved if and only if fewer

than one third of the nodes are faulty [15, 20]. The reason is that

faulty nodes might claim different inputs to different nodes. Sig-

natures can overcome this by being able to prove to others which

input a sender claimed. While achieving consensus on inputs might

take a non-constant number of rounds even with randomization, for

approximate agreement it is sufficient that at most one value from

each sender is accepted by correct nodes. This is easily achieved

by outputting “⊥” – no value – if another node proved to receive a

conflicting value. The resulting relaxed variant of reliable broadcast

is referred to as crusader broadcast in the literature [11].

We show that when communication is by crusader broadcast,

approximate agreement can be solved in a logarithmic number of

rounds with resilience ⌈𝑛/2⌉ − 1.

Corollary 2. There is an (ℓ, 𝜖, ⌈𝑛/2⌉ − 1)-secure protocol for ap-
proximate agreement running in 2⌈log(ℓ/𝜖)⌉ rounds.

In contrast to standard approximate agreement, for synchroniza-

tion purposes the crucial “content” of the messages is their timing.
With message delays between 𝑑−𝑢 and 𝑑 , we can simulate crusader

broadcast in a timed fashion, which allows each node to estimate

the offset between its own and other correct nodes in the system

with an error of 𝑂 (𝑢 + (𝜗 − 1)𝑑). The property that faulty nodes

communicate no different values then is relaxed, too, in that if two

correct nodes accept a broadcast from the same sender, then their

respective reception times agree up to 𝑂 (𝑢 + (𝜗 − 1)𝑑).
With this subroutine in place, we can adapt the algorithm from [26]

by replacing plain broadcasts by (simulated) crusader broadcasts

and adjusting clocks in accordance with the more resilient approxi-

mate agreement algorithm with signatures. The algorithm solves

so-called pulse synchronization, which (up to minor order terms) is

equivalent to computing logical clocks of small skew and bounded

rates at all times, cf. [14, Ch. 9, Sec. 3.3.3 and 3.3.4].

Definition 3 (Pulse Synchronization). Let Π be a protocol exe-

cuted among 𝑛 nodes, where the set of honest nodes isH . We say

that Π is an 𝑓 -secure protocol for pulse synchronization with skew
S, minimum period 𝑃min > 0, and maximum period 𝑃max if the

following properties hold whenever at most 𝑓 nodes are corrupted:

• Liveness: for all 𝑖 ∈ N>0 and each node 𝑣 ∈ H , 𝑣 outputs

pulse 𝑖 exactly once. We denote 𝑝𝑣,𝑖 as the time where 𝑣

outputs its 𝑖th pulse.

• S-bounded skew: sup𝑖∈N>0,𝑣,𝑤∈H{|𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 |} ≤ S
• 𝑃min-minimum period:

inf

𝑖∈N
{min

𝑣∈H
{𝑝𝑣,𝑖+1} −max

𝑣∈H
{𝑝𝑣,𝑖 }} ≥ 𝑃min .

• 𝑃max-maximum period:

sup

𝑖∈N>0

{max

𝑣∈H
{𝑝𝑣,𝑖+1} − min

𝑣∈H
{𝑝𝑣,𝑖 }} ≤ 𝑃max .

In case of a randomized algorithm, the skew bound is allowed to

depend on the randomness of the algorithm; S is then defined as

the expected worst-case value, where the expectation is taken over

the randomness of the algorithm.

Corollary 4. If 𝜗 ≤ 1.11, there are choices 𝑇 ∈ Θ(𝑑) and 𝑆 ∈
Θ(𝑢 + (𝜗 − 1)𝑑) such that Algorithm 3 is a (⌈𝑛/2⌉ − 1)-secure pulse
synchronization protocol with skew 𝑆 , minimum period 𝑃min ∈
Θ(𝑑) and maximum period 𝑃max ∈ 𝑃min + Θ(𝑆).
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Since this skew bound is asymptotically optimal even without

faults [4], at first glance it might appear that this settles our above

question. However, there is a crucial difference to the signature-

free setting. For the above result, it is necessary that also faulty
nodes must obey the minimum message delay of 𝑑 − 𝑢, both when

receiving and sending messages. Otherwise, they could obtain and

send a signature used by a correct sender in a crusader broadcast

so early that correct nodes reject the sender’s broadcast. This is in

stark contrast to the algorithm from [26], for which faulty nodes

can have full information of the system state at all times, including

the future!

Given that it might be very challenging or even impossible for

system designers to guarantee that an attacker must obey a mini-

mum communication delay of𝑑−𝑢 for𝑢 ≪ 𝑑 , we need to determine

whether this limitation is inherent. Perhaps surprisingly, we prove

that this is indeed the case, by providing a matching lower bound. If

either messages to or from faulty nodes have delays from [𝑑 − 𝑢̃, 𝑑]
for some 𝑢̃ ∈ [𝑢,𝑑], then we can prove a lower bound of Ω(𝑢̃) on
the skew, regardless of 𝑢.

Theorem 5. Let 𝑛 ≥ 3 and Π be an ⌈𝑛/3⌉-secure protocol for pulse
synchronization with skew 𝑆 . Then E[𝑆] ≥ 2𝑢̃/3.

Since a lower bound of (𝜗 − 1)𝑑 follows from a simple indistin-

guishability argument even in absence of faults, we hence establish

an asymptotically tight bound of Θ(𝑢̃ + (𝜗 − 1)𝑑) on the skew that

can be achieved when the number of faults is at least 𝑛/3. We stress

that Theorem 5 imposes no restrictions on Π, which might be ran-

domized, holds under perfect initial synchronization, for arbitrarily

small 𝜗−1 and𝑢 = 0, and our adversary is static, i.e., chooses which

nodes to corrupt upfront. In other words, all the typical loopholes

one might try to exploit to improve on our upper bound result are

unavailable, implying asymptotic optimality of its skew in a strong

sense.

Organization of this article. In Section 2, we specify our model

and cover some preliminaries, including synchronous approximate

agreement with resilience ⌈𝑛/2⌉ − 1. In Section 3, we provide and

analyze our Crusader Pulse Synchronization algorithm. Section 4

proves the lower bound. Due to space constraints, discussion of

further related work, some proofs, and a synchronous Crusader

Broadcast algorithm are deferred to Appendices A, ??, and Figure 4,
respectively.

2 PRELIMINARIES AND MODEL
We consider a network of 𝑛 nodes connected by pairwise, authenti-

cated channels. An unknown subset of the nodes is faulty or even

malicious; we denote byH the set of the remaining honest nodes.

We also assume that nodes have established a public key infras-
tructure (PKI). This means that every node 𝑣 has a public key pk𝑣
that all other nodes agree on. Any honest node is also assumed to

hold a matching secret key sk𝑣 with which it can create a signature
⟨𝑚⟩𝑣 on a message𝑚 via ⟨𝑚⟩𝑣 ← Sign(sk𝑣,𝑚). A signature can be

verified via Verify(pk𝑣, ⟨𝑚⟩𝑣 ,𝑚), which returns a bit 0 (invalid) or
1 (valid). Therefore, we assume that a signature with respect to pk𝑣
on any message𝑚 is impossible to create without knowledge of

sk𝑣 . We also assume perfect correctness: for any message𝑚 ∈ {0, 1},
Verify(pk𝑣, Sign(sk𝑣,𝑚),𝑚) = 1.

Assumptions on the Network. We use a continuous notion of

time; thus time takes values in R≥0. We assume a fully connected

network with known minimum and maximum delays of 𝑑 − 𝑢 and

𝑑 , respectively. This means that any message sent to or from an

honest node is delivered after at most 𝑑 time and no faster than

𝑑 − 𝑢 time, where 𝑑 and 𝑢 are known parameters. We refer to 𝑢

as the uncertainty. When proving our lower bound, we will allow

for the possibility that messages to and from faulty nodes might

violate the minimum delay bound of 𝑑 −𝑢 and instead satisfy only a

weaker bound of 𝑑−𝑢̃ for some 𝑢̃ ∈ [𝑢,𝑑]. Note that we assume that

the network is fault-free, since we are free to map link failures to

node failures. Finally, we assume that only finitely many messages

are sent in finite time; this must clearly be satisfied in any real-

world network and it simplifies our lower bound construction by

enabling us to perform induction over the messages sent by the

honest parties executing an arbitrary, but fixed algorithm.

Hardware Clocks and Clock Rate. Nodes have no access to the

“true” time 𝑡 ∈ R≥0. Instead, each node 𝑣 can measure the progress

of time approximately via its hardware clock. The hardware clock of
node 𝑣 is modelled by a function𝐻𝑣 : R≥0 −→ R≥0 which the node

can evaluate at any point in time. That is, 𝐻𝑣 maps time 𝑡 ∈ R≥0

to a local time 𝐻𝑣 (𝑡) ∈ R≥0. We assume that hardware clocks run

at rates between 1 and 𝜗 for a known constant 𝜗 > 1, i.e., for all

𝑡 ′ ≥ 𝑡 ∈ R≥0, it holds that

𝑡 ′ − 𝑡 ≤ 𝐻𝑣 (𝑡 ′) − 𝐻𝑣 (𝑡) ≤ 𝜗 (𝑡 ′ − 𝑡) .
Furthermore, we assume some degree of initial synchrony, repre-

sented by bounding max𝑣,𝑤∈H{|𝐻𝑣 (0) − 𝐻𝑤 (0) |}. For simplicity,

we assume this bound to equal 𝑆 when showing our upper bound;

our lower bound result holds under the assumption of perfect initial

synchrony, i.e., 𝐻𝑣 (0) = 𝐻𝑤 (0) for all 𝑣,𝑤 ∈ H .

Adversary and Executions. The adversary is in full control of

message delays and hardware clocks within the bounds specified by

the model. That is, the adversary specifies arbitrary hardware clock

functions and message delays subject to the above constraints. Our

algorithm is resilient to any adversary that cannot forge signatures,

i.e., it is deterministically correct under this assumption. On the

other hand, our lower bound holds for a static adversary that decides

which nodes to corrupt upfront. The adversary may use corrupted

nodes’ secrets to generate signatures for them, but needs to obtain

signatures of honest nodes affecting a message it intends to send

before it can generate the message. Apart from this restriction, the

adversary fully controls the behavior of faulty nodes.

Formally, an execution is fully specified by determiningH ,𝐻𝑣 for

each 𝑣 ∈ H , which messages faulty nodes send and when, and the

delays of all messages. An execution is well-defined, i.e., conforms

with our model, if these parameters specify the above specification

and for each message𝑚 sent by a faulty node at time 𝑡 , it receives

all messages𝑚′ containing signatures from honest nodes that𝑚

depends on, some faulty node received a message𝑚′′ with the same

signature by time 𝑡 .1

Synchronous Execution and Rushing Adversary. For the sake
of clarity of presentation, we use a classic synchronous model in

our description and analysis of our solution to the approximate

1
In our lower bound construction, we simply guarantee that the faulty sender of𝑚

receives𝑚′ by time 𝑡 .
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agreement problem. That is, computation proceeds in compute-

send-receive rounds, and the goal is to complete the task in as few

communication rounds as possible. While working in the synchro-

nous model, we also assume a rushing adversary that can imme-

diately observe honest nodes’ messages in any given round and

choose its own messages based on them. However, since our goal is

to synchronize clocks in the above model, we will later show how

to overcome this assumption in our main synchronization protocol.

Crusader Broadcast. In the synchronous setting, we assume a

subroutine implementing Crusader Broadcast to be available.

Definition 6 (Crusader Broadcast). Let Π be protocol executed

among 𝑛 nodes where a designated dealer 𝑣 holds an input 𝑏𝑣 ∈
{0, 1} and nodes terminate upon generating an output 𝑜𝑣 ∈ {0, 1,⊥}.
We say that Π is an 𝑓 -secure protocol for crusader agreement if the
following holds whenever at most 𝑓 nodes are corrupted:

• Validity: If 𝑣 ∈ H , then 𝑜𝑤 = 𝑏𝑣 for all𝑤 ∈ H .

• Crusader Consistency: If 𝑜𝑢 ∈ {0, 1} for some 𝑢 ∈ H , then

for all𝑤 ∈ H , 𝑜𝑤 ∈ {⊥, 𝑜𝑢 }.

Figure 4 shows Algorithm CB implementing crusader broadcast

with signatures, whose correctness is shown in [12].

2.1 Approximate Agreement with Signatures
In this section, we describe a simple synchronous 2-round (ℓ, ℓ/2,
⌈𝑛/2⌉ − 1)-secure approximate agreement algorithm, where we

describe the protocol from the view of node 𝑣 with input 𝑟𝑣 and

ℓ denotes the initial range of honest nodes’ values. Note that a

(ℓ, 𝜖, ⌈𝑛/2⌉ − 1)-secure approximate agreement algorithm follows

immediately by repeating the algorithm ⌈log ℓ/𝜖⌉ times, feeding

the output of the previous iteration as input into the new instance.

The algorithm is given in Figure 1. Intuitively, its correctness

follows from the facts that (i) nodes always discard enough values

to ensure that the remaining ones lie within input range, where

any received ⊥ guarantees that the respective sender is faulty and

does not contribute to the list of received non-⊥ values and (ii) the

intervals spanned by the remaining values must intersect, implying

that their midpoints can only be ℓ/2 apart.

The first point is immediate from the properties of crusader

broadcast. To show the second point, we argue as follows. First,

observe that if there are no ⊥-values received by honest parties, all

of them have the same lists and, trivially, retain the same interval.

Second, a node receiving a ⊥-value can only increase the interval

it retains, allowing us to extend this statement by induction on the

number of ⊥ values received by honest parties to all executions.

We now formalize this intuition. To this end, we denote as 𝐼𝑣 :=

[𝑎𝑣, 𝑏𝑣] the interval spanned by the remaining values received

by node 𝑣 ∈ H in the first step (i.e., the ones that remain after

discarding the highest and lowest values for that iteration). For any

execution of the protocol in which some 𝑣 ∈ H receives at least one

⊥ value and any 𝑥 ∈ R, we denote by 𝐼𝑥𝑣 = [𝑎𝑣, ˜𝑏𝑣] the interval 𝐼𝑣
that results from an alternative execution of the protocol in which

𝑣 receives identical messages except that one of the ⊥ values is

replaced by 𝑥 .

Lemma 7. For all 𝑥 ∈ R and all 𝑣 ∈ H , 𝐼𝑥𝑣 ⊆ 𝐼𝑣 .

Proof. Fix an arbitrary node 𝑣 ∈ H receiving at least one ⊥
value. For 0 < 𝑏 ≤ 𝑓 , denote by 𝑟1

𝑣 , ..., 𝑟
𝑛−𝑘
𝑣 the 𝑛 − 𝑏 non-⊥ val-

ues that 𝑣 receives in this iteration and assume they are ordered

in ascending fashion. Similarly, denote by 𝑟1

𝑣 , ..., 𝑟
𝑛−𝑘+1
𝑣 the corre-

sponding values in the alternative execution in which in addition 𝑥

is received by 𝑣 . Because the second list is identical to the old one

except for exactly one additional value, we have for all 1 ≤ 𝑗 ≤ 𝑛−𝑏
that 𝑟

𝑗
𝑣 ≤ 𝑟

𝑗
𝑣 ≤ 𝑟

𝑗+1
𝑣 . In particular,

𝑎𝑣 = 𝑟
𝑓 −(𝑏−1)+1
𝑣 ≥ 𝑟

𝑓 −𝑏+1
𝑣 = 𝑎𝑣

and

˜𝑏𝑣 = 𝑟
𝑛−(𝑓 −(𝑏−1) )
𝑣 ≤ 𝑟

𝑛−(𝑓 −(𝑏−1) )
𝑣 ≤ 𝑟

𝑛−(𝑓 −𝑏 )
𝑣 = 𝑏𝑣,

i.e., 𝐼𝑥𝑣 = [𝑎𝑣, ˜𝑏𝑣] ⊆ [𝑎𝑣, 𝑏𝑣] = 𝐼𝑣 . □

Lemma 8. There exists 𝑥 ∈ R such that 𝑥 ∈ 𝐼𝑣 for all 𝑣 ∈ H .

Proof. We prove the claim by induction over the total number

𝑘 of ⊥ values received by honest nodes.

• base case: Suppose that𝑘 = 0. Thus, for all 𝑣,𝑤 ∈ H , 𝐼𝑣 = 𝐼𝑤
by crusader consistency of CB. Since 𝑓 = ⌈𝑛/2⌉ − 1, each

node retains at least one value, i.e., this interval is non-empty.

• step from 𝑘 to 𝑘 + 1: Suppose the claim holds for 𝑘 ∈ N.
By the induction hypothesis, there is 𝑥 ∈ R such that 𝑥 ∈ 𝐼𝑣
for all 𝑣 ∈ H . Consider an alternative execution in which

all nodes receive the same messages except that for some

honest node 𝑤 , one of its values is replaced by ⊥. Denote
by 𝐼𝑣 , 𝑣 ∈ H , the intervals in this new execution. For each

honest node 𝑣 ≠ 𝑤 , we have that 𝑥 ∈ 𝐼𝑣 = 𝐼𝑣 . For𝑤 , we have

that 𝑥 ∈ 𝐼𝑤 ⊇ 𝐼𝑤 by Lemma 7.

Since this construction applies for any inputs 𝑟𝑣 , 𝑣 ∈ H , and we

imposed no restrictions on the values received from faulty nodes,

the claim of the lemma follows for all executions of the algorithm.

□

Theorem 9. Algorithm 1 is an (ℓ, ℓ/2, ⌈𝑛/2⌉ − 1)-secure 2-round

protocol for approximate agreement.

Proof. Without loss of generality, we order the inputs of the

honest nodes in ascending order. As there are at most 𝑓 = ⌈𝑛/2⌉ − 1

corrupted nodes and CB has validity, we have that 𝑟1 ≤ 𝑎𝑣 and

𝑟𝑛−𝑓 ≥ 𝑏𝑣 for all 𝑣 ∈ H . Hence, 𝑜𝑣 = (𝑎𝑣 + 𝑏𝑣)/2 satisfies the

validity condition of approximate agreement.

By Lemma 8, there is 𝑥 ∈ R such that 𝑥 ∈ 𝐼𝑣 = [𝑎𝑣, 𝑏𝑣] for all
𝑣 ∈ H . For all 𝑣,𝑤 ∈ H , we can hence infer that

𝑜𝑣 − 𝑜𝑤 =
𝑎𝑣 + 𝑏𝑣 − 𝑎𝑤 − 𝑏𝑤

2

≤
𝑥 + 𝑟𝑛−𝑓 − 𝑟1 − 𝑥

2

=
𝑟𝑛−𝑓 − 𝑟1

2

≤ ℓ

2

. □

Corollary 2 readily follos by inductive application of Theorem 9,

where the output of the 𝑖th run is used as input for the (𝑖 + 1)th run.

3 CRUSADER PULSE SYNCHRONIZATION
In this section, we provide and prove correct our pulse synchro-

nization algorithm. In analogy to the classic algorithm by Lynch

and Welch [26] that achieves asymptotically optimal skew in the

signature-free setting, the algorithm can be viewed as simulating
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Algorithm APA

• 𝑣 sends 𝑟𝑣 to all nodes using (an instance of) Algorithm CB
• Denote 𝑟𝑤 the value received from 𝑤 (which might be ⊥). Determine 𝑜𝑣 as follows:

– Denote 𝑏 as the number of CB instances that output ⊥ in the previous step.

– Sort all the non-⊥ values received via the instances of CB in the previous step, then discard the lowest 𝑓 − 𝑏 and

the highest 𝑓 − 𝑏 of those values. Denote 𝐼 the interval spanned by the remaining values.

– Output the midpoint 𝑜𝑣 of 𝐼 .

Figure 1: A synchronous 2-round (ℓ, ℓ/2, 𝑓 )-secure algorithm for approximate agreement, where 𝑓 = ⌈𝑛/2⌉ − 1.

iterations of synchronous approximate agreement. The goal is to

agree on the pulse times, i.e., pull them closer together despite

interference from faulty nodes.

There are two notable differences from running “plain” approx-

imate agreement. One is that the goal is to agree on (real) times,

which cannot directly be accessed by the nodes. This results in

the algorithm using communication and the hardware clocks to

estimate the differences between pulse times. Because thesemeasure-

ments are inexact and clocks drift, the second difference emerges:

while approximate agreement works towards decreasing the error

in each iteration, (in the worst case) these inaccuracies in the nodes’

perception work towards increasing them.

In the following, assume parties are running an algorithm for

pulse synchronization, where ®𝑝𝑟 denotes the pulse times of hon-

est parties for the 𝑟 th pulse.
2
We define ∥ ®𝑝𝑟 ∥ := max𝑣∈H{𝑝𝑟𝑣} −

min𝑣∈H{𝑝𝑟𝑣}. Denote by 𝑆 the upper bound on ∥ ®𝑝𝑟 ∥ for all 𝑟 ∈ N
that we are going to show. Note that the algorithm is allowed to

make use of 𝑆 , even though we will be able to determine 𝑆 only

once our analysis is complete.

3.1 Timed Crusader Broadcast
Before presenting the full algorithm, let us discuss how estimates of

clock offsets can be obtained that comply with the requirements of

(our simulation of) Algorithm APA. Intuitively, instead of communi-

cating the (unknown) pulse times, each node 𝑣 ∈ H will broadcast

(up to a small, fixed local time offset) when locally generating its

pulse. Knowing that these messages are underway for about 𝑑 time,

each recipient 𝑤 ∈ H can then determine an approximation of

Δ𝑟𝑣,𝑤 of 𝑝𝑟𝑤 − 𝑝𝑟𝑣 of error 𝑂 (𝑢 + (𝜗 − 1)𝑑).
In order for these estimates to be used in the simulation of Algo-

rithm APA, we need them to satisfy a timed analogon of Crusader

Consistency. In the absence of any error, this would mean that for

any two honest parties 𝑣,𝑤 ∈ H and (possibly faulty) node 𝑥 ∈ H
such that Δ𝑟𝑣,𝑥 ,Δ

𝑟
𝑤,𝑥 ≠ ⊥, it holds that Δ𝑟𝑣,𝑥 −Δ𝑟𝑤,𝑥 = 𝑝𝑟𝑤−𝑝𝑟𝑣 . Under

this condition, the estimates 𝑝𝑟𝑣 + Δ𝑟𝑣,𝑥 and 𝑝𝑟𝑤 + Δ𝑟𝑤,𝑥 are equal, i.e.,

it is as if faulty node 𝑥 had broadcast to a subset of the honest nodes

at some specific time 𝑝𝑟𝑥 that each 𝑣 ∈ H with Δ𝑟𝑣,𝑥 ≠ ⊥ agrees on.

Naturally, we cannnot ensure such an exact match, but signatures

give us the possibility to prove reception time up to an error of

𝑂 (𝑢 + (𝜗 − 1)𝑑). By rejecting the broadcast message from node 𝑥 if

another node proves to have received the same “broadcast” more

than 𝑢 (real) time earlier, we can hence ensure the above consis-

tency condition up to an error of 𝑂 (𝑢 + (𝜗 − 1)𝑑). The protocol
ensuring these guarantees is given in Figure 2.

2
Since a priori there is no formal guarantee that 𝑣 ∈ H will indeed generate all pulses,

one can define 𝑝𝑟𝑣 := ∞ if 𝑣 generates fewer than 𝑟 pulses. However, our inductive

proof does not need to reason about 𝑝𝑣,𝑟+1 before it is established that it is finite.

We now formalize the above claims.We first establish that honest

dealers’ messages are always accepted, i.e., recipients will output

their local reception time, which corresponds to validity of Crusader

Broadcast.

Lemma 10. Let 𝑟 ∈ N and suppose that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . Then for all

𝑣,𝑤 ∈ H , 𝑣 outputs ℎ ≠ ⊥ in TCB𝑟 with𝑤 as the sender.

Proof. We begin by proving that𝑤 ’s signature is received by 𝑣 at

a local timeℎ ∈ (𝐻𝑣 (𝑝𝑟𝑣), 𝐻𝑣 (𝑝𝑟𝑣)+𝜗 (𝑑+(𝜗+1)𝑆)). Denote by 𝑡𝑤 the

(unique) time at which𝑤 sends ⟨𝑟 ⟩𝑤 and let 𝑡𝑣 ∈ [𝑡𝑤 +𝑑 −𝑢, 𝑡𝑤 +𝑑]
be the time at which 𝑣 receives it. We observe that

𝑆 =
𝐻𝑤 (𝑡𝑤) − 𝐻𝑤 (𝑝𝑟𝑤)

𝜗
≤ 𝑡𝑤 − 𝑝𝑟𝑤 ≤ 𝐻𝑤 (𝑡𝑤) − 𝐻𝑤 (𝑝𝑟𝑤) = 𝜗𝑆.

Hence,

𝐻𝑣 (𝑡𝑣) ≥ 𝐻𝑣 (𝑡𝑤) = 𝐻𝑣 (𝑡𝑤) − 𝐻𝑣 (𝑝𝑟𝑣) + 𝐻𝑣 (𝑝𝑟𝑣)
≥ 𝑡𝑤 − 𝑝𝑟𝑣 + 𝐻𝑣 (𝑝𝑟𝑣) ≥ 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝑆 + 𝐻𝑣 (𝑝𝑟𝑣) ≥ 𝐻𝑣 (𝑝𝑟𝑣),

where the last step uses that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 by assumption. For the upper

bound on ℎ, we get that

𝐻𝑣 (𝑡𝑣) ≤ 𝐻𝑣 (𝑡𝑤 + 𝑑) ≤ 𝐻𝑣 (𝑝𝑟𝑤 + 𝜗𝑆 + 𝑑) − 𝐻𝑣 (𝑝𝑟𝑣) + 𝐻𝑣 (𝑝𝑟𝑣)
≤ 𝜗 (𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝜗 · 𝑆 + 𝑑) + 𝐻𝑣 (𝑝𝑟𝑣)
≤ 𝜗 ((𝜗 + 1)𝑆 + 𝑑) + 𝐻𝑣 (𝑝𝑟𝑣).

It remains to prove that 𝑣 receives no correct signature of the form

⟨𝑟 ⟩′𝑤 at a local time ℎ′ ∈ (𝐻𝑣 (𝑝𝑟𝑣), ℎ + 𝑑 − 2𝑢) from 𝑥 ≠ 𝑤 . Since

𝑤 sends no other signature than ⟨𝑟 ⟩𝑤 and signatures cannot be

forged, any such message must be sent after 𝑥 learned ⟨𝑟 ⟩𝑤 , at
time 𝑡𝑥 ≥ 𝑡𝑤 + 𝑑 − 𝑢. Hence, 𝑣 receives any such message at a time

𝑡 ′𝑣 ≥ 𝑡𝑥+𝑑−𝑢 ≥ 𝑡𝑤+2(𝑑−𝑢). On the other hand 𝑡𝑣 ≤ 𝑡𝑤+𝑑 , implying

that 𝑡 ′𝑣 − 𝑡𝑣 ≥ 𝑑 − 2𝑢. We conclude that ℎ′ −ℎ = 𝐻𝑣 (𝑡 ′𝑣) −𝐻𝑣 (𝑡𝑣) ≥
𝑡 ′𝑣 − 𝑡𝑣 ≥ 𝑑 − 2𝑢. □

Having established that honest nodes broadcasts are accepted,

let us establish the counterpart of Crusader Consistency, namely

that if honest nodes accept a broadcast, they do so within a short

time of each other.

Lemma 11. Let 𝑟 ∈ N and 𝑢, 𝑣 ∈ H . Suppose that 𝑢, 𝑣 participate

in an instance of TCB𝑟 with dealer 𝑤 and output ℎ𝑢 , ℎ𝑣 ∉ {⊥},
respectively. Let 𝑡𝑢 , 𝑡𝑣 denote the times at which 𝑢 and 𝑣 receive the

messages from𝑤 , respectively. Then |𝑡𝑢 − 𝑡𝑣 | ≤ (1− 1/𝜗) ·𝑑 + 2𝑢/𝜗 .

Proof. Denote as 𝑡𝑢 , 𝑡𝑣 the times that 𝑢 and 𝑣 receive a message

from𝑤 in TCB𝑟 s.t. 𝐻𝑢 (𝑡𝑢 ) ∈ (𝐻𝑢 (𝑝𝑟𝑢 ), 𝐻𝑢 (𝑝𝑟𝑢 ) + 𝜗 (𝑑 + 𝜗 · 𝑆)) (and
similarly for 𝑣). If for either 𝑢 or 𝑣 no such time exists, then that

party outputs ⊥ and the claim is vacuously true.

Without loss of generality, assume that 𝑡𝑢 ≥ 𝑡𝑣 . 𝑢 receives the

echo from 𝑣 at time 𝑡 ≤ 𝑡𝑣 + 𝑑 . Since 𝑢 does not output ⊥, we
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Algorithm TCB𝑟

We describe the protocol from the view of node 𝑣, where 𝑤 is the dealer.

• If 𝑣 is the dealer, i.e., 𝑣 = 𝑤, 𝑣 sends ⟨𝑟 ⟩𝑣 to all nodes at local time 𝐻𝑣 (𝑝𝑟𝑣 ) + 𝜗 · 𝑆 and terminates.

• If 𝑣 is not the dealer, i.e., 𝑣 ≠ 𝑤:

– If no correctly formed signature ⟨𝑟 ⟩𝑤 is received from 𝑤 at a local time ℎ ∈ (𝐻𝑣 (𝑝𝑟𝑣 ), 𝐻𝑣 (𝑝𝑟𝑣 ) +𝜗 (𝑑 + (𝜗 + 1)𝑆 ) ) ,
terminate with output ⊥.

– Otherwise, denote by ℎ the first such local time. Forward ⟨𝑟 ⟩𝑤 to all nodes at time ℎ.

– If 𝑣 receives a correctly formed signature ⟨𝑟 ⟩′𝑤 at a local time ℎ′ ∈ (𝐻𝑣 (𝑝𝑟𝑣 ), ℎ + 𝑑 − 2𝑢 ) from a node 𝑥 ≠ 𝑤, it

terminates with output ⊥.
– Otherwise, 𝑣 terminates with output ℎ at local time ℎ + 𝑑 − 2𝑢.

Figure 2: Timed Crusader Broadcast. The routine assumes that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 , where 𝑝𝑟𝑣 is the time at which 𝑣 generates the 𝑟 th pulse.
Encoding 𝑟 ∈ N allows to distinguish instances, so that faulty nodes cannot reuse “old” signatures to disrupt an instance.

have that 𝜗 · (𝑡 − 𝑡𝑢 ) ≥ 𝐻𝑢 (𝑡) − 𝐻𝑢 (𝑡𝑢 ) ≥ 𝑑 − 2𝑢. This implies

that 𝑡 − 𝑡𝑢 ≥ (𝑑 − 2𝑢)/𝜗 . It follows 𝑡𝑢 − 𝑡𝑣 = 𝑡 − 𝑡𝑣 − (𝑡 − 𝑡𝑢 ) ≤
𝑑 − (𝑑 − 2𝑢)/𝜗 = (1 − 1/𝜗) · 𝑑 + 2𝑢/𝜗 . □

3.2 Pulse Synchronization Algorithm
With Timed Crusader Broadcast in place, we are ready to proceed

to the main algorithm, i.e., iterative simulation of synchronous

approximate agreement steps on pulse times. The algorithm is

given in Figure 3.

Intuitively, in each iteration 𝑟 ∈ N the algorithm lets each node

𝑤 communicate its pulse time using crusader broadcast. The output

of this subroutine at 𝑣 is then used to compute an estimate Δ𝑟𝑣,𝑤 of

𝑝𝑟𝑤 − 𝑝𝑟𝑣 , which in case of a faulty sender might fail and result in

⊥. These estimates are then used exactly as in Algorithm APA to

determine a value of Δ, which is then used as a correction to the

next pulse time relative to the nominal duration of an iteration of

𝑇 . The fact that Algorithm APA is used on the differences of pulse
times is compensated for by adding its output to the previous local

pulse time of 𝐻𝑣 (𝑝𝑟𝑣); since substracting 𝑝𝑟𝑣 does not change the

order of the received values and the output is a convex combination

of two inputs of a specific rank, up to the errors introduced by

clock drift and delay uncertainty, this is equivalent to executing

Algorithm APA on inputs 𝑝𝑟𝑣 .

We begin our analysis of the algorithm by translating the validity

and consistency guarantees of Algorithm TCB𝑟 into corresponding
guarantees on the computed estimates Δ𝑟𝑣,𝑤 . In the following, we

will bound the error in the estimates by 𝛿 := 2𝑢 + (𝜗2 − 1)𝑑 +
2(𝜗3 −𝜗2)𝑆 . First, we show validity, i.e., that honest nodes compute

estimates of their difference in pulse times with error smaller than

𝛿 . The result is shown analogously to [14, Ch. 10, Lem. 10.8]; we

defer the full proof to Appendix B.

Lemma 12. Let 𝑟 ∈ N and suppose that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . Let 𝑣,𝑤 ∈ H
and suppose that 𝑣 participates in an instance of TCB𝑟 with dealer

𝑤 . Consider Δ𝑟𝑣,𝑤 as defined in algorithm CPS. Then Δ𝑟𝑣,𝑤 ∈ [𝑝𝑟𝑤 −
𝑝𝑟𝑣, 𝑝

𝑟
𝑤 − 𝑝𝑟𝑣 + 𝛿) .

Proof Sketch. The computation of Δ𝑟𝑣,𝑤 accounts for the mini-

mum time (and hence local time) that passes before 𝑣 receives the

message from𝑤 , which is accepts by Lemma 10. The upper bound

follows by checking the maximum local time that passes, which is

proportional to 𝜗 times the real difference between the pulse times

plus a delay uncertainty. □

Next, we show the counterpart of Crusader Consistency, i.e., that

non-⊥ estimates are consistent up to error 𝛿 .

Lemma 13. Let 𝑟 ∈ N and suppose that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . Moreover, let

𝑣,𝑤 ∈ H , 𝑥 ∈ [𝑛]/H , and ℎ𝑣, ℎ𝑤 ∉ {⊥} denote the outputs of 𝑣
and𝑤 in TCB𝑟 with sender 𝑥 . Then |Δ𝑟𝑣,𝑥 −Δ𝑟𝑤,𝑥 − (𝑝𝑟𝑤 −𝑝𝑟𝑣) | < 𝛿 .

Proof. Let again 𝑡𝑣 and 𝑡𝑤 denote the times at which 𝑣 and𝑤

receive the messages from the dealer 𝑥 . By Lemma 11, it holds that

𝑡𝑣 − 𝑡𝑤 ≤ (1 − 1/𝜗)𝑑 + 2𝑢/𝜗 . We get that

Δ𝑟𝑣,𝑥 − Δ𝑟𝑤,𝑥 − (𝑝𝑟𝑣 − 𝑝𝑟𝑢 )
=𝐻𝑣 (𝑡𝑣) − 𝐻𝑣 (𝑝𝑟𝑣) − (𝐻𝑤 (𝑡𝑤) − 𝐻𝑤 (𝑝𝑟𝑤)) − (𝑝𝑟𝑤 − 𝑝𝑟𝑣)
≤ 𝜗 (𝑡𝑣 − 𝑝𝑟𝑣) − (𝑡𝑤 − 𝑝𝑟𝑤) − (𝑝𝑟𝑣 − 𝑝𝑟𝑤)
= (𝜗 − 1) (𝑡𝑣 − 𝑝𝑟𝑣) + 𝑡𝑣 − 𝑡𝑤

≤ (𝜗 − 1) (𝑡𝑣 − 𝑝𝑟𝑣) +
(
1 − 1

𝜗

)
𝑑 + 2𝑢

𝜗

≤ (𝜗 − 1) (𝐻𝑣 (𝑡𝑣) − 𝐻𝑣 (𝑝𝑟𝑣)) +
(
1 − 1

𝜗

)
𝑑 + 2𝑢

𝜗

≤ (𝜗 − 1) (𝜗𝑑 + (𝜗2 + 𝜗)𝑆) +
(
1 − 1

𝜗

)
𝑑 + 2𝑢

𝜗
< 𝛿. □

Based on the above bounds, we will prove by induction that

for all 𝑟 ∈ N, ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . The base of the induction is given by

the assumption that hardware clocks are initialized with skew 𝑆 .

The following lemma is the key argument required for the step,

establishing that, essentially, an approximate agreement step on

the pulse times with error at most 𝛿 is performed, assuming that

the estimates satisfy the above validity and consistency conditions.

Lemma 14. Fix 𝑟 ∈ N. Suppose that each 𝑣 ∈ H computes for each

𝑤 ∈ [𝑛] a value Δ𝑟𝑣,𝑤 ∈ R∪ {⊥}, such that the following properties

hold:

• For 𝑣,𝑤 ∈ H , Δ𝑟𝑣,𝑤 ∈ [𝑝𝑟𝑤 − 𝑝𝑟𝑣, 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝛿].
• For 𝑣,𝑤 ∈ H and 𝑥 ∈ [𝑛] such that Δ𝑟𝑣,𝑥 ,Δ

𝑟
𝑤,𝑥 ∉ {⊥},

|Δ𝑟𝑣,𝑥 − Δ𝑟𝑤,𝑥 − (𝑝𝑟𝑤 − 𝑝𝑟𝑣) | ≤ 𝛿 .

Then the following statements are true:

(1) For all 𝑣 ∈ H : −∥ ®𝑝𝑟 ∥ ≤ Δ𝑟𝑣 ≤ ∥ ®𝑝𝑟 ∥ + 𝛿.
(2) ∥ ®Δ𝑟 + ®𝑝𝑟 ∥ ≤ ∥ ®𝑝𝑟 ∥/2 + 𝛿.

Proof. We first show the claim for the special case 𝛿 = 0. Con-

sider an honest node 𝑣 ∈ H and a faulty node 𝑥 ∈ [𝑛] \ H
such that Δ𝑟𝑣,𝑥 ≠ ⊥. We define 𝑝𝑟𝑥 := Δ𝑟𝑣,𝑥 + 𝑝𝑟𝑣 . We observe that
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Algorithm CPS

We describe the protocol from the view of node 𝑣. Wait until local time 𝑆 .

Then do for all 𝑟 ∈ N:
• Generate 𝑟 th pulse.

• Simultaneously participate in an execution of TCB𝑟 with sender 𝑤, for each node 𝑤 ∈ [𝑛]. Let ℎ𝑣,𝑤 denote the

output of the instance corresponding to sender 𝑤.

• For each node 𝑤 ∈ [𝑛] s.t. ℎ𝑣,𝑤 ≠ ⊥, compute Δ𝑟
𝑣,𝑤 := ℎ𝑣,𝑤 − 𝐻𝑣 (𝑝𝑟𝑣 ) − 𝑑 +𝑢 − 𝑆 . For all remaining 𝑤 ∈ [𝑛], set

Δ𝑟
𝑣,𝑤 := ⊥. Denote 𝑏 the number of ⊥ values.

• Sort all the non-⊥ values computed in the previous step, then discard the lowest 𝑓 − 𝑏 and the highest 𝑓 − 𝑏 of those

values. Denote 𝐼 the interval spanned by the remaining values.

• Set Δ𝑟
𝑣 to the midpoint of 𝐼 .

• Wait until local time 𝐻𝑣 (𝑝𝑟𝑣 ) + Δ𝑟
𝑣 +𝑇 .

Figure 3: Crusader Pulse Synchronization, where 𝑓 = ⌈𝑛/2⌉ − 1 is the number of faulty nodes that can be sustained. The
algorithm assumes that 𝐻𝑣 (0) ∈ [0, 𝑆] for all 𝑣 ∈ H .

𝑝𝑟𝑣 +Δ𝑟𝑣,𝑥 = 𝑝𝑟𝑤 +Δ𝑟𝑤,𝑥 for any correct node𝑤 ∈ H from the second

condition of the statement and the assumption that 𝛿 = 0. Hence

𝑝𝑟𝑥 = 𝑝𝑟𝑤 + Δ𝑟𝑤,𝑥 for all𝑤 ∈ H satisfying Δ𝑟𝑤,𝑥 ≠ ⊥.
We next show that 𝑝𝑟𝑣 + Δ𝑟𝑣 for 𝑣 ∈ H equals the output of 𝑣 in

an iteration of an execution of algorithm APA specified as follows:

• Nodes 𝑣 ∈ H have input 𝑝𝑟𝑣 .

• For nodes 𝑥 ∈ [𝑛] \ H such that CB with dealer 𝑥 outputs

Δ𝑟𝑣,𝑥 ≠ ⊥ at 𝑣 ∈ H , 𝑣 receives 𝑝𝑟𝑥 from 𝑥 .

We consider the vector 𝐿 of values used to compute the value Δ𝑟𝑣
in iteration 𝑟 of CPS. For 𝑤 ∈ [𝑛], Δ𝑟𝑣,𝑤 = 𝑝𝑟𝑤 − 𝑝𝑟𝑣 . Hence, 𝐿 can

be obtained by shifting the non-⊥ input values used in the above

execution of APA by −𝑝𝑟𝑣 . This implies that in both computations, 𝑣

assigns the input corresponding to node𝑤 to the same position 𝑖𝑤
in the sorted vector of non-⊥ inputs. Hence, the indices of discarded

inputs in the list 𝐿 remains the same in both of these executions as

well. Let ℓ = |𝐿 | denote the length of 𝐿 and 𝑏 := 𝑛 − ℓ the number

of ⊥ values. Without loss of generality, we assume 𝐿 to be sorted

in ascending order, and that parties are sorted in ascending order

by size of their pulse times ®𝑝 . Then in the 𝑟 th iteration of CPS, 𝑣
computes the midpoint Δ𝑟𝑣 of interval 𝐼𝐿 spanned by the remaining

points in 𝐿 as

Δ𝑟𝑣 =
𝐿ℓ−𝑓 +𝑏 + 𝐿𝑓 −𝑏+1

2

=

(𝑝𝑟
ℓ−𝑓 +𝑏 − 𝑝

𝑟
𝑣) + (𝑝𝑟𝑓 −𝑏+1 − 𝑝

𝑟
𝑣)

2

=

𝑝𝑟
ℓ−𝑓 +𝑏 + 𝑝

𝑟
𝑓 −𝑏+1

2

− 𝑝𝑟𝑣 .

By comparison, the above execution of APA computes the midpoint

as (𝑝𝑟
ℓ−𝑓 +𝑏 + 𝑝

𝑟
𝑓 −𝑏+1)/2 = 𝑀𝑣 for every node 𝑣 ∈ H . Thus, both

executions compute the same midpoint, up to a shift of 𝑝𝑟𝑣 , i.e.,

CPS computes the vector of midpoints Δ𝑟𝑣 = 𝑀𝑣 − 𝑝𝑟𝑣 for every

node 𝑣 ∈ H . As APA satisfies the 1/2-consistency condition of

approximate agreement, we know that the above execution of APA
computes midpoints ®𝑀 satisfying ∥ ®𝑀 ∥ ≤ ∥𝑝𝑟 ∥/2. It follows that
∥ ®Δ𝑟 + ®𝑝𝑟 ∥ = ∥ ®𝑀 ∥ ≤ ∥ ®𝑝𝑟 ∥/2. This proves the second statement of

the lemma.

To prove the first statement, we use the validity condition of ap-

proximate agreement.We obtain that for all 𝑣 ∈ H , min𝑤∈H{𝑝𝑟𝑤} ≤
𝑀𝑣 ≤ max𝑤∈H{𝑝𝑟𝑤}. Since ®Δ𝑟 = ®𝑀 − ®𝑝𝑟 , we obtain for all 𝑣 ∈ H

that

−∥𝑝𝑟 ∥ = min

𝑤∈H
{𝑝𝑟𝑤} − max

𝑤∈H
{𝑝𝑟𝑤} ≤ 𝑀𝑣 − 𝑝𝑟𝑣 = Δ𝑟𝑣

≤ max

𝑤∈H
{𝑝𝑟𝑤} − min

𝑤∈H
{𝑝𝑟𝑤} = ∥𝑝𝑟 ∥ .

For the general case of 𝛿 > 0, we note that the list of values

received by 𝑣 ∈ H can be obtained from the one of an execution

with 𝛿 = 0 by adding to each received value a shift between 0 and

𝛿 . Thus, our analysis for the case of 𝛿 = 0 implies that

𝑝𝑟
ℓ−𝑓 +𝑏 + 𝑝

𝑟
𝑓 −𝑏+1

2

− 𝑝𝑟𝑣 ≤ Δ𝑟𝑣 ≤
𝑝𝑟
ℓ−𝑓 +𝑏 + 𝛿 + 𝑝

𝑟
𝑓 −𝑏+1 + 𝛿

2

− 𝑝𝑟𝑣

=

𝑝𝑟
ℓ−𝑓 +𝑏 + 𝑝

𝑟
𝑓 −𝑏+1

2

− 𝑝𝑟𝑣 + 𝛿.

We conclude that −∥ ®𝑝𝑟 ∥ ≤ Δ𝑟𝑣 ≤ ∥ ®𝑝𝑟 ∥+𝛿 , showing the first claim of

the lemma. Moreover, Δ𝑟𝑣+𝑝𝑟𝑣 ∈ [𝑀𝑣, 𝑀𝑣+𝛿] and hence, ∥Δ𝑟 +𝑝𝑟 ∥ ≤
∥ ®𝑀 ∥ + 𝛿 ≤ ∥𝑝𝑟 ∥/2 + 𝛿 . □

An immediate consequence of Lemma 14 is that if the hypothesis

of our induction holds, i.e., ∥ ®𝑝𝑟 ∥ ≤ 𝑆 , then the computed shifts ®Δ𝑟
are feasible, in the sense that 𝑣 ∈ H the waiting statement at the

end of the main loop of Algorithm CPS refers to a local time that is

larger then the local time when all instances of crusader broadcast

for round 𝑟 have terminated at 𝑣 , so that 𝑣 can compute Δ𝑟𝑣 ; a proof
is given in Appendix B.

Corollary 15. Fix 𝑟 ∈ N. Suppose that 𝑇 ≥ (𝜗2 + 𝜗 + 1)𝑆 +
(𝜗 + 1)𝑑 − 2𝑢 and ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . Moreover, denote as 𝜏𝑟𝑣 the time at

which 𝑣 ∈ H finalizes the computation of Δ𝑟𝑣 . Then for all 𝑣 ∈ H ,

𝐻𝑣 (𝑝𝑟𝑣) + Δ𝑟𝑣 +𝑇 ≥ 𝐻𝑣 (𝜏𝑟𝑣 ).

Similarly to [14, Ch. 10, Lem. 10.7], we can now prove that the

induction steps succeeds, i.e., that if ∥ ®𝑝𝑟 ∥ ≤ 𝑆 , then also ∥ ®𝑝𝑟+1∥ ≤ 𝑆 ;

the details are given in Appendix B.

Lemma 16. Suppose that 𝑇 ≥ (𝜗2 + 𝜗 + 1)𝑆 + (𝜗 + 1)𝑑 − 2𝑢,

𝑆 ≥ (2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇 )/(2 − 𝜗), and ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . Then

• (𝑇 − 𝑆)/𝜗 ≤ min𝑤∈H{𝑝𝑟+1𝑤 } − min𝑤∈H{𝑝𝑟𝑤} ≤ 𝑇 + 𝑆 + 𝛿
and

• ∥ ®𝑝𝑟+1∥ ≤ 𝑆 .

Proof Sketch. Lemma 14 allows us to interpret the new pulse

times as the result of performing an approximate agreement step
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with error 𝛿 on the previous pulse times (up to adding 𝑇 and clock

drift). The first statement follows from the resulting bound of −𝑆 ≤
∥ ®𝑝𝑟 ∥ ≤ Δ𝑟𝑣 ≤ ∥ ®𝑝𝑟 ∥ + 𝛿 ≤ 𝑆 + 𝛿 . The second statement is shown by

using that approximate agreement reduces the “old” error carried

over from the previous iteration by ∥ ®𝑝𝑟 ∥/2, which compensates

for the “new” error due to the measurement error of 𝛿 and clock

drift. □

The proof of the main theorem is analogous to [14, Ch. 10,

Thm. 10.9]; we defer it to Appendix B.

Theorem 17. Suppose that 4 − 𝜗 + 𝜗2 − 3𝜗3 > 0 and

𝑇 ≥ (𝜗
2 + 𝜗 + 1)2(2𝜗 − 1) (2𝑢 + (𝜗2 − 1)𝑑)

4 − 𝜗 + 𝜗2 − 3𝜗3
+ (𝜗 + 1)𝑑 − 2𝑢 ∈ 𝑂 (𝑑) .

Define 𝑆 as

𝑆 :=
2(2𝜗 − 1) (𝑢 + (𝜗 − 1)𝑑) + 2(𝜗 − 1)𝑇

4 − 2𝜗 − 𝜗2
∈ 𝑂 (𝑢 + (1 − 1/𝜗)𝑇 ),

and suppose that max𝑣∈H{𝐻𝑣 (0)} ≤ 𝑆 . Then Algorithm CPS is

an (⌈𝑛/2⌉ − 1)-secure clock synchronizaton protocol with skew 𝑆 ,

minimum period 𝑃min ≥ (𝑇 − (𝜗 + 1)𝑆)/𝜗 , and maximum period

𝑃max ≤ 𝑇 + 3𝑆 .

Proof Sketch. 𝑆 and 𝑇 are chosen in accordance with the pre-

requisites of Lemma 16, from which the claims readily follow. As

𝑇 ∈ Ω(𝑆) and 𝑆 ∈ Ω((𝜗 − 1)𝑇 , this is only feasible if 𝜗 − 1 is small

enough. □

By checking for which values of 𝜗 > 1 the polynomial in 𝜗 in the

preconditions of the theorem is positive, we arrive at Corollary 4.

Corollary 4. If 𝜗 ≤ 1.11, there are choices 𝑇 ∈ Θ(𝑑) and 𝑆 ∈
Θ(𝑢 + (𝜗 − 1)𝑑) such that Algorithm 3 is a (⌈𝑛/2⌉ − 1)-secure pulse
synchronization protocol with skew 𝑆 , minimum period 𝑃min ∈
Θ(𝑑) and maximum period 𝑃max ∈ 𝑃min + Θ(𝑆).

4 LOWER BOUND ON THE SKEW
Algorithm CPS exploits signatures in order to prevent faulty nodes

from equivocating about their own perception of time, i.e., when

they broadcast. However, echoing signatures comes not only at the

expense of another message delay (and thus timing uncertainty 𝑢),

but also at the expense of adding indirection to communication

relevant for the algorithm. As a result, the timing delay uncertainty

determining its skew bound is actually 𝑢̃, the uncertainty on com-

munication links involving a faulty party, which might be larger

than 𝑢.

In this section, we prove that this restriction is inherent. Con-

cretely, we show that no algorithm can achieve a skew smaller than

2𝑢̃/3, even if 𝑢 = 0. Our lower bound is established by the standard

technique of manipulating hardware clocks in a way that is hidden

by adjusting message delays, enabling us to construct three execu-

tions that are indistinguishable to honest nodes. Two executions

are indistinguishable to an honest node if the sequence of received

messages as well as the local reception times are identical; in this

case, the algorithm must send the same messages at the same local

times and generate pulses at the same time.
3
The hardware clock

3
For a randomized algorithm, this holds only after fixing the randomness. However,

the strategy of the adversary is independent of the algorithm, which allows us to

prove the result for deterministic algorithms and infer the general statement by Yao’s

principle.

skew of 2𝑢̃/3 we build up then translates to a skew of at least 2𝑢̃/3
between pulses in at least one of the three executions.

In our setting, this approach faces the technical challenge that it

is not sufficient to define the executions such that hardware clocks

andmessage delays conform to themodel, followed by proving their

indistinguishability. In addition, we must prove that the adversary

can obtain the required knowledge to determine its strategy upfront

and have faulty nodes send the required messages to maintain

indistinguishability in time.

We now set up to formally prove the lower bound. Fix an arbi-

trary deterministic pulse synchronization algorithm A. For conve-

nience of notation, w.l.o.g. we assume that no two messages are

received at the exact same local time; the general case can be cov-

ered by breaking ties lexicographically. Also w.l.o.g., we can assume

𝑛 = 3; the general case follows from a simple simulation argument

we provide later. In order to distinguish the three executions we

construct, we use superscripts 𝑖 ∈ [3]. For notational convenience,
both execution and node indices are always taken modulo 3, which

also exposes the symmetry of the construction.

Throughout this section, all considered execution triples (Ex𝑖 )𝑖∈[3] ,
share the following properties 𝑃 :

• H 𝑖 = [3] \ {𝑖}.
• Messages sent between honest parties have delay 𝑑 .

• All other messages have delay 𝑑 − 𝑢̃.
• 𝐻 𝑖

𝑖+1 (𝑡) = 𝑡 .

• 𝐻 𝑖
𝑖+2 (𝑡) = 𝜗𝑡 for 𝑡 ≤ 2𝑢̃/(3(𝜗 − 1)) and 𝐻 𝑖

𝑖+2 (𝑡) = 𝑡 + 2𝑢̃/3
for 𝑡 ≥ 2𝑢̃/(3(𝜗 − 1)).

In particular, hardware clocks of honest nodes never deviate by

more than 2𝑢̃/3 from real time.

We construct our triple of executions by induction over the num-

ber of messages 𝑘 sent by faulty nodes, where indistinguishability

holds before the maximum local reception time of such a message.

The base case is trivial; the following lemma performs the step.

Lemma 18. Let 𝑛 = 3, 𝑘 ∈ N, and Π be a 1-secure protocol for

pulse synchronization with skew 𝑆 . Suppose there exist executions

Ex1, Ex2, Ex3
of Π satisfying 𝑃 and the following properties.

• Faulty nodes send a total of 𝑘 messages in Ex1
, Ex2

, and Ex3
.

• Let ℎ∗ be the maximum local time at which a message from a

faulty node is received (or 0 if faulty nodes send nomessages).

Honest node 𝑖 cannot distinguish Ex𝑖+1 and Ex𝑖+2 until local

time ℎ∗.

If there exists a node 𝑖 that can distinguish Ex𝑖+1 and Ex𝑖+2, then

there exist executions Ẽx
1

, Ẽx
2

, and Ẽx
3

with the same properties,

except that faulty nodes send an additional message which is re-

ceived at a local time ℎ > ℎ∗. Moreover, for 𝑖 ∈ [3], nodes 𝑖 + 1 and

𝑖 + 2 cannot distinguish Ẽx
𝑖
from Ex𝑖 before time ℎ.

Proof. Let ℎ denote the minimum local time (over all execu-

tions) at which a node 𝑖 can distinguish Ex𝑖+1 and Ex𝑖+2. By the

prerequisites and the assumption that no two messages are received

at the same time, there exists an honest message𝑚 that 𝑖 receives

in exactly one of these executions at local time ℎ > ℎ∗. Observe

that the requirements on Ẽx
1

, Ẽx
2

, Ẽx
3

fully specify these execu-

tions save for the additional message that is sent by some faulty

party. We rule that the additional message is𝑚, which is sent by
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the same (there faulty) node with the same local reception time at 𝑖 .

We will need to establish that Ẽx
1

, Ẽx
2

, Ẽx
3

are well-defined, in that

faulty nodes always learn all signatures required for the messages

they send. However, let us first establish the indistinguishability

statements, as these are needed to show well-definedness.

We begin by showing that for each 𝑗 ∈ [3], executions Ẽx𝑗+1 and
Ex𝑗+1 are indistinguishable before time ℎ. An analogous statement

holds for Ẽx
𝑗+2

and Ex𝑗+2. Toward a contradiction, suppose that

there exists a local time
˜ℎ < ℎ at which some node 𝑗 can distinguish

Ẽx
𝑗+1

, Ex𝑗+1. Without loss of generality, we let
˜ℎ denote the minimal

such time. This implies that 𝑗 receives a message 𝑚̃ at local time

˜ℎ in execution Ẽx
𝑗+1

, which it does not receive in Ex𝑗+1 (or vice

versa).

We analyze two cases:

• 𝑚̃ is sent by an honest node 𝑗 ′ ≠ 𝑗 : As 𝑑 > 2𝑢̃/3, honest
parties’ local clocks are less than 𝑑 apart at all times. As mes-

sages sent between honest parties have delay 𝑑 , thus 𝑗 ′ must

have sent 𝑚̃ at some local time less than
˜ℎ. Because Ẽx

𝑗+1

and Ex𝑗+1 are indistinguishable before time
˜ℎ, 𝑗 ′ sends 𝑚̃ in

both Ex𝑗+1 and Ẽx
𝑗+1

. Hence, 𝑚̃ is received at the same local

time by 𝑗 in both Ex𝑗+1 and Ẽx
𝑗+1

. This is a contradiction.

• 𝑚̃ is sent by an faulty node 𝑗 ′ ≠ 𝑗 : As 𝑚̃ is received by 𝑗

before local time ℎ, 𝑚̃ ≠𝑚. It follows that 𝑗 ′ sends 𝑚̃ in both

executions. Hence it is received at the same local time by 𝑗

in both Ex𝑗+1 and Ẽx
𝑗+1

. This is a contradiction.

Since Ex𝑗+1 and Ex𝑗+2 are indistinguishable to 𝑗 before local time

ℎ, it follows that Ẽx
𝑗+1

and Ex𝑗+2 are also indistinguishable before

local time ℎ to 𝑗 . As, analogously, Ex𝑗+2 and Ẽx
𝑗+2

are indistin-

guishable to 𝑗 before local time ℎ, Ẽx
𝑗+1

and Ẽx
𝑗+2

are also indistin-

guishable to 𝑗 before local time ℎ. Finally, by construction and the

assumption that only one message is received at any given time,

Ẽx
𝑗+1

and Ẽx
𝑗+2

are also indistinguishable to 𝑗 at local time ℎ.

It remains to show that the behaviour of faulty nodes in execu-

tions Ẽx
1

, Ẽx
2

, Ẽx
3

is also well-defined. Suppose that faulty node

𝑖 ∈ [3] sends 𝑚̃ in Ẽx
𝑖
. Let

¯ℎ ≤ ℎ be the local time when 𝑚̃ is

received (by an honest node) in Ẽx
𝑖
. Denote as 𝑡𝑖 ≥ ¯ℎ − 2𝑢̃/3 the

time at which 𝑚̃ is received in Ẽx
𝑖
. By definition, 𝑖 sends 𝑚̃ at time

𝑡𝑖 −𝑑 + 𝑢̃ ≥ ¯ℎ −𝑑 + 𝑢̃/3 in Ẽx
𝑖
. It is sufficient to show that 𝑖 receives

every message𝑚′ on which 𝑚̃ depends by this time.

Consider such a message 𝑚′ and suppose that 𝑖 + 1 ≠ 𝑖 is its

sender; the case that 𝑖 + 2 is the sender is treated analogously. We

distinguish two cases based on which node receives 𝑚̃.

• 𝑖 + 2 receives 𝑚̃: Since 𝐻 𝑖+1
𝑖+2 ( ¯ℎ) ≥ ¯ℎ, and 𝑖 sends 𝑚̃ no later

than time
¯ℎ − 𝑑 in Ẽx

𝑖+1
. Thus,𝑚′ is received by 𝑖 in Ẽx

𝑖+1

no later than at time
¯ℎ − 𝑑 , which corresponds to local time

at most ℎ𝑖+1 := 𝐻 𝑖+1
𝑖
( ¯ℎ − 𝑑) ≤ ¯ℎ − 𝑑 + 2𝑢̃/3 < ¯ℎ. By indistin-

guishability of executions before local time ℎ ≥ ¯ℎ, 𝑖 receives

𝑚′ by the same local time ℎ𝑖+1 in Ẽx
𝑖+2

, and accordingly no

later than (real) time ℎ𝑖+1. Hence, 𝑖 + 1 sends 𝑚′ in Ẽx
𝑖+2

by time ℎ𝑖+1 − 𝑑 and local time ℎ𝑖+2 := 𝐻 𝑖+2
𝑖+1 (ℎ

𝑖+1 − 𝑑) ≤
ℎ𝑖+1 − 𝑑 + 2𝑢̃/3 < ¯ℎ. By indistinguishability of Ẽx

𝑖
and Ẽx

𝑖+2

before local time ℎ, it follows that 𝑖 + 1 sends𝑚′ in Ẽx
𝑖
by

local time (and also time) ℎ𝑖+2. Hence, in Ẽx
𝑖
, 𝑖 receives𝑚′

by time

ℎ𝑖+2 + 𝑑 − 𝑢̃ ≤ ℎ𝑖+1 − 𝑢̃

3

≤ ¯ℎ − 𝑑 + 𝑢̃
3

.

• 𝑖+1 receives 𝑚̃: Since𝐻 𝑖+2
𝑖+1 ( ¯ℎ) ≥ ¯ℎ, we have that 𝑖 sends 𝑚̃ by

time
¯ℎ−𝑑 in Ẽx

𝑖+2
. Thus,𝑚′ is received by 𝑖 in Ẽx

𝑖+2
by time

¯ℎ−𝑑 , and hence sent by 𝑖 +1 by time
¯ℎ−2𝑑 . This corresponds

to local time ℎ𝑖+2 := (𝐻 𝑖+2
𝑖+1 ) ( ¯ℎ − 2𝑑) ≤ ¯ℎ − 2𝑑 + 2𝑢̃/3 < ¯ℎ. By

indistinguishability of executions before local time ℎ ≥ ¯ℎ,

𝑖 + 1 sends𝑚′ by the same local time and time ℎ𝑖+2 in Ẽx
𝑖
.

Hence, 𝑖 receives𝑚′ at time at most

ℎ𝑖+2 + 𝑑 − 𝑢̃ ≤ ¯ℎ − 𝑑 − 𝑢̃

3

< ¯ℎ − 𝑑 + 𝑢̃
3

. □

Using the Lemma 18 inductively, we construct executions that

are indistinguishable to honest nodes at all times. A full proof of

Lemma 19 is provided in the appendix.

Lemma 19. Let𝑛 = 3 and letΠ be a 1-secure protocol for pulse syn-

chronization with skew 𝑆 . Then there exist executions Ex1, Ex2, Ex3

of Π that satisfy 𝑃 and where node 𝑖 ∈ [3] cannot distinguish Ex𝑖+1
and Ex𝑖+2.

Proof Sketch. Inductive application of Lemma 18 yields a se-

ries of triples of executions with an increasing number of messages

sent by faulty nodes, which cannot be distinguished by correctness

up to the largest local time when such a message is received. There

are two cases: The induction halts, because the indistinguishability

holds at all times; in this case we are done. Otherwise, the con-

structed executions share indistinguishable prefixes with those that

are constructed later. As only finitely many messages are sent in

finite time, these prefixes must become arbitrarily long. Hence, they

define limit executions satisfying the required properties. □

Equipped with these executions, we are in the position to prove

the claimed lower bound.

Theorem 5. Let 𝑛 ≥ 3 and Π be an ⌈𝑛/3⌉-secure protocol for pulse
synchronization with skew 𝑆 . Then E[𝑆] ≥ 2𝑢̃/3.

Proof. We show the statement for the special case of𝑛 = 3, 𝑡 = 1.

For general 𝑛, we can reduce the argument to the case of 𝑛 = 3, 𝑡 = 1

as follows. Assume the existence of an ⌈𝑛/3⌉-secure protocol Π for

pulse synchronization with skew 𝑆 < 2𝑢̃/3. Now, partition the set

of 𝑛 nodes into three non-empty subsets 𝑆1, 𝑆2, 𝑆3 of size at most

⌈𝑛/3⌉. Then, node 𝑖 ∈ [3] simulates the protocol behaviour of nodes

in 𝑆𝑖 in Π and outputs the pulse times of the lexicographically first

node in 𝑆𝑖 . By assumption, this yields a 1-secure protocol for pulse

synchronization for 𝑛 = 3 with skew 𝑆 .

Thus, let Π be a 1-secure protocol for pulse synchronization, and

assume for now that Π is deterministic. By Lemma 19, there exist

executions Ex1, Ex2, Ex3
with the following properties:

• H 𝑖 = [3] \ {𝑖}.
• 𝐻 𝑖

𝑖+1 (𝑡) = 𝑡 .

• 𝐻 𝑖
𝑖+2 (𝑡) = 𝜗 · 𝑡 for 𝑡 ≤ 2𝑢̃/(3(𝜗 − 1)) and 𝐻 𝑖

𝑖+2 (𝑡) = 𝑡 + 2𝑢̃/3
for 𝑡 ≥ 2𝑢̃/(3(𝜗 − 1)).
• Ex𝑖+1 and Ex𝑖+2 are indistinguishable to node 𝑖 .
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Recall that Π must guarantee some minimum period 𝑃min > 0.

We define 𝑟 := ⌈𝑢̃/𝑃min (𝜗 − 1)⌉ + 1, such that for all 𝑖 ∈ [3],
min{𝑝𝑖,𝑟

𝑖+1, 𝑝
𝑖,𝑟
𝑖+2} ≥ 2𝑢̃/(3(𝜗 − 1)), where 𝑝𝑖,𝑟𝑣 denotes the 𝑟 th pulse

time of honest node 𝑣 in execution Ex𝑖 . Recall that for all times 𝑡 ,

𝐻 𝑖+2
𝑖
(𝑡) = 𝑡 and for times 𝑡 ≥ 𝑝

𝑖+1,𝑟
𝑖

,𝐻 𝑖+1
𝑖
(𝑡) = 𝑡 +2𝑢̃/3. By indistin-

guishability of executions Ex𝑖+1 and Ex𝑖+2 for node 𝑖 ,𝐻 𝑖+1
𝑖
(𝑝𝑖+1,𝑟

𝑖
) =

𝐻 𝑖+2
𝑖
(𝑝𝑖+2,𝑟

𝑖
). Hence,

𝑝
𝑖+1,𝑟
𝑖

= (𝐻 𝑖+1
𝑖 )

−1 (𝐻 𝑖+1
𝑖 (𝑝

𝑖+1,𝑟
𝑖
)) = (𝐻 𝑖+1

𝑖 )
−1 (𝐻 𝑖+2

𝑖 (𝑝
𝑖+2,𝑟
𝑖
))

= (𝐻 𝑖+1
𝑖 )

−1 (𝑝𝑖+2,𝑟
𝑖
) = 𝑝

𝑖+2,𝑟
𝑖
− 2𝑢̃

3

We conclude that

3𝑆 ≥ (𝑝𝑖,𝑟
𝑖+1 − 𝑝

𝑖,𝑟
𝑖+2) + (𝑝

𝑖+1,𝑟
𝑖+2 − 𝑝

𝑖+1,𝑟
𝑖
) + (𝑝𝑖+2,𝑟

𝑖
− 𝑝𝑖+2,𝑟

𝑖+1 )

= (𝑝𝑖+2,𝑟
𝑖
− 𝑝𝑖+1,𝑟

𝑖
) + (𝑝𝑖,𝑟

𝑖+1 − 𝑝
𝑖+2,𝑟
𝑖+1 ) + (𝑝

𝑖+1,𝑟
𝑖+2 − 𝑝

𝑖,𝑟
𝑖+2) = 2𝑢̃ .

This implies that 𝑆 ≥ 2𝑢̃/3.
It remains cover the case that Π is randomized. To this end, we in-

terpret Π as random variable evaluating to a deterministic protocol

(as a result of fixing the randomness of the nodes). Independently

of Π, the adversary uniformly at random picks node 𝑖 ∈ [3] to
corrupt. These choices determine executions Ex𝑖 , 𝑖 ∈ [3], as above.
The adversary then lets 𝑖 behave such that Ex𝑖 is realized.

We claim that, while the adversary might not be able to learn the

randomness of nodes 𝑖 + 1 and 𝑖 + 2, it is not required to do so. The

messages node 𝑖 sends are those it would send as a correct node in

Ex𝑖+1 and Ex𝑖+2, respectively. It receives the same messages in Ex𝑖 ,
just at different times. However, from the reception times it can

compute the corresponding local reception times at 𝑖 in Ex𝑖+1 and

Ex𝑖+2, based on the known message delays and local times of the

respective senders in the respective executions. Hence, it can simply

simulate two copies of Π at 𝑖 with the randomness of 𝑖 , to which it

feeds the received messages with the local times at which they are

received in Ex𝑖+1 and Ex𝑖+2, respectively. As we have shown that all

messages required in the adversary’s simulation are received early

enough to produce all appropriate messages to be sent in time, we

conclude that the adversary can indeed realize Ex𝑖 .
Denote by 𝑝

𝑖,𝑟
𝑣 (𝜋) the 𝑟 th pulse of 𝑣 in the execution Ex𝑖 of

deterministic protocol 𝜋 . Using independence, we get that

3 · E[𝑆] = 3 ·
3∑︁

𝑖=1

𝑃 [𝑖 is corrupted] · E[𝑆 | 𝑖 is corrupted]

=

3∑︁
𝑖=1

E[𝑆 | 𝑖 is corrupted]

≥
3∑︁

𝑖=1

∑︁
𝜋

𝑃 [Π = 𝜋] · (𝑝𝑖,𝑟
𝑖+1 (𝜋) − 𝑝

𝑖,𝑟
𝑖+2 (𝜋))

=
∑︁
𝜋

𝑃 [𝑋 = 𝜋] ·
3∑︁

𝑖=1

𝑝
𝑖,𝑟
𝑖+1 (𝜋) − 𝑝

𝑖,𝑟
𝑖+2 (𝜋))

≥
∑︁
𝜋

𝑃 [𝑋 = 𝜋] · 2𝑢̃ = 2𝑢̃ . □
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A FURTHER RELATEDWORK

Cryptography in Distributed Consensus. Cryptography makes

it possible to circumvent the famous 𝑓 < 𝑛/3 bound due to Lamport,

Shostak, and Pease [24] on the number of tolerable corruptions in a

synchronous protocol solving the consensus problem. This was first

demonstrated in the seminal work of Dolev and Strong [16] who

gave an authenticated algorithm for Byzantine broadcast tolerating

any 𝑓 < 𝑛 − 1 corrupted parties. Early works in the area typi-

cally use cryptography, e.g., signatures, as structure-free objects,

in line with their symbolic treatment in the Dolev-Yao model [17].

Cryptography has also been a staple tool to facilitate randomized

consensus protocols, which are inherently required in the asyn-

chronous setting due to the FLP result [19]. Here, cryptography

is typically used in the form of more advanced primitives such

as secret sharing [8], multi-party computation [5], or threshold

signatures [7], which can be used to agree on a random coin flip.

Other advanced forms of cryptography have been (more recently)

used to optimize the round and communication complexity of con-

sensus protocols. Verifiable random functions produce efficiently

verifiable, yet unpredictable values that can be used to efficiently

elect a random leader (or a random subcommittee) in a consensus

protocol [1, 9, 10, 27]. Threshold encryption allows to agree on a

ciphertext of unknown content which can be forcibly decrypted by

a sufficient number of honest parties. This has served as a useful

tool for guaranteeing liveness in asynchronous consensus proto-

cols [28]. Recent work [30] has also shown the feasibility of round

efficient consensus with a strongly adaptive adversary capable of

after-the-fact-removal of messages sent by honest parties using

time-locked puzzles. Lastly, we mention the work of Abraham et

al. [2] who give randomized consensus protocols from primitives

such as the above and also provide a signature-based variant of

the Srikanth-Toueg pulse synchronizer [29]. We point out, how-

ever, that their algorithm, while tolerating the optimal corruption

fraction of ⌈𝑛/2⌉ − 1 Byzantine parties, exhibits a skew of up to 𝑑 ,

whereas we achieve 𝑂 (𝑢̃ + 𝜗 − 1)𝑑). Likewise, [21] achieves skew
larger than 𝑑 for the related task of clock synchronization using

essentially the same scheme.

Fault-tolerant Clock Synchronization in General Networks.
Little work has directly addressed fault-tolerant synchronization in

non-complete networks. For a known topology, without signatures

(node) connectivity (2𝑓 + 1) is necessary and sufficient to simu-

late full connectivity in the presence of up to 𝑓 faults [11], lifting

results for consensus under full connectivity to general networks.

Analogously, (2𝑓 + 1)-connectivity can be leveraged to simulate

full connectivity with suitable timing information to do the same

for clock synchronization, by taking the median of clock offset esti-

mation obtained via 2𝑓 + 1 node-disjoint paths. This comes at the

expense of such estimates being subject to the maximum over the

used paths of the uncertainty accumulated along the path, which is

justified by [4], which shows for any pair of nodes a lower bound

proportional to the length of the shortest path between them in the

fault-free setting. Although we are not aware of a formal proof of

this claim, (2𝑓 + 1)-connectivity is also necessary for synchroniza-

tion, since a majority of faulty nodes on a node cut of the network

allows for the faulty majority to claim arbitrarily large clock offsets

between the (thus effectively disconnected) parts of the network.

In light of the lower bound of Ω(𝑢𝐷) on the worst-case skew
4

in fault-free networks of diameter 𝐷 [4], Fan and Lynch proposed

to study the task of gradient clock synchronization, in which the

goal is to keep the local skew, i.e., the skew between neighbors

in the network, small [18]. Matching upper and lower bounds of

Θ(𝑢 log𝐷) on the local skew have been proven for the fault-free

case [25]. A fault-tolerant generalization of the algorithm achieves

the same asymptotic skew bounds in the presence of 𝑓 faults, pro-

vided that the (arbitrary connected) base network is augmented by

copying nodes and linksΘ(𝑓 ) times [6]. The existing gradient clock

synchronization algorithms require no knowledge of the topology.

In the setting with signatures, (𝑓 + 1)-connectivity is trivially

necessary and sufficient to simulate full connectivity of the network.

This allows to carry over the existing algorithms with skew Θ(𝑑)
to this setting [2, 21], where 𝑑 becomes the worst-case end-to-end

delay across the network after deleting the faulty nodes ([21] in

fact states the general result). Our algorithm can be translated to

any known (𝑓 + 1)-connected network in the same way, where 𝑢̃

and 𝑑 are replaced by the maximum end-to-end delay and uncer-

tainty over all paths used to simulate full connectivity. Note that in

addition to making sure that communication has stable latency on

the link level, one needs to balance the length (in terms of overall

delay) of the utilized paths in order to keep 𝑢̃ much smaller than 𝑑 .

B OMMITTED PROOFS
Proof of Lemma 12. Due to Lemma 10, Δ𝑟𝑣,𝑤 ≠ ⊥. Denote as

𝑡𝑤 the time that the dealer𝑤 sends its message and let 𝑡𝑣 ∈ [𝑡𝑤 +
𝑑 − 𝑢, 𝑡𝑤 + 𝑑] denote the time that 𝑣 receives it. We bound Δ𝑟𝑣,𝑤
from below as

Δ𝑟𝑣,𝑤 = 𝐻𝑣 (𝑡𝑣) − 𝐻𝑣 (𝑝𝑟𝑣) − 𝑑 + 𝑢 − 𝑆
≥ 𝑡𝑣 − 𝑝𝑟𝑣 − 𝑑 + 𝑢 − 𝑆
≥ 𝑡𝑤 − 𝑝𝑟𝑣 − 𝑆
= 𝑡𝑤 + 𝑝𝑟𝑤 − 𝑝𝑟𝑤 − 𝑝𝑟𝑣 − 𝑆

≥
𝐻𝑤 (𝑡𝑤) − 𝐻𝑤 (𝑝𝑟𝑤)

𝜗
+ 𝑝𝑟𝑤 − 𝑝𝑟𝑣 − 𝑆 = 𝑝𝑟𝑤 − 𝑝𝑟𝑣 .

The upper bound is derived as

Δ𝑟𝑣,𝑤

=𝐻𝑣 (𝑡𝑣) − 𝐻𝑣 (𝑝𝑟𝑣) − 𝑑 + 𝑢 − 𝑆
≤ 𝜗 (𝑡𝑣 − 𝑝𝑟𝑣) − 𝑑 + 𝑢 − 𝑆
≤ 𝜗 (𝑡𝑤 + 𝑑 − 𝑝𝑟𝑣) − 𝑑 + 𝑢 − 𝑆
= 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝑢 + 𝜗 (𝑡𝑤 − 𝑝𝑟𝑤) + (𝜗 − 1) (𝑑 + 𝑝𝑟𝑤 − 𝑝𝑟𝑣) − 𝑆
≤ 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝑢 + 𝜗 (𝑡𝑤 − 𝑝𝑟𝑤) + (𝜗 − 1)𝑑 + (𝜗 − 2)𝑆
≤ 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝑢 + 𝜗 (𝐻𝑤 (𝑡𝑤) − 𝐻𝑤 (𝑝𝑟𝑤)) + (𝜗 − 1)𝑑 + (𝜗 − 2)𝑆
=𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝑢 + (𝜗 − 1)𝑑 + (𝜗2 + 𝜗 − 2)𝑆 < 𝑝𝑟𝑤 − 𝑝𝑟𝑣 + 𝛿. □

4
We state all bounds here for uniform link delays and uncertainties, but all bounds

can be generalized to he heterogenous case.
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Proof of Corollary 15. First, we note that Algorithm TCB ter-

minates at the latest at local time𝐻𝑣 (𝑝𝑟𝑣) + (𝜗 + 1)𝑑 − 2𝑢 + (𝜗2 +𝜗)𝑆 .
Hence, 𝐻𝑣 (𝜏𝑟𝑣 ) ≤ 𝐻𝑣 (𝑝𝑟𝑣) + (𝜗 + 1)𝑑 − 2𝑢 + (𝜗2 +𝜗)𝑆 . Moreover, due

to the condition ∥ ®𝑝𝑟 ∥ ≤ 𝑆 , we can apply Lemmas 12 and 13, which

prove that the preconditions of Lemma 14 hold for iteration 𝑟 . We ap-

ply the precondition ∥ ®𝑝𝑟 ∥ ≤ 𝑆 and the first statement of Lemma 14,

which together yiels that for all 𝑣 ∈ H , −𝑆 ≤ −∥ ®𝑝𝑟 ∥ ≤ Δ𝑟𝑣 . There-
fore,

𝐻𝑣 (𝑝𝑟𝑣) + Δ𝑟𝑣 +𝑇
≥𝐻𝑣 (𝑝𝑟𝑣) − 𝑆 +𝑇
≥𝐻𝑣 (𝜏𝑟𝑣 ) − ((𝜗 + 1)𝑑 − 2𝑢 + (𝜗2 + 𝜗 + 1)𝑆) +𝑇
≥𝐻𝑣 (𝜏𝑟𝑣 ) . □

Proof of Lemma 16. We begin by noting that due to Corollary 15

(which we can apply due to the lemma conditions), ®𝑝𝑟+1 is well-

defined. Next, we apply Lemmas 12 and 13 to show that the precon-

ditions of Lemma 14 hold for pulse 𝑟 . Thus, by the first statement

of Lemma 14, for all 𝑣 ∈ H we have that

−𝑆 ≤ −∥ ®𝑝𝑟 ∥ ≤ Δ𝑟𝑣 ≤ ∥ ®𝑝𝑟 ∥ + 𝛿 ≤ 𝑆 + 𝛿.

Consider 𝑣 := arg min𝑤∈H{𝑝𝑟+1𝑤 }. Then

min

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} ≥ 𝑝𝑟+1𝑣 − 𝑝𝑟𝑣

≥ 𝐻𝑣 (𝑝𝑣)𝑟+1 − 𝐻𝑣 (𝑝𝑟𝑣)
𝜗

≥ 𝑇 + Δ𝑟𝑣
𝜗

≥ 𝑇 − 𝑆
𝜗

.

This establishes the lower bound in item 1. For the upper bound,

consider 𝑣 := arg min𝑤∈H{𝑝𝑟𝑤}. We get

min

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} ≤ 𝑝𝑟+1𝑣 − 𝑝𝑟𝑣

≤ 𝐻𝑣 (𝑝𝑟+1𝑣 ) − 𝐻𝑣 (𝑝𝑟𝑣)
= 𝑇 + Δ𝑟𝑣
≤ 𝑇 + 𝑆 + 𝛿.

For the second statement of the lemma, fix arbitrary 𝑣,𝑤 ∈ H
and assume w.l.o.g. that 𝑝𝑟+1𝑤 ≥ 𝑝𝑟+1𝑣 . We have that

𝑝𝑟+1𝑤 − 𝑝𝑟+1𝑣

=𝑝𝑟𝑤 + 𝑝𝑟+1𝑤 − 𝑝𝑟𝑤 − (𝑝𝑟𝑣 + 𝑝𝑟+1𝑣 − 𝑝𝑟𝑣)

≤ 𝑝𝑟𝑤 + 𝐻𝑤 (𝑝𝑟+1𝑤 ) − 𝐻𝑤 (𝑝𝑟𝑤) −
(
𝑝𝑟𝑣 −

𝐻𝑣 (𝑝𝑟+1𝑣 ) − 𝐻𝑣 (𝑝𝑟𝑣)
𝜗

)
=𝑝𝑟𝑤 + Δ𝑟𝑤 − (𝑝𝑟𝑣 + Δ𝑟𝑣) +

(
1 − 1

𝜗

)
(𝑇 + Δ𝑟𝑣)

≤ 𝑝𝑟𝑤 + Δ𝑟𝑤 − (𝑝𝑟𝑣 + Δ𝑟𝑣) +
(
1 − 1

𝜗

)
(𝑇 + 𝑆 + 𝛿)

≤ ∥
®𝑝𝑟 ∥
2

+ 𝛿 +
(
1 − 1

𝜗

)
(𝑇 + 𝑆 + 𝛿)

≤ 𝑆

2

+ 𝛿 +
(
1 − 1

𝜗

)
(𝑇 + 𝑆 + 𝛿) ≤ 𝑆,

where the second inequality uses the already established bound

Δ𝑟𝑣 ≤ 𝑆 + 𝛿 , the third inequality follows from the second statement

of Lemma 14, the second to last inequality applies the precondition

∥ ®𝑝𝑟 ∥ ≤ 𝑆 , and the final inequality holds due to the precondition on

𝑆 . Since 𝑣,𝑤 ∈ H were arbitrary, we conclude that ∥ ®𝑝𝑟+1∥ ≤ 𝑆 . □

Proof of Theorem 17. We begin by observing that

𝑆 =
2(2𝜗 − 1) (2𝑢 + (𝜗2 − 1)𝑑) + 2(𝜗 − 1)𝑇

2 − 𝜗 + 𝜗2 − 𝜗3

=
2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇

2 − 𝜗 > 𝛿

and

𝑇 ≥ (𝜗
2 + 𝜗 + 1)2(2𝜗 − 1) (2𝑢 + (𝜗2 − 1)𝑑)

4 − 𝜗 + 𝜗2 − 3𝜗3
+ (𝜗 + 1)𝑑 − 2𝑢

= (𝜗2 + 𝜗 + 1)𝑆 + (𝜗 + 1)𝑑 − 2𝑢.

We prove the theorem by induction on the pulse number 𝑟 , where

the induction hypothesis is that ∥ ®𝑝𝑟 ∥ ≤ 𝑆 and if 𝑟 ≠ 0 also

min

𝑤∈H
{𝑝𝑟+1𝑤 } − max

𝑤∈H
{𝑝𝑟𝑤} ≥

𝑇 − (𝜗 + 1)𝑆
𝜗

and

max

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} ≤ 𝑇 + 3𝑆.

The base case holds due to the condition of the theorem. For the

step case, assume that for 𝑟 ∈ N, ∥ ®𝑝𝑟 ∥ ≤ 𝑆 . We invoke Lemma 16,

yielding that ∥ ®𝑝𝑟+1∥ ≤ 𝑆 and that (𝑇 − 𝑆)/𝜗 ≤ min𝑤∈H{𝑝𝑟+1𝑤 } −
min𝑤∈H{𝑝𝑟𝑤} ≤ 𝑇 + 𝑆 + 𝛿 . Thus,

min

𝑤∈H
{𝑝𝑟+1𝑤 } − max

𝑤∈H
{𝑝𝑟𝑤} ≥ min

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} + 𝑆

≥ 𝑇 − (𝜗 + 1)𝑆𝜗
and

max

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} ≤ min

𝑤∈H
{𝑝𝑟+1𝑤 } − min

𝑤∈H
{𝑝𝑟𝑤} + 𝑆

≤ 𝑇 + 2𝑆 + 𝛿 < 𝑇 + 3𝑆. □

Proof of Lemma 19. We show the statement by inductively con-

structing triples of executions (Ex1

𝑘
, Ex𝑘

2
, Ex3

𝑘
) for 𝑘 ∈ N satisfying

𝑃 and the following properties:

• Faulty nodes send a total of 𝑘 messages in Ex1

𝑘
, Ex2

𝑘
, and Ex3

𝑘
.

• Let ℎ𝑘 be the maximum local time at which a message from a

faulty node is received (or 0 if faulty nodes send nomessages).

Honest node 𝑖 cannot distinguish Ex𝑖+1
𝑘

, Ex𝑖+2
𝑘

, Ex𝑖+1
𝑘+1, and

Ex𝑖+2
𝑘+1 until time ℎ𝑘 .

• Honest node 𝑖 cannot distinguish Ex𝑖+1
𝑘

and Ex𝑖+2
𝑘

until time

ℎ𝑘 .

Note that these conditions imply all preconditions of Lemma 18,

except for the existence of a node 𝑖 ∈ [3] that can distinguish

executions Ex𝑖+1 and Ex𝑖+2 after local time ℎ𝑘 . We begin by noting

that we can define (Ex1

0
, Ex0

2
, Ex3

0
) with the necessary properties by

having faulty nodes send no messages, setting message delays to 𝑑 ,

and defining the functions 𝐻 𝑖
𝑗
for all 𝑖, 𝑗 ∈ [3] as stated above. This

covers the base case of our induction.

Our induction stops at finite index 𝑘0 if there does not exist a

node 𝑖 ∈ [3] which can distinguish executions Ex𝑖+1
𝑘0

and Ex𝑖+2
𝑘0

. For

all 𝑘 not of this form, observe that if Ex1

𝑘
, Ex2

𝑘
, and Ex3

𝑘
with the

above properties exist, then all preconditions of Lemma 18 are met.
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Algorithm CB

• The dealer 𝑣 sends (𝑏𝑣, ⟨𝑏𝑣 ⟩𝑣 ) to all nodes.

• Let (𝑏, 𝜎 ) be the value received from the dealer. Send (𝑏, 𝜎 ) to all nodes.

• Let (𝑏𝑤 , 𝜎𝑤 ) be the message received from node 𝑤. Output ⊥ if either of the following occurs:

– There are nodes 𝑤1 ≠ 𝑤2 such that Verify(𝑝𝑘𝑣, 𝜎𝑤1
, 𝑏𝑤1

) = Verify(𝑝𝑘𝑣, 𝜎𝑤2
, 𝑏𝑤2

) = 1, but 𝑏𝑤1
≠ 𝑏𝑤2

.

– Verify(𝑝𝑘𝑣, 𝜎,𝑏 ) = 0.

Otherwise, output 𝑏.

Figure 4: A 2-round synchronous algorithm for Crusader Broadcast.

Hence, we can apply Lemma 18 for the step case of our induction,

which yields Ex1

𝑘+1, Ex
2

𝑘+1 and Ex2

𝑘+1 which satisfy the properties

stated above. This concludes the induction.

To conclude the proof, we distinguish two cases:

• The induction halts at finite index 𝑘0: Then Ex1

𝑘0

, Ex2

𝑘0

, and

Ex3

𝑘0

satisfy the requirements of the lemma.

• The induction does not halt: We note that for any two in-

dices 𝑘1 < 𝑘2 and 𝑖 ∈ [3], executions Ex𝑖
𝑘1

and Ex𝑖
𝑘2

are

indistinguishable up to local time ℎ𝑘1
in the view of nodes

𝑖 + 1 and 𝑖 + 2. Recall that this means that nodes 𝑖 + 1 and

𝑖 + 2 send and receive all messages in these executions at the

same local times (before local time ℎ𝑘1
). This also means that

these nodes send and receive the same messages at the same

local times before time 𝑡𝑘1
:= min𝑗∈{𝑖+1,𝑖+2} (𝐻 𝑖

𝑗
)−1 (ℎ𝑘1

) ≥
ℎ𝑘1
− 2𝑢̃/3. Also, this implies that the faulty node 𝑖 in these

executions sends and receives the same messages before

time 𝑡𝑘1
− 𝑑 + 𝑢̃ = ℎ𝑘1

− 𝑑 + 𝑢̃/3. Thus, we see that for any 𝑘 ,
executions Ex𝑖

𝑘
, Ex𝑖

𝑘+1, ... are identical until time 𝑡𝑘 −𝑑 + 𝑢̃/3.
By our model assumptions, nodes send a finite amount of

messages over any finite period of time. This implies that

𝑡𝑘 grows unbounded as 𝑘 increases. Hence, there is a well-

defined limit execution Ex𝑖 which for all 𝑘 ∈ N is identical

to Ex𝑖
𝑘
before time 𝑡𝑘 . These executions satisfy the claim of

the lemma. □
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