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Abstract. Consider a complete communication network of n nodes, where the nodes receive3
a common clock pulse. We study the synchronous c-counting problem: given any starting state4
and up to f faulty nodes with arbitrary behaviour, the task is to eventually have all correct nodes5
labeling the pulses with increasing values modulo c in agreement. Thus, we are considering algorithms6
that are self-stabilising despite Byzantine failures. In this work, we give new algorithms for the7
synchronous counting problem that (1) are deterministic, (2) have optimal resilience, (3) have a linear8
stabilisation time in f (asymptotically optimal), (4) use a small number of states, and consequently,9
(5) communicate a small number of bits per round. Prior algorithms either resort to randomisation,10
use a large number of states and need high communication bandwidth, or have suboptimal resilience.11
In particular, we achieve an exponential improvement in both state complexity and message size12
for deterministic algorithms. Moreover, we present two complementary approaches for reducing the13
number of bits communicated during and after stabilisation.14
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1. Introduction. In this work, we design space- and communication-efficient, self-17

stabilising, Byzantine fault-tolerant algorithms for the synchronous counting problem.18

We are given a complete communication network on n nodes, with arbitrary initial19

states. There are up to f faulty nodes. The task is to synchronise the nodes so that20

all non-faulty nodes will count rounds modulo c in agreement. For example, here is a21

possible execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 3; the22

execution stabilises after t = 5 rounds:23

Stabilisation Counting

Node 1: 2 2 0 2 0 0 1 2 0 1 2 . . .
Node 2: 0 2 0 1 0 0 1 2 0 1 2 . . .
Node 3: faulty node, arbitrary behaviour . . .
Node 4: 0 0 2 0 2 0 1 2 0 1 2 . . .

24

Synchronous counting is a coordination primitive that can be used e.g. in large25

integrated circuits to synchronise subsystems to easily implement mutual exclusion26

and time division multiple access in a fault-tolerant manner. Note that in this context,27

it is natural to assume that a synchronous clock signal is available, but the clocking28

system usually does not provide explicit round numbers. Solving synchronous counting29

thus yields highly dependable round counters for subcircuits.30

If we neglect communication, counting and consensus are essentially equivalent [13–31

15]. In particular, many lower bounds on (binary) consensus directly apply to the32

counting problem [16, 20, 27]. However, the known generic reduction of counting to33

consensus incurs a factor-f overhead in space and message size. In this work, we34
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present techniques that reduce the number of bits nodes broadcast in each round to35

O(log2 f + log c).36

1.1. Contributions. Our contributions constitute of two parts. First, we give37

novel space-efficient deterministic algorithms for synchronous counting with optimal38

resilience and fast stabilisation time. Second, we show how to extend these algorithms39

in a way that reduces the number of communicated bits during and after stabilisation.40

Space-efficient counting algorithms.. In this work, we take the following approach41

for devising communication-efficient counting algorithms: we first design space-efficient42

algorithms, that is, algorithms in which each node stores only a few bits between43

consecutive rounds. Space-efficient algorithms are particularly attractive from the44

perspective of fault-tolerant systems: if we can keep the number of state bits small,45

we can also reduce the overall complexity of the system, which in turn makes it easier46

to use highly reliable components for an implementation.47

Once we have algorithms that only need a small number of bits to encode the48

local state of a node, we also get algorithms that use small messages: the nodes can49

simply broadcast their entire state to everyone. Our main result is summarised in the50

following theorem; here f -resilient means that we can tolerate up to f faulty nodes:51

Theorem 1.1. For any integers c, n > 1 and f < n/3, there exists a deterministic52

f -resilient synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and53

uses O(log2 f + log c) bits to encode the state of a node.54

Our main technical contribution is a recursive construction that shows how to55

“amplify” the resilience of a synchronous counting algorithm. Given a synchronous56

counter for some values of n and f , we will show how to design synchronous counters57

for larger values of n and f , with a very small increase in time and state complexity.58

This has two direct applications:59

1. From a practical perspective, we can apply existing computer-designed algo-60

rithms (e.g. n = 4 and f = 1) as a building block in order to design efficient61

deterministic algorithms for a moderate number of nodes (e.g., n = 36 and62

f = 7).63

2. From a theoretical perspective, we can design deterministic algorithms for64

synchronous counting for any n and any f < n/3, with a stabilisation time of65

Θ(f), and with only O(log2 f) bits of state per node.66

The state complexity and message size is an exponential improvement over prior work,67

and the stabilisation time is asymptotically optimal for deterministic algorithms [20].68

Reducing communication after stabilisation.. In our deterministic algorithms, each69

node only needs to store a few number of bits between consecutive rounds, and thus,70

a node can e.g. afford to broadcast its entire state to all other nodes in each round.71

Moreover, we present a technique to reduce the number of communicated bits further.72

We give a deterministic construction in which after stabilisation each node broad-73

casts O(1 +B logB) bits every κ rounds, where B = O(log c/ log κ), for an essentially74

unconstrained choice of κ, at the expense of additively increasing the stabilisation75

time by O(κ). In particular, for the special case of optimal resilience and polynomial76

counter size, we obtain the following result.77

Corollary 1.2. For any n > 1 and c = nO(1) that is an integer multiple of78

n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience79

f = b(n− 1)/3c, stabilises in Θ(n) rounds, requires O(log2 n) bits to encode the state80

of a node, and for which after stabilisation correct nodes broadcast aysmptotically81

optimal O(1) bits per Θ(n) rounds.82
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We remark that in the above result we simply reduce the frequency of com-83

munication and the size of messages instead of e.g. bounding the number of nodes84

communicating in any given round (known as broadcast efficiency) [28]. In our85

work, we exploit synchrony after stabilisation to schedule communication, and thus,86

our approach is to be contrasted with attempting to reduce the total number of87

communication partners or communicating nodes after stabilisation [9, 10,28].88

Reducing the number of messages.. To substantiate the conjecture that finding89

algorithms with small state complexity may lead to highly communication-efficient90

solutions, we proceed to consider a slightly stronger synchronous pulling model. In91

this model, a node may send a request to another node and receive a response in92

a single round, based on the state of the responding node at the beginning of the93

round. The cost for the exchange is then attributed to the pulling node; in a circuit,94

this translates to each node being assigned an energy budget that it uses to “pay”95

for the communication it triggers. In this model, it is straightforward to combine96

our recursive construction used in Theorem 1.1 with random sampling to obtain the97

following results:98

1. We can achieve the same asymptotic running time and state complexity as99

the deterministic algorithm from Theorem 1.1 with each node pulling only100

polylog n messages in each round. The price is that the resulting algorithm101

retains a probability of n− polylogn to fail in each round even after stabilisation102

and that the resilience is f < n/(3 + γ) for any constant γ > 0.103

2. If the failing nodes are chosen independently of the algorithm, we can fix the104

random choices. This results in a pseudorandom algorithm which stabilises105

with a probability of 1− n− polylogn and in this case keeps counting correctly.106

1.2. Our Approach. Most prior deterministic algorithms for synchronous count-107

ing and closely-related problems utilise consensus protocols [14,22]. Indeed, if we ignore108

space and communication, reductions exist both ways showing that the problems are109

more or less equivalent [12]; see Section 2 for further discussion on prior work.110

However, to construct fast space- and communication-efficient counters, we are111

facing a chicken-and-egg problem:112

• From counters to consensus: If the correct nodes could agree on a counter,113

they could jointly run a single instance of synchronous consensus.114

• From consensus to counters: If the nodes could run a consensus algorithm,115

they could agree on a counter.116

A key step to circumvent this obstacle is the following observation:117

• From unreliable counters to consensus: If the correct nodes can agree118

on a counter at least for a while, they can jointly run a single instance of119

consensus.120

• From consensus to reliable counters: Consensus can be then used to121

facilitate agreement on the output counter, and it is possible to maintain122

agreement even if the underlying unreliable counters fail later on.123

The task of constructing counters that are correct only once in a while is easier; in124

particular, it does not require that we solve consensus in the process. As our main125

technical result, we show how to “amplify” the resilience f , at a cost of losing some126

guarantees:127

• Input: Two counters with a small f ; guaranteed to work permanently after128

stabilisation.129

• Output: A counter with a large f ; guaranteed to work only once in a while.130

This can be then used to jointly run a single instance of consensus and stabilise the131
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Table 1
Summary of counting algorithms for the case c = 2. For randomised algorithms, we list the

expected stabilisation time. (∗) The solution from [4] relies on a shared coin—details vary, but all
known shared coins with large resilience require large states and messages.

resilience stabilisation time state bits deterministic reference

f < n/3 O(1) nO(1) no [4] (∗)

f < n/3 O(f) O(f log f) yes [14]

f < n/3 22(n−f) 2 no [17,18]

f < n/3 min
{
22f+2 + 1, 2O(f2/n)

}
1 no [13]

f = 1, n ≥ 4 7 2 yes [13]

f = n1−o(1) O(f) O(log2 f/ log log f) yes [26]

f < n/3 O(f) O(log2 f) yes this work

output. We show how to obtain such a counter based on simple local consistency132

checks, timeouts, and threshold voting.133

In the end, a recursive application of this scheme allows us to build space-efficient134

counting algorithms for any n with optimal resilience. At each level of recursion, we135

only need to run a single instance of consensus. As there will be O(log f) levels of136

recursion, in total each node participates in only O(log f) consensus instances.137

1.3. Structure. Section 2 reviews prior work on impossibility results and count-138

ing algorithms. Section 3 provides a formal description of the basic model of computa-139

tion and the synchronous counting problem. Section 4 gives the main technical result140

on resilience boosting, and Section 5 applies it to construct fast and communication-141

efficient algorithms. Section 6 shows how to reduce the number of bits communicated142

during and after stabilisation. Section 7 discusses the pulling model and randomised143

sampling.144

2. Related Work. In this section, we first overview impossibility results related145

to counting, and then discuss both deterministic and randomised algorithms for the146

counting problem.147

Impossibility results.. As mentioned, counting is closely related to consensus as148

reductions exist both ways [12]: consensus can be solved in time O(T ) tolerating f149

faults if and only if counting can be solved in time O(T ) tolerating f faults.150

With this equivalence in mind, several impossibility results for consensus directly151

hold for counting as well. First, consensus cannot be solved in the presence of n/3 or152

more Byzantine failures [27]. Second, any deterministic f -resilient consensus algorithm153

needs to run for at least f + 1 communication rounds [20]. Third, it is known that the154

connectivity of the communication network must be at least 2f + 1 [11]. Finally, any155

consensus algorithm needs to communicate at least Ω(nf) bits in total [16].156

In terms of communication complexity, no better bound than Ω(nf) on the157

total number of communicated bits is known. While non-trivial for consensus, this158

bound turns out to be trivial for deterministic counting algorithms: a self-stabilising159

algorithm needs to verify its output, and to do that, each of the n nodes needs to160

receive information from at least f + 1 = Ω(f) other nodes to be certain that some161

other non-faulty node has the same output value. Similarly, no non-constant lower162

bounds on the number of state bits nodes are known; however, a non-trivial constant163

lower bound for the case f = 1 is known [13].164
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Prior algorithms.. There are several algorithms to the synchronous counting165

problem, with different trade-offs in terms of resilience, stabilisation time, space166

complexity, communication complexity, and the use of random bits. For a brief167

summary, see Table 1.168

Designing space-efficient randomised algorithms for synchronous counting is fairly169

straightforward [13,17,18]: for example, the nodes can simply choose random states170

until a clear majority of nodes has the same state, after which they start to follow171

the majority. Likewise, given a shared coin, one can quickly reach agreement by172

defaulting to the coin whenever no clear majority is observed [4]. However, existing173

highly-resilient shared coins are very inefficient in terms of communication or need174

additional assumptions, such as private communication links between correct nodes.175

Less resilient shared coins are easier to obtain: resilience Θ(
√
n) is achieved by each176

node announcing the outcome of an independent coin flip and locally outputting the177

(observed) majority value. In addition, Ω(n/ log2 n)-resilient Boolean functions give178

fast communication-efficient coins [1]. Designing quickly stabilising algorithms that179

are both communication-efficient and space-efficient has turned out to be a challenging180

task [13–15], and it remains open to what extent randomisation can help in designing181

such algorithms.182

In the case of deterministic algorithms, algorithm synthesis has been used for183

computer-aided design of optimal algorithms with resilience f = 1, but the approach184

does not scale due to the extremely fast-growing space of possible algorithms [13]. In185

general, many fast-stabilising algorithms build on a connection between Byzantine186

consensus and synchronous counting, but require a large number of states per node [14]187

due to, e.g., running a large number of consensus instances in parallel. Recently, in188

one of the preliminary conference reports [26] this paper is based on, we outlined a189

recursive approach where each node needs to participate in only O(log f/ log log f)190

parallel instances of consensus. However, this approach resulted in suboptimal resilience191

of f = n1−o(1).192

Finally, we note that while counting algorithms are usually designed for the case193

of a fully-connected communication topology, the algorithms can be extended to use194

in a variety of other graph classes with high enough connectivity [13].195

Related problems.. Boczkowski et al. [7] study the synchronous c-counting problem196

(under the name self-stabilising clock synchronisation) with O(
√
n) Byzantine faults197

in a stochastic communication setting that resembles the pulling model we consider198

in Section 7. However, their communication model is much more restricted: in every199

round, each node interacts with at most constantly many nodes which are chosen200

uniformly at random. Moreover, nodes only exchange messages of size O(log c) bits.201

Without Byzantine (or other types of permanent) faults, self-stabilising counters202

and digital clocks have been studied as the self-stabilising unison problem [2, 8, 21].203

However, unlike in the fully-connected setting considered in this work, the underlying204

communication topology in the unison problem is typically assumed to be an arbitrary205

graph. In our model, in absence of permanent faults the problem becomes trivial, as206

nodes may simply reproduce the clock of a predetermined leader. The unison problem207

has also been studied in asynchronous models [8, 19]; this variant is also known as208

self-stabilising synchronisers [3].209

3. Preliminaries. In this section, we define the model of computation and the210

counting problem.211

3.1. Model of Computation. We consider a fully-connected synchronous message-212

passing network. That is, our distributed system consists of a network of n nodes,213
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where each node is a state machine and has communication links to all other nodes in214

the network. All nodes have a unique identifier from the set [n] = {0, 1, . . . , n − 1}.215

The computation proceeds in synchronous communication rounds. In each round, all216

nodes perform the following in a lock-step fashion:217

1. broadcast a single message to all nodes,218

2. receive messages from all nodes, and219

3. update the local state.220

We assume that the initial state of each node is arbitrary and there are up to221

f Byzantine nodes. A Byzantine node may have arbitrary behaviour, that is, it222

can deviate from the protocol in any manner. In particular, the Byzantine nodes223

can collude together in an adversarial manner and a single Byzantine node can send224

different messages to different correct nodes.225

Algorithms.. Formally, we define an algorithm as a tuple A = 〈X, g, p〉, where226

X is the set of all states any node can have, g : [n]×Xn → X is the state transition227

function, and p : [n] ×X → [c] is the output function. At each round when node v228

receives a vector x = 〈x0, . . . , xn−1〉 ∈ Xn of messages, node v updates it state to229

g(v,x) and outputs p(v, xv). As we consider c-counting algorithms, the set of output230

values is the set [c] = {0, 1, . . . , c− 1} of counter values.231

The tuples passed to the state transition function g are ordered according to the232

node identifiers. Put otherwise, the nodes can identify the sender of a message—this233

is frequently referred to as source authentication. Moreover, in the basic model, we234

assume that all nodes simply broadcast their state to all other nodes. Thus, the set of235

messages is the same as the set of possible states.236

Executions.. For any set of F ⊆ [n] of faulty nodes, we define a projection πF that237

maps any state vector x ∈ Xn to a configuration πF (x) = e, where ev = ∗ if v ∈ F238

and ev = xv otherwise. That is, the values given by Byzantine nodes are ignored239

and a configuration consists of only the states of correct nodes. A configuration d240

is reachable from configuration e if for every correct node v /∈ F there exists some241

x ∈ Xn satisfying πF (x) = e and g(v,x) = dv. An execution of an algorithm A is242

an infinite sequence of configurations ξ = 〈e0, e1 . . . , 〉 where configuration er+1 is243

reachable from configuration er.244

3.2. Synchronous Counters and Complexity Measures. We say that an245

execution ξ = 〈e0, e1 . . . , 〉 of a counting algorithm A stabilises in time T if there is246

some k ∈ [c] such that for every correct node v ∈ [n] \ F it holds that247

p(v, eT+r,v) = r − k mod c for all r ≥ 0,248

where eT+r,v ∈ X is the state of node v in round T + r.249

An algorithm A is said to be a synchronous c-counter with resilience f that250

stabilises in time T , if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A251

stabilise within T rounds. In this case, we say that the stabilisation time T (A) of252

A is the minimal such T that all executions of A stabilise in T rounds. The state253

complexity of A is S(A) = dlog |X|e, that is, the number of bits required to encode254

the state of a node between subsequent rounds. For brevity, we will often refer to255

A(n, f, c) as the family of synchronous c-counters over n nodes with resilience f . For256

example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter (i.e. a binary counter) over 4257

nodes tolerating one failure.258

4. Boosting Resilience. In this section, we show how to use existing “small”259

synchronous counters to construct new “large” synchronous counters with a higher260
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resilience f and a larger number of nodes n; we call this resilience boosting. We will261

then apply the idea recursively, with trivial counters as a base case.262

4.1. Road Map. The high-level idea of resilience boosting is as follows. We263

start with counters that have a low resilience f ′ and use a small number of nodes n′.264

We use such counters to construct a new “weak” counter that has a higher resilience265

f > f ′ and a large number of nodes n > n′ but only needs to behave correctly once266

in a while for sufficiently long. Once such a weak counter exists, it can be used to267

provide consistent round numbers for long enough to execute a single instance of a268

high-resilience consensus protocol. This can be used to reach agreement on the output269

counter.270

Constructing the Weak Counter.. For clarity, we will use here the term strong271

counter to refer to a self-stabilising fault-tolerant counter in the usual sense, and the272

term weak counter to refer to a counter that behaves correctly once in a while. We273

assume that f ′-resilient strong counters for all f ′ < f already exist, and we show how274

to construct an f -resilient weak counter that behaves correctly for at least τ rounds.275

Put slightly more formally, a weak τ -counter satisfies the following property: there276

exists a round r such that for all correct nodes v, w ∈ V \ F satisfy277

• d(v, r) = d(w, r) and278

• d(v, r′) = d(v, r′ − 1) + 1 mod τ for all r′ ∈ {r + 1, . . . , r + τ − 1},279

where d(v, r) denotes the value of the weak counter at node v in round r. That is,280

eventually there will be τ consecutive rounds during which the (weak) counter values281

agree and are incremented by one modulo τ every round. However, after these τ282

rounds, the counters can behave arbitrarily.283

Let f0 + f1 + 1 = f and n0 + n1 = n. We take an f0-resilient strong 2τ -counter284

A0 with n0 nodes and an f1-resilient strong 6τ -counter A1 with n1 nodes, and use285

them to construct an f -resilient weak counter with n nodes.286

We partition n nodes in disjoint “blocks”: block 0 runs A0 with n0 nodes and287

block 1 runs A1 with n1 nodes. At least one of the algorithms will eventually stabilise288

and count correctly. The key challenge is making sure that eventually all correct nodes289

(in both blocks!) will follow the same correct counter, at least for τ rounds.290

To this end, each block maintains a leader pointer. The leader pointers are changed291

regularly: block 0 changes its leader pointer every τ rounds, and block 1 changes its292

leader pointer every 3τ rounds. If the leader pointers behave correctly, there will be293

regularly periods of τ rounds such that both of the leader pointers point to the same294

correct block.295

If we had reliable counters, block i could simply use the current value of counter296

Ai to determine the current value of its leader pointer. However, one of the counters297

might misbehave. As a remedy, each node v of block i checks if the output variable of298

counter Ai increases by 1 in each round. If not, it will consider Ai faulty for Θ(τ)299

rounds. The final output of a node is determined as follows:300

• If node v in block i thinks that Ai is faulty, it outputs the current value of301

counter A1−i.302

• Otherwise, it uses the current value of Ai to construct the leader pointer303

` ∈ {0, 1}, and it outputs the current value of counter A`.304

Note that the counter Ai might seem to be behaving in a faulty manner if there has305

not been enough time for Ai to stabilise. However, each node v of block i will consider306

a block to be faulty at most Θ(τ) rounds before checking again whether the output307

of Ai behaves consistently. Thus, if Ai eventually stabilises, then eventually node v308

stops considering Ai as faulty for good (at least until the next transient failure).309
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The above consistency check almost cuts it—except that two nodes w 6= v of block310

i may have different opinions on the current value of Ai. We clear this final hurdle311

by enlisting the help of all nodes for a majority vote on what the current value of Ai312

actually is. Essentially, we use threshold voting; this way all nodes that think that Ai313

behaves correctly will agree on a globally unique counter value αi for Ai.314

If, for example, block 0 contains at most f0 faulty nodes, all of this eventually315

entails the following:316

1. Counter A0 stabilises, counts correctly, and all correct nodes agree on its317

counter value α0.318

2. All correct nodes of block 0 think that block 0 is counting correctly. They319

use α0 to derive the value of the leader pointer. Once in 2τ rounds, when the320

2τ -counter α0 wraps around to 0, the pointer switches to 0, and the nodes321

will output the counter value α0 for τ rounds.322

3. Some correct nodes of block 1 may think that block 1 is counting correctly323

for Θ(τ) rounds. While this is the case, all of them agree on a value α1 that324

increases by 1 in each round. This value is used to derive the leader pointer325

of block 1. Once in 6τ rounds, when the 6τ -counter α1 wraps around to 0,326

the pointer will switch to 0, and the nodes will output the value of α0 for 3τ327

rounds (as the leader pointer does not change for 3τ rounds).328

4. Some correct nodes of block 1 may detect that block 1 is faulty. Such nodes329

will output the value of α0 for Θ(τ) rounds.330

5. In summary, eventually there will be τ consecutive rounds during which all331

correct nodes output the same counter value α0.332

The other case (block 1 has at most f1 faulty nodes) is analogous.333

Using the Weak Counter.. Now we have constructed a counter that will eventually334

produce a consistent output for at least τ rounds. We leverage this property to execute335

the phase king consensus protocol [6] to stabilise the output counters. The protocol336

will have the following crucial property: if all nodes agree on the output, then even if337

the round counter becomes inconsistent, the agreement on the output persists. Thus,338

it suffices for us that τ is large enough to enable the nodes to consistently execute the339

phase king algorithm once to reach agreement; τ = O(f) will do.340

The stabilisation time on each level is the maximum of the stabilisation times341

of counters Ai plus O(τ) = O(f); by choosing f1 ≈ f2 ≈ f/2, we can thus ensure342

an overall stabilisation time of O(f), irrespectively of the number of recursion levels.343

Formally, we prove the following theorem:344

Theorem 4.1. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,345

f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist346

synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a347

synchronous c-counter B ∈ A(n, f, c) that348

• stabilises in T (B) = max{T (A0), T (A1)}+O(f) rounds, and349

• has state complexity of S(B) = max{S(A0), S(A1)}+O(log f + log c) bits.350

We fix the notation of this theorem for the remainder of this section. More-351

over, for notational convenience we abbreviate T = max{T (A0), T (A1)} and S =352

max{S(A0), S(A1)}.353

4.2. Agreeing on a Common Counter (Once in a While). In this part, we354

construct a counter that will eventually count consistently at all nodes for τ rounds.355

The τ -counter then will be used as a common clock for executing the phase king356

algorithm.357
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We partition the set of nodes V = V0 ∪ V1 such that V0 ∩ V1 = ∅, |V0| = n0 and358

|V1| = n1. We refer to the set Vi as block i. For each i ∈ {0, 1}, the nodes in set Vi359

execute the algorithm Ai. In case block i has more than fi faults, we call the block i360

faulty. Otherwise, we say that block i is correct. By construction, at least one of the361

blocks is correct. Hence, there is a correct block i for which Ai stabilises within T362

rounds, that is, nodes in block i output a consistent ci-counter in rounds r ≥ T .363

Lemma 4.2. For some i ∈ {0, 1}, block i is correct.364

Proof. By choice of fi, we have f = f0 + f1 + 1. Hence, at least one of the sets Vi365

will contain at most fi faults.366

Next, we apply the typical threshold voting mechanism employed by most Byzan-367

tine tolerant algorithms in order to filter out differing views of counter values that are368

believed to be consistent. This is achieved by broadcasting candidate counter values369

and applying a threshold of n− f as a consistency check, which guarantees that at370

most one candidate value from the set [c] can remain. In case the threshold check fails,371

a fallback value ⊥ /∈ [c] is used to indicate an inconsistency. This voting scheme is372

applied for both blocks concurrently, and all nodes participate in the process, so we373

can be certain that fewer than one third of the voters are faulty.374

In addition to passing this voting step, we require that the counters also have375

behaved consistently over a sufficient number of rounds; this is verified by the obvious376

mechanism of testing whether the counter increases by 1 each round and counting the377

number of rounds since the last inconsistency was detected.378

In the following, nodes frequently examine a set of values, one broadcast by each379

node, and determine majority values. Note that Byzantine nodes may send different380

values to different nodes, that is, it may happen that correct nodes output different381

values from such a vote. We refer to a strong majority as at least n−f nodes supporting382

the same value, which is then called the majority value. If a node does not see a strong383

majority, it outputs the symbol ⊥ instead. Clearly, this procedure is well-defined for384

f < n/2.385

We will refer to this procedure as a majority vote, and slightly abuse notation by386

saying “majority vote” when, precisely, we should talk of “the output of the majority387

vote at node v”. Since we require that f < n/3, the following standard argument388

shows that for each vote, there is a unique value such that each node either outputs389

this value or ⊥.390

Lemma 4.3. If v, w ∈ V \ F both observe a strong majority, they output the same391

majority value.392

Proof. Fix any set A of n − f correct nodes. For v and w to observe strong393

majorities for different values, for each value A must contain n− 2f nodes supporting394

it. However, as correct nodes broadcast the same value to each node, this leads to the395

contradiction that |A| ≥ 2(n− 2f) = n− f + (n− 3f) > n− f = |A|.396

We now put this principle to use. In the following, we will use the notation397

x(v, r) to refer to the value of local variable x of node v in round r. As we consider398

self-stabilising algorithms, the nodes themselves are not aware of what is the value of399

r. We introduce the following local variables for each node v ∈ V , block i ∈ {0, 1},400

and round r > 0 (see Tables 2 and 3):401

• mi(v, r) stores the most frequent counter value in block i in round r, which402

is determined from the broadcasted output variables of Ai with ties broken403

arbitrarily,404

• Mi(v, r) stores the majority vote on mi(v, r − 1),405
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Table 2
The local state variables used in the boosting construction.

Variable Range Description

mi(v, r) [ci] the most frequent value observed for the Ai counter of block i
Mi(v, r) [ci] ∪ {⊥} the result of majority vote on mi(·, r − 1) values
wi(v, r) [c1 + 1] “cooldown counter” that is reset if block i behaved inconsistently

di(v, r) [ci] ∪ {⊥} observation on what seems to be the counter output of block i
`i(v, r) {0, 1,⊥} the value of the “leader pointer” for block i
`(v, r) {0, 1,⊥} leader pointer used by node v
d(v, r) [τ ] once-in-a-while round counter for clocking phase king

a(v, r) [c] ∪ {∞} the output of the new c-counter we are constructing
b(v, r) {0, 1} helper variable for the phase king algorithm

Table 3
Behaviour of local state variables; pointers switch once in 3iτ rounds.

Variable Block i is correct Block i is faulty

mi(v, r) consistent counter arbitrary values
Mi(v, r) consistent counter ⊥ or some consistent value
di(v, r) consistent counter ⊥ or some consistent counter
`i(v, r) consistent pointer ⊥ or some consistent pointer

• wi(v, r) is a cooldown counter which is reset to 2c1 whenever the node perceives406

the counter of block i behaving inconsistently, that is, Mi(v, r) 6= Mi(v, r −407

1) + 1 mod ci. Note that this test will automatically fail if either value is ⊥.408

Otherwise, if the counter behaves consistently, wi(v, r) = max{wi(v, r − 1)−409

1, 0}.410

Clearly, these variables can be updated based on the local values from the previous411

round and the states broadcasted at the beginning of the current round. This requires412

nodes to store O(log ci) = O(log f) bits.413

Furthermore, we define the following derived variables for each v ∈ V , block414

i ∈ {0, 1}, and round r (see Tables 2 and 3):415

• di(v, r) = Mi(v, r) if wi(v, r) = 0, otherwise di(v, r) = ⊥,416

• `i(v, r) =
⌊
di(v, r)/(3

iτ)
⌋

if di(v, r) 6= ⊥, otherwise `i(v, r) = ⊥,417

• for v ∈ Vi, `(v, r) = `i(v, r) if `i(v, r) 6= ⊥, otherwise `(v, r) = `1−i(v, r), and418

• d(v, r) = d`(v,r)(v, r) mod τ if `(v, r) 6= ⊥, otherwise d(v, r) = 0.419

These can be computed locally, without storing or communicating additional values.420

The variable `(v, r) indicates the block that node v currently considers leader. Note421

that some nodes may use `0(·, r) as the leader pointer while some other nodes may422

use `1(·, r) as the leader pointer, but this is fine:423

• all nodes v that use `(v, r) = `0(v, r) observe the same value `0(·, r) 6= ⊥,424

• all nodes w that use `(w, r) = `1(w, r) observe the same value `1(·, r) 6= ⊥,425

• eventually `0(·, r) and `1(·, r) will point to the same correct block for τ rounds.426

We now verify that `(v, r) indeed has the desired properties. To this end, we427

analyse di(v, r). We start with a lemma showing that eventually a correct block’s428

counter will be consistently observed by all correct nodes.429

Lemma 4.4. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F , and430
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rounds r ≥ R = T +O(f) it holds that di(v, r) = di(w, r) and di(v, r) = di(v, r − 1) +431

1 mod ci.432

Proof. Since block i is correct, algorithm Ai stabilises within T (Ai) rounds. As433

fi < ni/3, we will observe correctly mi(v, r+1) = mi(v, r)+1 mod ci for all r ≥ T (Ai).434

Consequently, Mi(v, r + 1) = Mi(v, r) + 1 mod ci for all r ≥ T (Ai) + 1. Therefore,435

wi(v, r) cannot be reset in rounds r ≥ T (Ai) + 2, yielding that wi(v, r) = 0 for all436

r ≥ T (Ai) + 2 + 2c1 = T + O(f). The claim follows from the definition of variable437

di(v, r).438

The following lemma states that if a correct node v does not detect an error in439

a block’s counter, then any other correct node w that considers the block’s counter440

correct in any of the last 2c1 rounds has a counter value that agrees with v.441

Lemma 4.5. Suppose for i ∈ {0, 1}, v ∈ V \ F , and r ≥ 2c1 = O(f) it holds that442

di(v, r) 6= ⊥. Then for each w ∈ V \ F and each r′ ∈ {r − 2c1 + 1, . . . , r} either443

• di(w, r′) = di(v, r)− (r − r′) mod ci, or444

• di(w, r′) = ⊥.445

Proof. Suppose di(w, r
′) 6= ⊥. Thus, di(w, r

′) = Mi(w, r
′) 6= ⊥. By Lemma 4.3,446

either Mi(v, r
′) = ⊥ or Mi(v, r

′) = Mi(w, r
′). However, Mi(v, r

′) = ⊥ would imply447

that wi(v, r
′) = 2c1 and thus448

wi(v, r) ≥ wi(v, r′) + r′ − r = 2c1 + r′ − r > 0,449

contradicting the assumption that di(v, r) 6= ⊥. Thus, Mi(v, r
′) = Mi(w, r

′) =450

di(w, r
′). More generally, we get from r−r′ < 2c1 and wi(v, r) = 0 that wi(v, r

′′) 6= 2c1451

for all r′′ ∈ {r′, . . . , r}. Therefore, we have that Mi(v, r
′′ + 1) = Mi(v, r

′′) + 1 mod c452

for all r′′ ∈ {r′, . . . , r − 1}, implying453

di(v, r) = Mi(v, r) = Mi(v, r
′) + r − r′ = di(w, r

′) + r − r′,454

proving the claim of the lemma.455

The above properties allow us to prove a key lemma: within T + O(f) rounds,456

there will be τ consecutive rounds during which the variable `(v, r) points to the same457

correct block for all correct nodes.458

Lemma 4.6. Let R be as in Lemma 4.4. There is a round r ≤ R+O(f) = T+O(f)459

and a correct block i so that for all v ∈ V \ F and r′ ∈ {r, . . . , r + τ − 1} it holds that460

`(v, r′) = i.461

Proof. By Lemma 4.2, there exists a correct block i. Thus by Lemma 4.4, variable462

di(v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R+ci−1}463

such that some v ∈ V \ F has `1−i(v, r) 6= ⊥, then `(v, r) = `i(v, r) for all such v and464

r and the claim of the lemma holds true by the definition of `i(v, r) and the fact that465

di(v, r) counts correctly and consistently.466

Hence, assume that r0 ∈ {R, . . . , R + ci − 1} is minimal with the property that467

there is some v ∈ V \ F so that `1−i(v, r0) 6= ⊥. Therefore, d1−i(v, r0) 6= ⊥ and, by468

Lemma 4.5, this implies for all w ∈ V \F and all r ∈ {r0, . . . , r0 + 2c1− 1} that either469

d1−i(w, r) = ⊥ or d1−i(w, r) = d1−i(v, r0) + r − r0. In other words, there is a “virtual470

counter” that equals d1−i(v, r0) in round r0 so that during rounds {r0, . . . , r0+2c1−1}471

all d1−i(·, ·) variables that are not ⊥ agree with this counter.472

Consequently, it remains to show that both `i and the variable `1−i derived473

from this virtual counter are equal to i for τ consecutive rounds during the interval474
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I = {r0, . . . , r0 + 2c1 − 1}, as then `(v, r′) = i for v ∈ V \ F and all such rounds r′.475

Clearly, the c1-counter consecutively counts from 0 to c1 − 1 at least once during476

the interval I = {r0, . . . , r0 + 2c1 − 1}. Recalling that c1 = 6τ , we see that `1(v, r) = i477

for all v ∈ V \ F with `1(v, r) 6= ⊥ for some interval I1 ⊂ I of 3τ consecutive478

rounds. As c0 = 2τ , we have that `0(v, r) = i for all v ∈ V \ F with `0(v, r) 6= ⊥479

for τ consecutive rounds during this subinterval I1. Thus, we have an interval480

I0 = {r, . . . , r+ τ − 1} ⊆ I1 such that for all r′ ∈ I0 we have `0(v, r′), `1(v, r′) ∈ {i,⊥}481

and `0(v, r′) 6= ⊥ or `1(v, r′) 6= ⊥ yielding `(v, r′) = i for each correct node. Because482

r < r0 + 2c1 − 1 < R+ 3c1 = T +O(f), this completes the proof.483

Using the above lemma, we get a counter where all nodes eventually count correctly484

and consistently modulo τ for at least τ rounds.485

Corollary 4.7. There is a round r = T + O(f) so that for all v, w ∈ V \ F it486

holds that487

1. d(v, r) = d(w, r) and488

2. for all r′ ∈ {r + 1, . . . , r + τ − 1} we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .489

Proof. By Lemma 4.6, there is a round r = T +O(f) and a correct block i such490

that for all v ∈ V \ F we have `(v, r′) = i for all r′ ∈ {r, . . . , r+ τ − 1}. Moreover, r is491

sufficiently large to apply Lemma 4.4 to di(v, r
′) = d(v, r′) for r′ ∈ {r+1, . . . , r+τ−1},492

yielding the claim.493

4.3. Reaching Consensus. Corollary 4.7 guarantees that all correct nodes494

eventually agree on a common counter for τ rounds, i.e., we have a weak counter. We495

will now use the weak counter to construct a strong counter.496

Our construction uses a non-self-stabilising consensus algorithm. The basic idea497

is that the weak counter serves as the “round counter” for the consensus algorithm.498

Hence we will reach agreement as soon as the weak counter is counting correctly. The499

key challenge is to make sure that agreement persists even if the counter starts to500

misbehave. It turns out that a straightforward adaptation of the classic phase king501

protocol [6] does the job. The algorithm has the following properties:502

• the algorithm tolerates f < n/3 Byzantine failures,503

• the running time of the algorithm is O(f) rounds and it uses O(log c) bits of504

state,505

• if node k is correct, then agreement is reached if all correct nodes execute506

rounds 3k, 3k + 1, and 3k + 2 consecutively in this order,507

• once agreement is reached, it will persist even if nodes execute different rounds508

in arbitrary order.509

We now describe the modified phase king algorithm that will yield a c-counting510

algorithm. Denote by a(v, r) ∈ [c] ∪ {∞} the output value of the algorithm at round511

r. Here ∞ is used as a “reset state” similarly to ⊥ in the previous section. There is512

also an auxiliary binary value b(v, r) ∈ {0, 1}. Define the following short-hand for the513

increment operation modulo c:514

x⊕ 1 =

{
x+ 1 mod c if x 6=∞,
∞ if x =∞.

515

For k ∈ [f + 2], we define the instruction sets listed in Table 4. Recall that in516

the model of computation that we use in this work, in each round all nodes first517

broadcast their current state (in particular, the current value of a), then they receive518

the messages, and finally they update their local state. The instruction sets pertain to519
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Table 4
The instruction sets for node v ∈ V in the phase king protocol.

Set Instructions for round r > 0

I3k: 0a. If fewer than n− f nodes sent a(v, r − 1), set a(v, r) =∞.
0b. Otherwise, a(v, r) = a(v, r − 1)⊕ 1.

I3k+1: 1a. Let zj = |{u ∈ V : a(u, r − 1) = j}| be the number of j values received.
1b. If za(v,r−1) ≥ n− f , set b(v, r) = 1. Otherwise, set b(v, r) = 0.
1c. Let z = min{j : zj > f}.
1d. Set a(v, r) = z ⊕ 1.

I3k+2: 2a. If a(v, r − 1) =∞ or b(v, r − 1) = 0, set a(v, r) = min{c− 1, a(k, r − 1)} ⊕ 1.
2b. Otherwise, a(v, r) = a(v, r − 1)⊕ 1.
2c. Set b(v, r) = 1.

the final part—how to update the local state variables a and b based on the messages520

received from the other nodes.521

First, we show that if the instruction sets are executed in the right order by all522

correct nodes for a correct leader node k ∈ [f + 2], then agreement on a counter value523

is established.524

Lemma 4.8. Suppose that for some correct node k ∈ [f + 2] and a round r > 2, all525

non-faulty nodes execute instruction sets I3k, I3k+1, and I3k+2 in rounds r − 2, r − 1,526

and r, respectively. Then a(v, r) = a(u, r) 6= ∞ for any two correct nodes u, v ∈ V .527

Moreover, b(v, r + 1) = 1 at each correct node v ∈ V .528

Proof. This is essentially the correctness proof for the phase king algorithm.529

Without loss of generality, we can assume that the number of faulty nodes is exactly530

f . Since we have f < n/3, it is not possible that two correct nodes u, v ∈ V \ F531

both satisfy a(v, r − 2) 6= a(u, r − 2) and a(v, r − 2), a(u, r − 2) ∈ [c]: otherwise, on532

round r−2, nodes u and v would have observed different majority values contradicting533

Lemma 4.3. Therefore, there exists some x ∈ [c] such that a(v, r − 2) ∈ {x,∞} for all534

v ∈ V \F . Checking I3k+1 we get that a(v, r− 1) ∈ {x+ 1 mod c,∞}, as no node can535

see values other than x or ∞ more than f times when executing instruction 1c.536

To prove the claim, it remains to consider two cases when executing instructions537

in I3k+2. In the first case, all non-faulty nodes execute instruction 2a on round r.538

Then a(u, r) = a(v, r) = min{c− 1, a(k, r − 1)} ⊕ 1 ∈ [c] for any u, v ∈ V \ F .539

In the second case, there is some node v not executing instruction 2a. Hence,540

a(v, r − 1) 6=∞ and b(v, r − 1) = 1, implying that v computed za(v,r−2) ≥ n− f on541

round r − 1. Consequently, at least n− 2f > f correct nodes u satisfy a(u, r − 2) =542

a(v, r−2) 6=∞. We can now infer that a(u, r−1) = a(v, r−1) = a(v, r−2)+1 mod c for543

all correct nodes u: instruction 1c must evaluate to a(v, r−1) ∈ [c] at all correct nodes,544

because we know that no correct node u satisfies that both a(u, r − 2) 6= a(v, r − 2)545

and a(u, r − 2) 6=∞. This implies that a(u, r) = a(v, r) 6=∞ for all correct nodes u,546

regardless of whether they execute instruction 2a. Trivially, b(v, r) = 1 at each correct547

node v due to instruction 2c.548

Next, we argue that once agreement is established, it persists—it does not matter549

any more which instruction sets are executed.550

Lemma 4.9. Assume that a(v, r) = x ∈ [c] and b(v, r) = 1 for all correct nodes v551

in some round r. Then a(v, r + 1) = x+ 1 mod c and b(v, r + 1) = 1 for all correct552
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nodes v.553

Proof. Each node observes at least n− f nodes with counter value x ∈ [c], and554

hence at most f nodes with some value y 6= x. Let v be a correct node and consider555

all possible instruction sets it may execute.556

First, consider the case where instruction set I3k is executed. In this case, v557

increments x, resulting in a(v, r + 1) = x + 1 mod c and b(v, r + 1) = 1. Second,558

executing I3k+1, node v evaluates zx ≥ n− f and zy ≤ f for all y 6= x. Hence it sets559

b(v, r + 1) = 1 and a(v, r + 1) = x+ 1 mod c. Finally, when executing I3k+2, node v560

skips instruction 2a and sets a(v, r + 1) = x+ 1 mod c and b(v, r + 1) = 1.561

4.4. Proof of Theorem 4.1. We now have all the building blocks to devise562

an f -resilient c-counter running on n nodes. The idea is as follows: first, we use563

the construction given in Section 4.2 to get a weak τ -counter that eventually counts564

correctly for τ = 3(f + 2) rounds. Concurrently, all nodes execute the modified phase565

king algorithm given in Section 4.3 which by Lemma 4.8 and Lemma 4.9 guarantees566

that all nodes will establish and maintain agreement on the output variable for the567

c-counter.568

Theorem 4.1. Let c, n > 1 and f < n/3. Define n0 = bn/2c, n1 = dn/2e,569

f0 = b(f − 1)/2c, f1 = d(f − 1)/2e, and τ = 3(f + 2). If for i ∈ {0, 1} there exist570

synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists a571

synchronous c-counter B ∈ A(n, f, c) that572

• stabilises in T (B) = max{T (A0), T (A1)}+O(f) rounds, and573

• has state complexity of S(B) = max{S(A0), S(A1)}+O(log f + log c) bits.574

Proof. First, we apply the construction underlying Corollary 4.7. Then we have575

every node v ∈ V in each round r execute the instructions for round d(v, r) of576

the phase king algorithm from Section 4.3. It remains to show that this yields a577

correct algorithm B with stabilisation time T (B) = T +O(f) and state complexity578

S(B) = S +O(log f + log c), where T = max{T (Ai)} and S = max{S(Ai)}.579

By Corollary 4.7, there exists a round r = T +O(f) so that the variables d(v, r)580

behave as a consistent τ -counter during rounds {r, . . . , r + τ − 1} for all v ∈ V \ F .581

As there are at most f faulty nodes, there exist at least two correct nodes v ∈ [f + 2].582

Since τ = 3(f + 2), then for at least one correct node k ∈ [f + 2] \ F , there is a583

round r ≤ rk ≤ r + τ − 3 such that d(w, rk + h) = 3k + h for all w ∈ V \ F and584

h ∈ {0, 1, 2}. Therefore, by Lemma 4.8 and Lemma 4.9, the output variables satisfy585

a(v, r′) = a(w, r′) ∈ [c] for all correct nodes and rounds r′ ≥ rk + 3. Thus, the586

algorithm stabilises in rv + 3 ≤ r + τ = r +O(f) = T +O(f) rounds.587

The bound for the state complexity follows from the facts that, at each node, we588

need at most S bits to store the state of Ai and O(log τ + log c) = O(log f + log c)589

bits to store the variables listed in Table 2.590

5. Deterministic Counting. In this section, we use the construction given in591

the previous section to obtain algorithms that only need a small number of state bits.592

Essentially, all that remains is to recursively apply Theorem 4.1. Each step of the593

recursion roughly doubles the resilience in an optimal manner: if we start with an594

optimally resilient algorithm, we get a new algorithm with higher, but still optimal,595

resilience. Therefore, to get any desired resilience of f > 0, it suffices to repeat the596

recursion for Θ(log f) many steps. Figure 1 illustrates how we can recursively apply597

Theorem 4.1.598

We now analyse the correctness, time and state complexity of the resulting599

algorithms.600
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A(8, 2)

A(8, 2)

A(16, 5)

Fig. 1. An example on how to recursively construct a 5-resilient algorithm running on 16 nodes.
The small circles represent the nodes. Each group of four nodes runs a 1-resilient counter A(4, 1).
On top of this, each larger group of 8 nodes runs a 2-resilient counter A(8, 2) attained from the
first step of recursion. At the top-most layer, all of the 16 nodes run a 5-resilient counter A(16, 5).
Faulty nodes are black and faulty blocks are gray.

Theorem 1.1. For any integers c, n > 1 and f < n/3, there exists a deterministic601

f -resilient synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and602

uses O(log2 f + log c) bits to encode the state of a node.603

Proof. We show the claim by induction on f . The induction hypothesis is that604

for all f > f ′ ≥ 0, c > 1, and n′ > 3f ′, we can construct B ∈ A(f ′, n′, c) with605

T (B) ≤ 1 + αf ′
dlog f ′e∑
k=0

(1/2)k and S(B) ≤ β(log2 f ′ + log c),606

where α and β are sufficiently large constants and for f ′ = 0 the sum is empty, that is,607

T (B) ≤ 1. As
∑∞
k=0(1/2)k = 2, the time bound will be O(f ′).608

Note that for f ≥ 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can609

easily generalise to any n > n(f) by running B on the first n(f) nodes and letting610

the remaining nodes follow the majority counter value among the first n(f) nodes611

executing the algorithm; this increases the stabilisation time by one round and induces612

no memory overhead.613

For the base case, observe that a 0-resilient c-counter of n(0) = 1 node is trivially614

given by the node having a local counter. It stabilises in 0 rounds and requires dlog ce615

state bits. As pointed out above, this implies a 0-resilient c-counter for any n with616

stabilisation time 1 and dlog ce bits of state.617

For the inductive step to f , we apply Theorem 4.1 with the parameters n0 = bn/2c,618

n1 = dn/2e, f0 = b(f − 1)/2)c, f1 = d(f − 1)/2)e, τ = 3(f + 2) and ci = 3i · 2τ . Since619

fi ≤ f/2 and ni > 3fi, for i ∈ {0, 1}, the induction hypothesis gives us algorithms620

Ai(ni, fi, ci). Now by applying Theorem 4.1 we get an algorithm B with621

T (B) = max{T (A0), T (A1)}+O(f)622

≤ 1 +
αf

2

dlog f/2e∑
k=0

(
1

2

)k
+O(f)623

= 1 + αf

dlog fe∑
k=1

(
1

2

)k
+O(f)624

≤ 1 + αf

dlog fe∑
k=0

(
1

2

)k
,625

626
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where in the second to last step we use that α is a sufficiently large constant. Since627

the sum is at most 2, we get that T (B) = O(f). Moreover, the state complexity is628

bounded by629

S(B) = max{S(A0), S(A1)}+O(log f + log c)630

≤ β
(

log2 f

2
+ log

f

2

)
+O(log f + log c)631

≤ β
(
log2 f + log c

)
,632633

where we exploit that β is a sufficiently large constant. Hence, S(B) = O(log2 f+log c),634

the induction step succeeds, and the proof is complete.635

6. Reducing the Number of Bits Communicated. In this section, we dis-636

cuss how to reduce the number of bits broadcast by a node after stabilisation. We637

consider the following extension of the model of computation: instead of a node always638

broadcasting its current state, we allow it to broadcast an arbitrary message (including639

an empty message) each round. Formally, this entails that we extend the definition of640

an algorithm by (1) introducing a new function µ : [n]×X →M that maps the current641

state x to a message µ(x) which is broadcast and (2) modify the state transition642

function to map the old internal state and the vector of received messages to a new643

state, that is, the new state transition function has the form g′ : [n]×X ×Mn → X.644

First, we show how to construct counters that only send O(1 +B logB) bits every645

κ rounds, where B = O(log c/ log κ), while increasing the stabilisation time only by646

an additive O(κ) term, where κ = Ω(f) is a parameter. In particular, we show that647

for polynomial-sized counters with optimal resilience, the algorithm only needs to648

communicate an asymptotically optimal number of bits after stabilisation:649

Corollary 6.1. For any n > 1 and c = nO(1) that is an integer multiple of650

n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience651

f = b(n− 1)/3c, stabilises in Θ(n) rounds, requires O(log2 n) bits to encode the state652

of a node, and for which after stabilisation correct nodes broadcast aysmptotically653

optimal O(1) bits per Θ(n) rounds.654

We start by outlining the high-level idea of the approach, then give a detailed655

description of the construction we use, and finally prove the main results of this section.656

6.1. High-Level Idea. The techniques we use are very similar to the ones we657

used for deriving Theorem 1.1. Essentially, we devise a “silencing wrapper” for658

algorithms given by Theorem 1.1. Let A be such a counting algorithm. The high-level659

idea and the key ingredients are the following:660

• The goal is that nodes eventually become happy : they assume stabilisation661

has occured and check for counter consistency only every κ rounds (as self-662

stabilising algorithms always need to verify their output).663

• Happy nodes do not execute the underlying algorithm A.664

• Using a cooldown counter with similar effects as shown in Lemma 4.5, we665

enforce that all happy nodes output consistent counters.666

• We override the phase king instruction of A if at least n− 2f ≥ f + 1 nodes667

claim to be happy and propose a counter value x. In that case nodes adjust668

their counter output to match x. If there is no strong majority of happy nodes669

supporting a counter value, either all nodes become unhappy or all correct670

nodes reach agreement and start counting correctly.671
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• If all correct nodes are unhappy, they execute A “as is” reaching agreement672

eventually.673

• The counters are used to make all nodes concurrently switch their state to674

being happy, in a way that does not interfere with the above stabilisation675

process.676

We will show that happy nodes can communicate their counter values very effi-677

ciently in a manner that self-stabilises within κ rounds. As their counter increases by678

1 modulo c every round (or they become unhappy), they can use multiple rounds to679

encode a counter value; the recipient simply counts locally in the meantime.680

6.2. The Silencing Wrapper. Let A ∈ A(n, f, c) be an algorithm given by681

Theorem 1.1 and let c = jκ for any j > 0 and κ > T (A). We use the short-hand682

T = T (A) throughout this section. Let a(v, r) be the output of the synchronous683

counting algorithm for node v in round r. Recall that by a strong majority we mean684

that at least n− f received messages support a value. We now modify A so that it685

meets the additional requirement of little communication after stabilisation.686

We introduce two new variables: a cooldown counter t(v, r) ∈ [T + 1] and a687

“happiness” indicator h(v, r) ∈ {0, 1}. These are updated according to the following688

rules in every round r > 0:689

1. Set t(v, r) = T if there was no strong majority of nodes w with a(w, r − 1) =690

a(v, r−1) or a(v, r) 6= a(v, r−1)+1 mod c. Otherwise, decrement the counter,691

that is, t(v, r) = max{0, t(v, r − 1)− 1}.692

2. Set h(v, r) = 0 if h(v, r− 1) = 1, but there was no strong majority of nodes w693

with h(w, r−1) = 1 and a(w, r−1) = a(v, r−1), or if t(v, r) > 0. Set h(v, r) = 1694

if t(v, r − 1) = 0 and a(v, r − 1) = 0 mod κ. Otherwise, h(v, r) = h(v, r − 1).695

3. If h(v, r) = 0, execute a single step of A except for the phase king instructions696

given in Table 4. The counter value a(v, r + 1) is updated according to the697

next rule.698

4. If received n− 2f times a value a(w, r) = x from nodes with h(w, r) = 1, set699

a(v, r + 1) = x+ 1 mod c; if there are two such values x, it does not matter700

which is chosen. Otherwise, execute only the phase king instructions of A701

given in Table 4 as indicated by the once-in-a-while round counter d(v, r) as702

usual; in particular, this determines a(v, r + 1).703

In the following, we say that a node v ∈ V \ F with value h(v, r) = 1 is happy in704

round r and unhappy if h(v, r) = 0. Moreover, the counters converge in round r if for705

all v, w ∈ V \F , it holds that a(v, r) = a(w, r). The idea is to show that not only do the706

counters converge (and then count correctly), but also all correct nodes become happy.707

As a happy node that remains happy simply increases its counter value by 1 modulo c,708

there is no need to explicitly communicate this except for verification purposes. It is709

straightforward to exploit this to ensure that the algorithm communicates very little710

(explicitly) once all nodes are happy; we will discuss this after showing stabilisation of711

the routine.712

6.3. Proof of Stabilisation. Let us first establish that if the counters converge,713

they will keep counting correctly and correct nodes will become happy within O(κ+T )714

additional rounds for any parameter κ > T .715

Lemma 6.2. If the counters converge in round r, then a(u, r′) = a(v, r′) = a(u, r)+716

(r − r′) mod c for all u, v ∈ V \ F and r′ ≥ r.717

Proof. Since the counters have converged, there is a strong majority of nodes718

supporting the same value. Hence, variable a(u, r′) is updated according to Rule 4.719
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As all counter values from correct nodes are identical, it does not matter whether720

these nodes are happy or not; either way, the counters are increased by 1 modulo c721

(cf. Lemma 4.9).722

Lemma 6.3. If the counters converge in round r, then for all rounds r′ ≥ r+T +κ723

and all nodes v ∈ V \ F we have h(v, r′) = 1.724

Proof. By Lemma 6.2, the agreement on output values will persist once reached.725

Hence, at all nodes v ∈ V \ F we have t(v, r′) = 0 in all rounds r′ ≥ r + T by Rule 1.726

Therefore, there is a round r′ ≤ r + T + κ so that t(v, r′) = 0 and a(v, r′) = 0 mod κ727

at all such v. Consequently, all correct nodes jointly set h(v, r′ + 1) = 1. By induction728

on the round number, we see that no such node sets h(v, r′′) = 0 for r′′ > r′ + 1, as729

there is always a strong majority of n − f happy and correct nodes supporting the730

(joint) counter value.731

We now proceed to show that the counters converge within O(κ + T ) rounds.732

The first step is to observe that if no correct node is happy, then algorithm A is run733

without modification, and hence, the counters converge in T rounds.734

Lemma 6.4. Let r ≥ T . If for all v ∈ V \ F and r′ ∈ {r − T + 1, . . . , r}, we have735

h(v, r′) = 0, then the counters converge in round r + 1.736

Proof. Since h(v, r′) = 0, each node v applies Rule 3 in any such round r′. As737

there are no happy nodes in round r′, a node can never receive the same counter value738

from more than f nodes that (claim to be) happy. Hence, Rule 4 boils down to just739

updating a(v, r′) according to the rules of A. As T = T (A), algorithm A stabilises740

and thus a(v, r) = a(w, r) for all v, w ∈ V \ F .741

To deal with the case that some nodes may be happy (which entails that not all742

nodes may execute A correctly, destroying its guarantees), we argue that ongoing743

happiness also implies that the counters converge. To this end, we first show that744

the cooldown counters t(v, r) ensure that correct nodes whose counters are 0 count745

correctly and agree on their counter values. This is shown analogously to Lemma 4.5.746

Lemma 6.5. Let r > T and v, w ∈ V \ F . If t(v, r) = t(w, r′) = 0 for r′ ∈747

{r − T + 1, . . . , r}, then a(v, r) = a(w, r′) + r − r′ mod c.748

Proof. Since t(v, r) = 0, by Rule 1 it holds that t(v, r′) ≤ r − r′ < T . Hence,749

both v and w saw a strong majority of nodes u with a(u, r′ − 1) = a(v, r′ − 1) and750

a(u, r′ − 1) = a(w, r′ − 1), respectively. By Lemma 4.3, it follows that a(v, r′ −751

1) = a(w, r′ − 1). Likewise, t(v, r′′) 6= T for rounds r′ < r′′ ≤ r, implying that752

a(v, r) = a(v, r′) + r − r′ mod c, and a(w, r′) = a(w, r′ − 1) + 1 mod c = a(v, r′).753

Except for the initial rounds, the above lemma implies that happy nodes always754

have the same counter value: by Rule 2, a node v with h(v, r) = 1 must have t(v, r) = 0.755

A node remaining happy thus entails that every node receives the same counter value756

from at least n− 2f ≥ f + 1 happy nodes, and no other counter value with the same757

property may be perceived. In other words, a node staying happy implies that the758

counters converge.759

Lemma 6.6. If h(v, r − 1) = h(v, r) = 1 for some v ∈ V \ F and r > 3, then the760

counters converge in round r + 1.761

Proof. By Rule 2, any node w with h(v, r) = 1 satisfies t(w, r) = 0. We apply762

Lemma 6.5 to see that, for any w ∈ V \ F that is happy in round r − 1, we have763

that a(v, r − 1) = a(w, r − 1). As h(v, r) = h(v, r − 1) = 1, node v observed a strong764

majority of happy nodes w with a(v, r − 1) = a(w, r − 1) in round r − 1, implying765
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that all nodes received this counter value from at least n− 2f ≥ f + 1 happy nodes.766

Together with Rule 4, these observations imply that a(u, r) = a(v, r − 1) + 1 mod c767

for all u ∈ V \ F .768

Using these lemmas and the fact that nodes may become happy only after counting769

consistently for sufficiently long and when their counters are 0 modulo κ > T , we can770

show that the counters converge in all cases.771

Lemma 6.7. Within O(κ) rounds, the counters converge.772

Proof. Either all v ∈ V \F with h(v, 3) = 1 set h(v, 4) = 0 or Lemma 6.6 shows the773

claim. If there are no nodes v with h(v, r) = 1 for r ∈ {4, . . . , T + 3}, then Lemma 6.4774

shows the claim. Hence, assume that there is some node v with h(v, r) = 1 6= h(v, r−1)775

for some minimal r ∈ {4, . . . , T + 3}. Again, either h(v, r + 1) = 0 for all such nodes776

or we can apply Lemma 6.6; thus assume the former in the following.777

Suppose for contradiction that there is a node w with h(w, r′) = 1 for a minimal778

r′ ∈ {r + 1, . . . , r + T}. As r′ is minimal and all nodes with h(v, r) = 1 have779

h(v, r+ 1) = 0, it must hold that h(w, r′− 1) = 0. Hence, t(w, r′− 1) = 0 = t(v, r− 1).780

By Lemma 6.5, this implies that a(w, r′ − 1) = a(v, r − 1) + r − r′ mod c. However,781

κ > T , 0 < r−r′ ≤ T , and a(v, r−1) = 0 mod κ, implying that a(w, r′−1) 6= 0 mod κ,782

which (by Rule 2) is a contradiction to h(w, r′) = 1 6= h(w, r′ − 1).783

We conclude that h(v, r′) = 0 for all v and r′ ∈ {r + 1, . . . , r + T}. The claim784

follows by applying Lemma 6.4.785

We now can conclude that within O(κ) rounds, the algorithm stabilises in the786

sense that all nodes become happy and count correctly and consistently.787

Corollary 6.8. There exists a round R = O(κ) such that for all v ∈ V \ F and788

r ≥ R, it holds that h(v, r) = 1, and a(v, r) = a(v, r−1)+1 mod c, and a(v, r) = a(w, r)789

for all w ∈ V \ F .790

Proof. By Lemma 6.7 we get that there exists a round r′ = O(κ) in which the791

counters converge. Since r′ + T + κ = O(κ), happiness follows from Lemma 6.3 and792

agreement follows from Lemma 6.2.793

6.4. Reducing the Communication Complexity after Stabilisation. As794

noted earlier, the counter variables for happy nodes count modulo c. Hence, it is trivial795

to deduce the counter value of a happy node from its counter value in an earlier round.796

Moreover, happy nodes do not execute algorithm A. Therefore, we can change the797

encoding of the happy nodes’ counter values to reduce the communication complexity798

after stabilisation.799

Corollary 6.9. Suppose happy nodes communicate their counter values by any800

method that stabilises in κ rounds, then the algorithm presented in this section retains801

its properties, except that its stabilisation time increases by an additive κ rounds.802

The above immediately implies that happy nodes v could simply transmit the803

a(v, r) only in rounds r when a(v, r) mod κ = 0 and perform no other communication.804

The fact that v does not transmit readily implies that it is happy, permitting to derive805

its counter value by counting from the most recent value v transmitted. Moreover, by806

Lemma 6.5 the output counters of happy nodes agree after O(1) rounds. Thus, a single807

local counter suffices for verification yielding a cost of using only dlog ce additional808

bits of memory per node.809

Clearly, this trivial encoding mechanism stabilises in κ rounds. However, we can810

do much better. For simplicity, we do not try to give a tight bound here.811
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Lemma 6.10. Happy nodes can communicate their counter values by sending only812

O(1 +B logB) bits per κ rounds, where B = O(log c/ log κ), in a way that stabilises813

in κ rounds.814

Proof. First, we fix two unique bit strings happy and unhappy both having815

a length of O(1) bits. We mark all messages from unhappy nodes with the header816

unhappy. Happy nodes v ∈ V \ F send the bit string happy in rounds r when817

a(v, r) mod κ = 0. In this and the subsequent κ− 1 rounds, they furthermore send818

up to b bits in order to encode the value of a(v, r) ∈ [c], where they avoid the two819

excluded unique bit strings happy and unhappy. Since we are only interested in the820

asymptotic behaviour, we may neglect these possible collisions and determine how821

large b must be so that in κ rounds we can encode c different values.822

Since there are κ rounds in which to broadcast a message, we can think each round823

as being a bin containing the bits broadcast by a node. Suppose we have B = b/ log b824

uniquely labelled balls that we can place in κ different bins. This way we can encode825

B-length strings over an alphabet of size κ by interpreting each ball in a bin i ∈ [κ] as826

giving the indices for the symbol i. This allows us to encode a total of κB distinct827

values.828

Since encoding the unique label of a single ball takes O(logB) bits and we can829

use constant-sized delimiters when encoding the set of balls in a single bin, we need830

O(B logB) bits to encode all the values. Thus, each node communicates a total of831

O(B logB) = O(b) bits during the course of κ rounds. In order to encode c different832

values, it suffices to satisfy c ≤ κB. This can be done by choosing B ≥ log c/ log κ.833

Taking into account the bits for delimiters and the happy string, the claim follows.834

Overall, we obtain the following theorem.835

Theorem 6.11. For any integers n > 1, f < n/3, κ = Ω(f), and c = κj for836

j > 0, there exists an f -resilient synchronous c-counter that runs on n nodes, stabilises837

in O(κ) rounds, and requires O(log2 f + log c) bits to encode the state of a node.838

Moreover, once stabilised, nodes send only O(1 + B logB) bits per κ rounds, where839

B = O(log c/ log κ).840

Proof. Let A ∈ A(n, f, c) be an algorithm given by Theorem 1.1. As T (A) = Θ(f),841

for any κ > T (A), the claim now directly follows from Corollaries 6.8 and 6.9 and842

Lemma 6.10, where we note that only a constant number of variables of size at most843

max{T (A), c} need to be encoded in the state of a node.844

We remark that since κ > T (A) = Θ(f), in case of optimal resilience and c = nO(1), it845

holds that B = O(1), and thus also, O(1 +B logB) = O(1).846

Corollary 6.12. For any n > 1 and c = nO(1) that is an integer multiple of847

n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience848

f = b(n− 1)/3c, stabilises in Θ(n) rounds, requires O(log2 n) bits to encode the state849

of a node, and for which after stabilisation correct nodes broadcast aysmptotically850

optimal O(1) bits per Θ(n) rounds.851

Proof. All properties except for the optimality of the last point follow from the852

choice of parameters by picking κ = Θ(n) in Theorem 6.11. The claimed optimality853

follows from the fact that in order to prove to a node that its counter value is854

inconsistent with that of others, it must receive messages from at least f + 1 = Θ(n)855

nodes; to guarantee stabilisation in O(n) rounds, this must happen every Ω(n) rounds856

for each correct node.857
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7. Sending Fewer Messages. So far we have considered the size of messages858

nodes need to broadcast every round. In the case of the algorithm given in Theorem 1.1,859

every node will send S = O(log2 f + log c) bits in each round. As there are Θ(n2)860

communication links, the total number of communicated bits in each round is Θ(S ·n2).861

In this section, we consider a randomised variant of the algorithm that achieves better862

message and bit complexities in a slightly different communication model.863

7.1. Pulling Model. Throughout this section we consider the following variant864

of our communication model, where in every synchronous round t each correct node v:865

1. contacts a subset C(v, t) ⊆ V of other nodes to pull information from,866

2. pulls a response message ru ∈M from every contacted node u ∈ C(v, t),867

3. updates its local state according to its current state and the responses it868

received.869

Thus, every round t node v obtains a message vector m = 〈m0, . . .mn−1〉, where870

mu = ru if u ∈ C(v, t) and mu = ⊥, otherwise. Besides this modification, the model of871

computation is as before: node v updates its state using the state transition function872

g : [n]×X ×Mn → X and a correct node u in state xu responds with the message873

µ(xu), where µ : X →M maps the internal state of a node to a message. However874

in the pulling model, the algorithm also needs to specify the set C(v, t) of nodes it875

contacts every round. We assume that every correct node chooses this set randomly876

independent of its internal state.877

As before, faulty nodes may respond with arbitrary messages that can be different878

for different pulling nodes. We define the (per-node) message and bit complexities of879

the algorithm as the maximum number of messages and bits, respectively, pulled by a880

non-faulty node in any round.881

This model is motivated by the challenges of designing energy-limited fault-tolerant882

circuits. We suggest the approach in which each node that makes a request for data883

also has to provide the energy resources for processing and answering the request.884

This way by limiting the energy supply of each individual node, we can also effectively885

limit the total amount of energy wasted due to the actions of the Byzantine nodes.886

However, to make this approach feasible, we have to design an algorithm in which887

each non-faulty node needs to make only a few requests for data. In this section we888

design a randomised algorithm that satisfies this property.889

7.2. High-Level Idea of the Probabilistic Construction. To keep the num-890

ber of pulls, and thus number of messages sent, small, we modify the construction of891

Theorem 4.1 to use random sampling where useful. Essentially, the idea is to show that892

with high probability a small set of sampled messages accurately represents the current893

state of the system and the randomised algorithm will behave as the deterministic894

one. There are two steps where the nodes rely on information broadcast by the all the895

nodes: the majority voting scheme over the blocks and the variant of the phase king896

algorithm. In the following, both are shown to work under the sampling scheme with897

high probability by using concentration bound arguments.898

More specifically, here with high probablity means that for any constant k ≥ 1 the899

probability of failure is bounded above by η−k when sampling K = Θ(log η) messages900

(where the constants in the asymptotic notation may depend on k); here η denotes the901

total number of nodes in the system after the recursive application of the resilience902

boosting procedure described in Section 5. The idea is to use a union bound over all903

levels of recursion, nodes, and considered rounds, to show that the sampling succeeds904

with high probability in all cases. For the randomised variant of Theorem 1.1, we will905

require the following additional constraint: when constructing a counter on n nodes,906
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the total number of failures is bounded by f < n
3+γ , where γ > 0 is constant.907

This allows us to construct probabilistic synchronous c-counters in the sense that908

we say that the counter stabilises in time T , if for each round t ≥ T all non-faulty909

nodes count correctly with probability 1− η−k.910

7.3. Sampling Communication Channels. As discussed, there are two steps911

in the construction of Theorem 4.1 where we rely on broadcasting: (1) the majority912

voting scheme for electing a leader block and counter, and (2) the execution of the913

phase king protocol. For the sake of clarity, we only focus on modifying the basic914

algorithm, where the nodes broadcast their entire state each round. We start with a915

sampling lemma we use for both steps. First, recall the following concentration bound916

for the sum of independent random binary variables:917

Lemma 7.1 (Chernoff’s bound). Let X =
∑
Xi be a sum of independent random918

variables Xi ∈ {0, 1}. Then for 0 < δ < 1,919

Pr[X ≤ (1− δ)E[X]] ≤ exp

(
−δ

2

2
E[X]

)
.920

Lemma 7.2. Let U ⊆ V be a non-empty set of nodes such that the fraction of faulty921

nodes in U is strictly less than 1/(3 + γ). Suppose we sample K nodes v0, . . . , vK−1922

uniformly at random from the set U . For a given local variable x(·, r) encoded in the923

nodes’ local state on round r ≥ 0 and a value y, define the random variable924

Xi =

{
1 if x(vi, r) = y and vi /∈ F ,
0 otherwise

925

for each i ∈ [K] and let X =
∑K−1
i=0 Xi be the number of y values sampled from correct926

nodes. There exists K0(η, k, γ) = Θ(log η) such that K ≥ K0 implies the following927

with high probability:928

(a) If x(u, r) = y for all u ∈ U \ F , then X ≥ 2K/3.929

(b) If a majority of nodes u ∈ U \ F have x(u, r) = y, then X ≥ K/3.930

(c) If X ≥ 2K/3, then |{x(u, r) = y : u ∈ U \ F}| ≥ |U \ F|/2.931

Proof. Define δ = 1− 2
3 ·

3+γ
2+γ and let ρ < 1/(3 + γ) be the fraction of faulty nodes932

in U .933

(a) If all correct nodes u ∈ U \ F agree on value x(u, r) = y, then934

E[X] = (1− ρ)K >
2 + γ

3 + γ
K.935

As δ satisfies (1− δ)E[X] > 2K/3, it follows from Chernoff’s bound that936

Pr

[
X <

2K

3

]
≤ Pr[X < (1− δ)E[X]]937

≤ exp

(
−δ

2

2
E[X]

)
938

≤ exp

(
−δ2 2 + γ

2(3 + γ)
K

)
.939

940

If K0(η, k, γ) = Θ(log η) is sufficiently large, K ≥ K0(η, k, γ) implies that this proba-941

bility is bounded by η−k.942
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(b) If a majority of non-faulty nodes u have value x(u, r) = y, then943

E[X] ≥ 1

2
(1− ρ)K >

1

2
· 2 + γ

3 + γ
K.944

As above, by picking the right constants and using concentration bounds, we get that945

Pr

[
X ≤ K

3

]
≤ Pr[X < (1− δ)E[X]]946

≤ exp

(
−δ

2

2
E[X]

)
947

≤ exp

(
−δ2 2 + γ

4(3 + γ)
K0

)
≤ η−k.948

949

(c) Suppose the majority of correct nodes have values different from y. Define950

X̄i =

{
1 if x(vi, r) 6= y and vi /∈ F ,
0 otherwise.

951

and X̄ =
∑K−1
i=0 X̄i as the random variable counting the number of samples with952

values different from y and arguing as for (b), we see that953

Pr

[
X ≥ 2K

3

]
= Pr

[
X̄ <

K

3

]
≤ η−k,954

955

where again we assume that K0(η, k, γ) = Θ(log η) is sufficiently large. Thus, X ≥956

2K/3 implies with high probability that the majority of correct nodes have value y.957

Randomised Majority Voting.. Recall that in the majority voting scheme, there958

are four local variables, two for each i ∈ {0, 1}, whose values depend directly on the959

messages broadcast by all nodes:960

• mi(v, r) stores the most frequent counter value in block i in round r, which961

is determined from the broadcasted output variables of Ai with ties broken962

arbitrarily, and963

• Mi(v, r) stores the majority vote on mi(v, r − 1).964

Throughout the remainder of this section, we let K = Θ(log η) such that K ≥ K0965

as given by Lemma 7.2. Let m∗i (v, r) be the sampled version of mi(v, r); here the value966

is determined by taking a random sample of size K from the set Vi. Analogously, the967

variable M∗i (v, r) is determined by taking a random sample of size K from the set V968

and taking the value that appears at least 2K/3 times in the sample.969

Remark 7.3. It holds that fi/ni < 1/(3 + γ) for i ∈ {0, 1}.970

Lemma 7.4. Suppose block i ∈ {0, 1} is correct. Then for all v ∈ V \ F and971

r ≥ T (Ai), we have972

m∗i (v, r) = mi(v, r)973

M∗i (v, r + 1) = Mi(v, r + 1)974975

with high probability.976

Proof. To show the claim, we will apply Lemma 7.2 with U = V and U = Vi.977

Before this, note that the fraction of faulty nodes in both V and Vi is less than 1/(3+γ):978
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by assumption we have f/n < 1/(3 + γ) and by Remark 7.3 yields fi/ni < 1/(3 + γ).979

Thus, in both cases, we satisfy the first condition of Lemma 7.2.980

For the claim regarding variable mi, we apply Lemma 7.2 with U = Vi, that981

is, sample the subset Vi ⊆ V consisting of nodes in block i. Since |Vi| = ni and i982

is a correct block, the set Vi contains at most fi faulty nodes and all correct nodes983

output the same value y ∈ [ci], as Ai has stabilised by round r ≥ T (Ai). Moreover,984

fi/ni <
1

3+γ by Remark 7.3, so statement (a) of Lemma 7.2 yields that with high985

probability at least a fraction of 2/3 of the sampled nodes output y.986

To show the claim for variable M∗i , note that by the previous case, m∗i (v, r) =987

mi(v, r) holds for all correct nodes v with high probability. Applying Statement (a) of988

Lemma 7.2 to the set V and variable m∗i (v, r), we get that at least a fraction of 2/3 of989

the samples have the same value.990

From Lemma 7.4 it follows that we get probabilistic—in the sense that the claims991

hold with high probability—variants of Lemma 4.4, Lemma 4.5, and Lemma 4.6.992

These, in turn, yield the following probabilistic variant of Corollary 4.7.993

Corollary 7.5. There is a round r = T +O(f) so that for all v, w ∈ V \ F with994

high probability it holds that995

1. d(v, r) = d(w, r) and996

2. for all r′ ∈ {r + 1, . . . , r + τ − 1} we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .997

Randomised Phase King.. To obtain a randomised variant of the phase king998

algorithm, we modify the threshold votes used in the algorithm as follows. Instead of999

checking whether at least n− f of all messages have the same value, we check whether1000

at least a fraction of 2/3 of the sampled messages have the same value. Similarly, when1001

checking for at least f + 1 values, we check whether a fraction of 1/3 of the sampled1002

messages have this value.1003

As a corollary, we get that when using the sampling scheme in the pulling model,1004

the execution of the phase king essentially behaves as in the deterministic broadcast1005

model.1006

Corollary 7.6. When executing the randomised variant of the phase king protocol1007

from Section 4 for ηO(1) rounds, the statements of Lemma 4.8 and Lemma 4.9 hold1008

with high probability.1009

Proof. The modified phase king algorithm given in Section 4.3 uses two thresholds,1010

n− f and f + 1. As discussed, these are replaced with threshold values of 2K/3 and1011

K/3 when taking K ≥ K0(η, k, γ) samples. Using the statements of Lemma 7.2, we1012

can argue analogously to the proofs of Lemma 4.8 and Lemma 4.9.1013

First, to see that Lemma 4.8 holds with high probability, note that from statements1014

(b) and (c) of Lemma 7.2, it follows that if a node samples 2K/3 times value y, then1015

w.h.p. other nodes sample at least K/3 times the same value (that is, we get the1016

probabilistic version of Lemma 4.3). Now we can follow the same reasoning as in1017

Lemma 4.8.1018

Similarly, it is straightforward to check that Lemma 4.9 holds with high probability:1019

if all correct nodes agree on a(·), then all correct nodes sample at least 2K/3 times1020

the same value w.h.p. by statement (a) of Lemma 7.2. Thus, analogously as in the1021

proof of Lemma 4.9, we get that the agreement persists when executing I3k, I3k+1, or1022

I3k+2 with high probability.1023

Finally, we can apply the union bound over all ηO(1) rounds and samples taken by1024

correct nodes (n− f ≤ η per round), that is, in total over ηO(1) events. By choosing1025

large enough k = O(1), we get that the claim holds with probability 1− η−k.1026
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7.4. Randomised Resilience Boosting. It remains to formulate the proba-1027

bilistic variant of Theorem 4.1. To this end, define P(n, f, c, η, k) as the family of1028

probabilistic synchronous c-counters on n nodes of resilience f . Here, probabilistic1029

means that an algorithm P ∈ P(n, f, c, η, k) with stabilisation time T (P) merely1030

guarantees that it counts correctly with probability 1 − η−k in any given round1031

t ≥ T (P).1032

Let P (P) denote the number of messages pulled per node by a probabilistic1033

counter P ∈ P(n, f, c, η, k). For any deterministic algorithm A ∈ A(n, f, c), we define1034

P (A) = n.1035

Theorem 7.7. Let c, n > 1 and f < n/(3 + γ), where γ > 0 and n ≤ η. Define1036

n0 = bn/2c, n1 = dn/2e, f0 = b(f − 1)/2c, f1 = d(f − 1)/2e and τ = 3(f + 2). If for1037

i ∈ {0, 1} there exist synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i ·2τ , then1038

for any sufficiently large k = O(1), there exists a probabilistic synchronous c-counter1039

B ∈ P(n, f, c, η, k) that1040

• stabilises in T (B) = max{T (A0), T (A1)}+O(f) rounds,1041

• has state complexity of S(B) = max{S(A0), S(A1)} + O(log f + log c) bits,1042

and1043

• each node pulls at most P (B) = max{P (A0), P (A1)}+O(log η) messages per1044

round.1045

Proof. The proof proceeds analogously to the proof of Theorem 4.1. First, we1046

apply Corollary 7.5 to get a round counter that works once in a while with high1047

probability. We can then use this to clock the randomised phase king and Corollary 7.61048

implies that the new output counter will reach agreement in O(f) rounds with high1049

probability. The time and state complexities are as in the proof of Theorem 4.1.1050

To analyse the number of pulls, observe that in Lemma 7.4 each node samples1051

twice K = O(log η) messages (from both V0 and V1) and Corollary 7.6 samples O(log η)1052

messages from all the nodes. Thus, in total, a node v ∈ Vi samples O(log η) messages1053

in addition to the messages pulled when executing Ai.1054

Note that we can choose to replace A ∈ A(n, f, c) by Q ∈ P(n, f, c, η, k) when1055

applying this theorem, arguing that with high probability it behaves like a corresponding1056

algorithm A ∈ A(n, f, c) for polynomially many rounds. Furthermore, note that it is1057

also possible to boost the probability of success, and thus the period of stability, by1058

simply increasing the sample size. For instance, sampling polylog η messages yields1059

an error probability of η− polylog η in each round, whereas in the extreme case, by1060

“sampling” all nodes the algorithm reduces to the deterministic case.1061

Using Theorem 7.7 recursively as in Section 5 for O(log f) steps, we get the1062

following result.1063

Theorem 7.8. For any integers c, n > 1, f < n/(3+γ), there exists an f -resilient1064

probabilistic synchronous c-counter that runs on n nodes, requires O(log2 f + log c) bits1065

to encode the state of a node, has each node pull O(log f log n) messages per round,1066

and stabilises in O(f) rounds with probability 1− n−k, where k > 0 is a freely chosen1067

constant.1068

7.5. Oblivious Adversary. Finally, we remark that under an oblivious adver-1069

sary, that is, an adversary that picks the set of faulty nodes independently of the1070

randomness used by the non-faulty nodes, we get pseudorandom synchronous counters1071

satisfying the following: (1) the execution stabilises with high probability and (2) if1072

the execution stabilises, then all non-faulty nodes will deterministically count correctly.1073

Put otherwise, we can fix the random bits used by the nodes to sample the communica-1074
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tion links once, and with high probability we sample sufficiently many communication1075

links to non-faulty nodes for the algorithm to (deterministically) stabilise. This gives1076

us the following result.1077

Corollary 7.9. For any integers c, n > 1, f < n/(3 + γ), there exists a pseudo-1078

random synchronous c-counter with resilience f against an oblivious fault pattern that1079

runs on n nodes, requires O(log2 f + log c) bits to encode the state of a node, has each1080

node pull O(log f log n) messages per round, and stabilises in O(f) rounds.1081

8. Conclusions. In this work, we showed that there exist algorithms for syn-1082

chronous counting that (1) are deterministic, (2) tolerate the optimal number of1083

faults, (3) have asymptotically optimal stabilisation time, and (4) need to store and1084

communicate a very small number of bits between consecutive rounds—something no1085

prior algorithms have been able to do.1086

In addition, we discussed two complementary approaches on how to further reduce1087

the total number of communicated bits in the network. The first one is a deterministic1088

construction that lets the nodes communicate only few bits after stabilisation, in order1089

to verify that stabilisation has occurred and that the counters agree. The construction1090

retains all properties (1)–(4), and in particular, when constructing polynomially-sized1091

counters with linear resilience, the algorithm communicates an asymptotically optimal1092

number of bits after stabilisation.1093

The second technique for reducing the amount of communication is based on1094

random sampling of communication channels. Here, we employed randomisation so1095

that each node needs to communicate only with polylog n instead of n− 1 other nodes1096

in the system, thus reducing the number of messages sent from Θ(n2) to Θ(n polylog n).1097

The trade-off here is that the resulting algorithm has slightly suboptimal resilience1098

of f < n/(3 + γ), where γ > 0 is a constant, and is merely guaranteed to work for1099

polynomially many rounds with high probability before a new stabilisation phase is1100

required. The latter issue disappears when employing pseudorandomness. In this case,1101

one may simply fix a random topology and the algorithm will not fail again after1102

stabilisation; naturally, this necessitates that the Byzantine faulty nodes are chosen in1103

an oblivious manner, i.e., independently of the topology.1104

We can also combine both techniques to attain probabilistic counters that dur-1105

ing stabilisation communicate Θ(npolylog n) bits each round and after stabilisation1106

asymptotically optimal O(1) bits every Θ(n) rounds.1107

To conclude the paper, we now wish to highlight some interesting problems that1108

still remain open:1109

Q1. Our solutions are not adaptive (as defined in [23]), as their stabilisation time1110

is not bounded by a function of the number of actual permanent faults. Can1111

this be achieved?1112

Q2. Are there algorithms that satisfy (1)–(3), but need to store and communicate1113

substantially fewer than log2 f bits? This question has been partially answered1114

in follow-up work [25], showing that O(log f) bits suffice. However, no non-1115

trivial lower bound is known, so it remains open whether o(log f) bits suffice.1116

Q3. Can the ideas presented in this paper be applied to randomised consensus1117

routines in order to achieve sublinear stabilisation time with high resilience1118

and small communication overhead? Again, a partial answer is provied in [25]:1119

this is possible, but the given solutions may still fail after stabilisation (with1120

a very small probability per round). The question thus remains open w.r.t.1121

the original problem definition, which requires that after stabilisation the1122

algorithm keeps counting correctly.1123
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Finally, we point out that the recursive approach we employ in this paper can be1124

interpreted as an extension of its similar use in synchronous consensus routines [5, 6],1125

where the shared round counter is implicitly given by the synchronous start.1126

Q4. Can a similar recursive approach also be used for deriving improved pulse1127

synchronisation [14, 18] algorithms?1128

Interestingly, no reduction from consensus to pulse synchronisation is known, so there1129

is still hope for efficient deterministic pulse synchronisation algorithms that stabilise1130

in sublinear time.1131
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