no

O O W

-

o

10
11
12
13
14

16

17

18

20

NN
no

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE*

CHRISTOPH LENZENT, JOEL RYBICKIt§%, AND JUKKA SUOMELAS$

Abstract. Consider a complete communication network of n nodes, where the nodes receive
a common clock pulse. We study the synchronous c-counting problem: given any starting state
and up to f faulty nodes with arbitrary behaviour, the task is to eventually have all correct nodes
labeling the pulses with increasing values modulo ¢ in agreement. Thus, we are considering algorithms
that are self-stabilising despite Byzantine failures. In this work, we give new algorithms for the
synchronous counting problem that (1) are deterministic, (2) have optimal resilience, (3) have a linear
stabilisation time in f (asymptotically optimal), (4) use a small number of states, and consequently,
(5) communicate a small number of bits per round. Prior algorithms either resort to randomisation,
use a large number of states and need high communication bandwidth, or have suboptimal resilience.
In particular, we achieve an exponential improvement in both state complexity and message size
for deterministic algorithms. Moreover, we present two complementary approaches for reducing the
number of bits communicated during and after stabilisation.

Key words. self-stabilisation, Byzantine fault-tolerance

AMS subject classifications. 68M14, 68M15, 68Q25, 68W15

1. Introduction. In this work, we design space- and communication-efficient, self-
stabilising, Byzantine fault-tolerant algorithms for the synchronous counting problem.
We are given a complete communication network on n nodes, with arbitrary initial
states. There are up to f faulty nodes. The task is to synchronise the nodes so that
all non-faulty nodes will count rounds modulo ¢ in agreement. For example, here is a
possible execution for n = 4 nodes, f = 1 faulty node, and counting modulo ¢ = 3; the
execution stabilises after ¢ = 5 rounds:

Stabilisation Counting

Nodel: 2 2 0 2 0 0 1 2 0 1 2
Node2: 0 2 0 1 0 O 1 2 0 1 2

Node 3: faulty node, arbitrary behaviour
Node4: 0 0 2 0 2 0 1 2 0 1 2

Synchronous counting is a coordination primitive that can be used e.g. in large
integrated circuits to synchronise subsystems to easily implement mutual exclusion
and time division multiple access in a fault-tolerant manner. Note that in this context,
it is natural to assume that a synchronous clock signal is available, but the clocking
system usually does not provide explicit round numbers. Solving synchronous counting
thus yields highly dependable round counters for subcircuits.

If we neglect communication, counting and consensus are essentially equivalent [13—
15]. In particular, many lower bounds on (binary) consensus directly apply to the
counting problem [16,20,27]. However, the known generic reduction of counting to
consensus incurs a factor-f overhead in space and message size. In this work, we

*Submitted to the editors DATE. This paper is an extended and revised version of two preliminary
conference reports [24,26] that appeared in the Proceedings of the 34th Annual ACM Symposium on
Principles of Distributed Computing (PODC 2015) and in the Proceedings of the 29th International
Symposium on Distributed Computing (DISC 2015).

TDepartment of Algorithms and Complexity, Max Planck Institute for Informatics, Saarland
Informatics Campus (clenzen@mpi-inf.mpg.de).

fCurrent affiliation: Department of Biosciences, University of Helsinki (joel.rybicki@helsinki.fi).

8Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto
University (jukka.suomela@aalto.fi).

This manuscript is for review purposes only.

mailto:clenzen@mpi-inf.mpg.de
mailto:joel.rybicki@helsinki.fi
mailto:jukka.suomela@aalto.fi

VI \)

(2 SN, BN
s

~N O ot

oo

[SL S S G)

©

60
61
62
63
64
65
66

67

EN IS BEEN BRSNS BEEN BEES BEPN BN |
DO s W N

3
-

-3

80
81
82

2 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

present techniques that reduce the number of bits nodes broadcast in each round to
O(log? f + logc).

1.1. Contributions. Our contributions constitute of two parts. First, we give
novel space-efficient deterministic algorithms for synchronous counting with optimal
resilience and fast stabilisation time. Second, we show how to extend these algorithms
in a way that reduces the number of communicated bits during and after stabilisation.

Space-efficient counting algorithms.. In this work, we take the following approach
for devising communication-efficient counting algorithms: we first design space-efficient
algorithms, that is, algorithms in which each node stores only a few bits between
consecutive rounds. Space-efficient algorithms are particularly attractive from the
perspective of fault-tolerant systems: if we can keep the number of state bits small,
we can also reduce the overall complexity of the system, which in turn makes it easier
to use highly reliable components for an implementation.

Once we have algorithms that only need a small number of bits to encode the
local state of a node, we also get algorithms that use small messages: the nodes can
simply broadcast their entire state to everyone. Our main result is summarised in the
following theorem; here f-resilient means that we can tolerate up to f faulty nodes:

THEOREM 1.1. For any integers c,n > 1 and f < n/3, there exists a deterministic
f-resilient synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
uses O(log? f + loge) bits to encode the state of a node.

Our main technical contribution is a recursive construction that shows how to
“amplify” the resilience of a synchronous counting algorithm. Given a synchronous
counter for some values of n and f, we will show how to design synchronous counters
for larger values of n and f, with a very small increase in time and state complexity.
This has two direct applications:

1. From a practical perspective, we can apply existing computer-designed algo-
rithms (e.g. n =4 and f = 1) as a building block in order to design efficient
deterministic algorithms for a moderate number of nodes (e.g., n = 36 and
f=7.

2. From a theoretical perspective, we can design deterministic algorithms for
synchronous counting for any n and any f < n/3, with a stabilisation time of
O(f), and with only O(log? f) bits of state per node.

The state complexity and message size is an exponential improvement over prior work,
and the stabilisation time is asymptotically optimal for deterministic algorithms [20].

Reducing communication after stabilisation.. In our deterministic algorithms, each
node only needs to store a few number of bits between consecutive rounds, and thus,
a node can e.g. afford to broadcast its entire state to all other nodes in each round.
Moreover, we present a technique to reduce the number of communicated bits further.

We give a deterministic construction in which after stabilisation each node broad-
casts O(1 + Blog B) bits every rounds, where B = O(log ¢/ log k), for an essentially
unconstrained choice of k, at the expense of additively increasing the stabilisation
time by O(k). In particular, for the special case of optimal resilience and polynomial
counter size, we obtain the following result.

COROLLARY 1.2. For any n > 1 and ¢ = n°W) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f=|(n—1)/3], stabilises in ©(n) rounds, requires O(log®n) bits to encode the state
of a node, and for which after stabilisation correct nodes broadcast aysmptotically
optimal O(1) bits per ©(n) rounds.

This manuscript is for review purposes only.

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 3

We remark that in the above result we simply reduce the frequency of com-
munication and the size of messages instead of e.g. bounding the number of nodes
communicating in any given round (known as broadcast efficiency) [28]. In our
work, we exploit synchrony after stabilisation to schedule communication, and thus,
our approach is to be contrasted with attempting to reduce the total number of
communication partners or communicating nodes after stabilisation [9, 10, 28].

Reducing the number of messages.. To substantiate the conjecture that finding
algorithms with small state complexity may lead to highly communication-efficient
solutions, we proceed to consider a slightly stronger synchronous pulling model. In
this model, a node may send a request to another node and receive a response in
a single round, based on the state of the responding node at the beginning of the
round. The cost for the exchange is then attributed to the pulling node; in a circuit,
this translates to each node being assigned an energy budget that it uses to “pay”
for the communication it triggers. In this model, it is straightforward to combine
our recursive construction used in Theorem 1.1 with random sampling to obtain the
following results:

1. We can achieve the same asymptotic running time and state complexity as
the deterministic algorithm from Theorem 1.1 with each node pulling only
polylog n messages in each round. The price is that the resulting algorithm
retains a probability of n~ P98 ™ t¢ fail in each round even after stabilisation
and that the resilience is f < n/(3 ++) for any constant v > 0.

2. If the failing nodes are chosen independently of the algorithm, we can fix the
random choices. This results in a pseudorandom algorithm which stabilises
with a probability of 1 — n~P°¥198™ and in this case keeps counting correctly.

1.2. Our Approach. Most prior deterministic algorithms for synchronous count-
ing and closely-related problems utilise consensus protocols [14,22]. Indeed, if we ignore
space and communication, reductions exist both ways showing that the problems are
more or less equivalent [12]; see Section 2 for further discussion on prior work.

However, to construct fast space- and communication-efficient counters, we are
facing a chicken-and-egg problem:

e From counters to consensus: If the correct nodes could agree on a counter,
they could jointly run a single instance of synchronous consensus.

e From consensus to counters: If the nodes could run a consensus algorithm,
they could agree on a counter.

A key step to circumvent this obstacle is the following observation:

e From unreliable counters to consensus: If the correct nodes can agree
on a counter at least for a while, they can jointly run a single instance of
consensus.

e From consensus to reliable counters: Consensus can be then used to
facilitate agreement on the output counter, and it is possible to maintain
agreement even if the underlying unreliable counters fail later on.

The task of constructing counters that are correct only once in a while is easier; in
particular, it does not require that we solve consensus in the process. As our main
technical result, we show how to “amplify” the resilience f, at a cost of losing some
guarantees:

e Input: Two counters with a small f; guaranteed to work permanently after
stabilisation.

e Output: A counter with a large f; guaranteed to work only once in a while.

This can be then used to jointly run a single instance of consensus and stabilise the

This manuscript is for review purposes only.

132
133
134
135
136
137

138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

4 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

TABLE 1
Summary of counting algorithms for the case ¢ = 2. For randomised algorithms, we list the
expected stabilisation time. *) The solution from [4] relies on a shared coin—details vary, but all
known shared coins with large resilience require large states and messages.

resilience stabilisation time state bits deterministic reference
f<n/3 o(1) nOWw no [4] &
f<n/3 o(f) O(flog f) yes [14]
f<n/3 22(n=1) 2 no [17,18]
f<n/3 min{22/+2 4 1, 2007/MY 4 no [13]
f=1,n>4 7 2 yes [13]
f=n'""M 0O O(log? f/loglog f) yes [26]
f<n/3 o(f) O(log? f) yes this work

output. We show how to obtain such a counter based on simple local consistency
checks, timeouts, and threshold voting.

In the end, a recursive application of this scheme allows us to build space-efficient
counting algorithms for any n with optimal resilience. At each level of recursion, we
only need to run a single instance of consensus. As there will be O(log f) levels of
recursion, in total each node participates in only O(log f) consensus instances.

1.3. Structure. Section 2 reviews prior work on impossibility results and count-
ing algorithms. Section 3 provides a formal description of the basic model of computa-
tion and the synchronous counting problem. Section 4 gives the main technical result
on resilience boosting, and Section 5 applies it to construct fast and communication-
efficient algorithms. Section 6 shows how to reduce the number of bits communicated
during and after stabilisation. Section 7 discusses the pulling model and randomised
sampling.

2. Related Work. In this section, we first overview impossibility results related
to counting, and then discuss both deterministic and randomised algorithms for the
counting problem.

Impossibility results.. As mentioned, counting is closely related to consensus as
reductions exist both ways [12]: consensus can be solved in time O(T) tolerating f
faults if and only if counting can be solved in time O(T') tolerating f faults.

With this equivalence in mind, several impossibility results for consensus directly
hold for counting as well. First, consensus cannot be solved in the presence of n/3 or
more Byzantine failures [27]. Second, any deterministic f-resilient consensus algorithm
needs to run for at least f + 1 communication rounds [20]. Third, it is known that the
connectivity of the communication network must be at least 2f + 1 [11]. Finally, any
consensus algorithm needs to communicate at least Q(nf) bits in total [16].

In terms of communication complexity, no better bound than Q(nf) on the
total number of communicated bits is known. While non-trivial for consensus, this
bound turns out to be trivial for deterministic counting algorithms: a self-stabilising
algorithm needs to verify its output, and to do that, each of the n nodes needs to
receive information from at least f 4+ 1 = Q(f) other nodes to be certain that some
other non-faulty node has the same output value. Similarly, no non-constant lower
bounds on the number of state bits nodes are known; however, a non-trivial constant
lower bound for the case f =1 is known [13].

This manuscript is for review purposes only.

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 5

165 Prior algorithms.. There are several algorithms to the synchronous counting
166 problem, with different trade-offs in terms of resilience, stabilisation time, space
167 complexity, communication complexity, and the use of random bits. For a brief
168 summary, see Table 1.

169 Designing space-efficient randomised algorithms for synchronous counting is fairly
170 straightforward [13,17,18]: for example, the nodes can simply choose random states
171 until a clear majority of nodes has the same state, after which they start to follow
172 the majority. Likewise, given a shared coin, one can quickly reach agreement by
173 defaulting to the coin whenever no clear majority is observed [4]. However, existing
174 highly-resilient shared coins are very inefficient in terms of communication or need
175 additional assumptions, such as private communication links between correct nodes.
176 Less resilient shared coins are easier to obtain: resilience ©(y/n) is achieved by each
177 node announcing the outcome of an independent coin flip and locally outputting the
175 (observed) majority value. In addition, Q(n/log® n)-resilient Boolean functions give
179 fast communication-efficient coins [1]. Designing quickly stabilising algorithms that
180 are both communication-efficient and space-efficient has turned out to be a challenging
181 task [13-15], and it remains open to what extent randomisation can help in designing
182 such algorithms.

183 In the case of deterministic algorithms, algorithm synthesis has been used for
184 computer-aided design of optimal algorithms with resilience f = 1, but the approach
185 does not scale due to the extremely fast-growing space of possible algorithms [13]. In
186 general, many fast-stabilising algorithms build on a connection between Byzantine
187 consensus and synchronous counting, but require a large number of states per node [14]
188 due to, e.g., running a large number of consensus instances in parallel. Recently, in
189 one of the preliminary conference reports [26] this paper is based on, we outlined a
190 recursive approach where each node needs to participate in only O(log f/loglog f)
191 parallel instances of consensus. However, this approach resulted in suboptimal resilience
192 of f=nt—oM),

193 Finally, we note that while counting algorithms are usually designed for the case
194 of a fully-connected communication topology, the algorithms can be extended to use
195 in a variety of other graph classes with high enough connectivity [13].

196 Related problems.. Boczkowski et al. [7] study the synchronous c-counting problem
197 (under the name self-stabilising clock synchronisation) with O(y/n) Byzantine faults
198 in a stochastic communication setting that resembles the pulling model we consider
199 in Section 7. However, their communication model is much more restricted: in every
0 round, each node interacts with at most constantly many nodes which are chosen
1 uniformly at random. Moreover, nodes only exchange messages of size O(log ¢) bits.

2 Without Byzantine (or other types of permanent) faults, self-stabilising counters
3 and digital clocks have been studied as the self-stabilising unison problem [2,8,21].
|

204 However, unlike in the fully-connected setting considered in this work, the underlying

205 communication topology in the unison problem is typically assumed to be an arbitrary

206 graph. In our model, in absence of permanent faults the problem becomes trivial, as

207 nodes may simply reproduce the clock of a predetermined leader. The unison problem

208 has also been studied in asynchronous models [8,19]; this variant is also known as
(

9 self-stabilising synchronisers [3].

210 3. Preliminaries. In this section, we define the model of computation and the
211 counting problem.

212 3.1. Model of Computation. We consider a fully-connected synchronous messagefi
213 passing network. That is, our distributed system consists of a network of n nodes,

This manuscript is for review purposes only.

214
215
216
217
218
219
220
221
222
223

NN
NN NN
~N O Ot

N
oo

245
246
247

6 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

where each node is a state machine and has communication links to all other nodes in
the network. All nodes have a unique identifier from the set [n] = {0,1,...,n — 1}.
The computation proceeds in synchronous communication rounds. In each round, all
nodes perform the following in a lock-step fashion:
1. broadcast a single message to all nodes,
2. receive messages from all nodes, and
3. update the local state.
We assume that the initial state of each node is arbitrary and there are up to
f Byzantine nodes. A Byzantine node may have arbitrary behaviour, that is, it
can deviate from the protocol in any manner. In particular, the Byzantine nodes
can collude together in an adversarial manner and a single Byzantine node can send
different messages to different correct nodes.
Algorithms.. Formally, we define an algorithm as a tuple A = (X, g,p), where
X is the set of all states any node can have, g: [n] x X™ — X is the state transition
function, and p: [n] x X — [c] is the output function. At each round when node v

receives a vector x = {(xg,...,Tn—1) € X" of messages, node v updates it state to
g(v,x) and outputs p(v, z,). As we consider c-counting algorithms, the set of output
values is the set [c] = {0,1,...,¢— 1} of counter values.

The tuples passed to the state transition function g are ordered according to the
node identifiers. Put otherwise, the nodes can identify the sender of a message—this
is frequently referred to as source authentication. Moreover, in the basic model, we
assume that all nodes simply broadcast their state to all other nodes. Thus, the set of
messages is the same as the set of possible states.

FEzecutions.. For any set of F C [n] of faulty nodes, we define a projection 7w that
maps any state vector x € X™ to a configuration np(x) = e, where e, = x if v € F
and e, = z, otherwise. That is, the values given by Byzantine nodes are ignored
and a configuration consists of only the states of correct nodes. A configuration d
is reachable from configuration e if for every correct node v ¢ F there exists some
x € X™ satisfying 7x(x) = e and ¢g(v,x) = d,. An ezecution of an algorithm A is
an infinite sequence of configurations ¢ = (eg,e; ...,) where configuration e, is
reachable from configuration e,..

3.2. Synchronous Counters and Complexity Measures. We say that an
execution £ = (eg,e; ...,) of a counting algorithm A stabilises in time T if there is
some k € [c] such that for every correct node v € [n] \ F it holds that

p(v,ertry) =7 —kmod ¢ for all r >0,

where ey, , € X is the state of node v in round T + 7.

An algorithm A is said to be a synchronous c-counter with resilience f that
stabilises in time T, if for every F C [n], |F| < f, all executions of algorithm A
stabilise within T rounds. In this case, we say that the stabilisation time T(A) of
A is the minimal such T that all executions of A stabilise in T rounds. The state
complexity of A is S(A) = [log|X]|], that is, the number of bits required to encode
the state of a node between subsequent rounds. For brevity, we will often refer to
A(n, f,c) as the family of synchronous c-counters over n nodes with resilience f. For
example, A € A(4,1,2) denotes a synchronous 2-counter (i.e. a binary counter) over 4
nodes tolerating one failure.

4. Boosting Resilience. In this section, we show how to use existing “small”
synchronous counters to construct new “large” synchronous counters with a higher

This manuscript is for review purposes only.

261
262

263
264
265
266
267
268
269
270
271
272

)
=~
Tl o~ W

= 9 9 9 =9 3
N o C

DN N NN N NN
®

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 7

resilience f and a larger number of nodes n; we call this resilience boosting. We will
then apply the idea recursively, with trivial counters as a base case.

4.1. Road Map. The high-level idea of resilience boosting is as follows. We
start with counters that have a low resilience f’ and use a small number of nodes n’.
We use such counters to construct a new “weak” counter that has a higher resilience
f > /' and a large number of nodes n > n’ but only needs to behave correctly once
in a while for sufficiently long. Once such a weak counter exists, it can be used to
provide consistent round numbers for long enough to execute a single instance of a
high-resilience consensus protocol. This can be used to reach agreement on the output
counter.

Constructing the Weak Counter.. For clarity, we will use here the term strong
counter to refer to a self-stabilising fault-tolerant counter in the usual sense, and the
term weak counter to refer to a counter that behaves correctly once in a while. We
assume that f’-resilient strong counters for all f/ < f already exist, and we show how
to construct an f-resilient weak counter that behaves correctly for at least 7 rounds.
Put slightly more formally, a weak 7-counter satisfies the following property: there
exists a round r such that for all correct nodes v,w € V' \ F satisfy

e d(v,r) =d(w,r) and

o d(v,7")=d(v,” —1)+1 mod 7 forall v € {r+1,...,r+7—1},
where d(v,r) denotes the value of the weak counter at node v in round r. That is,
eventually there will be 7 consecutive rounds during which the (weak) counter values
agree and are incremented by one modulo 7 every round. However, after these 7
rounds, the counters can behave arbitrarily.

Let fo+ f1 + 1= f and ng + n1 = n. We take an fy-resilient strong 27-counter
A\ with ng nodes and an f;-resilient strong 67-counter A; with n; nodes, and use
them to construct an f-resilient weak counter with n nodes.

We partition n nodes in disjoint “blocks”: block 0 runs Ay with ng nodes and
block 1 runs A, with ny nodes. At least one of the algorithms will eventually stabilise
and count correctly. The key challenge is making sure that eventually all correct nodes
(in both blocks!) will follow the same correct counter, at least for 7 rounds.

To this end, each block maintains a leader pointer. The leader pointers are changed
regularly: block 0 changes its leader pointer every 7 rounds, and block 1 changes its
leader pointer every 37 rounds. If the leader pointers behave correctly, there will be
regularly periods of 7 rounds such that both of the leader pointers point to the same
correct block.

If we had reliable counters, block i could simply use the current value of counter
A, to determine the current value of its leader pointer. However, one of the counters
might misbehave. As a remedy, each node v of block i checks if the output variable of
counter A; increases by 1 in each round. If not, it will consider A; faulty for O(7)
rounds. The final output of a node is determined as follows:

e If node v in block 4 thinks that A; is faulty, it outputs the current value of
counter Aq_;.
e Otherwise, it uses the current value of A; to construct the leader pointer
¢ € {0, 1}, and it outputs the current value of counter A,.
Note that the counter A; might seem to be behaving in a faulty manner if there has
not been enough time for A; to stabilise. However, each node v of block ¢ will consider
a block to be faulty at most ©(7) rounds before checking again whether the output
of A, behaves consistently. Thus, if A; eventually stabilises, then eventually node v
stops considering A; as faulty for good (at least until the next transient failure).

This manuscript is for review purposes only.

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350

w w
W N =

w
b

w W W W
> >
(&)

3

8 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

The above consistency check almost cuts it—except that two nodes w # v of block
1 may have different opinions on the current value of A;. We clear this final hurdle
by enlisting the help of all nodes for a majority vote on what the current value of A;
actually is. Essentially, we use threshold voting; this way all nodes that think that A;
behaves correctly will agree on a globally unique counter value «; for A;.

If, for example, block 0 contains at most fy faulty nodes, all of this eventually
entails the following:

1. Counter Ag stabilises, counts correctly, and all correct nodes agree on its
counter value «g.

2. All correct nodes of block 0 think that block 0 is counting correctly. They
use aq to derive the value of the leader pointer. Once in 27 rounds, when the
27-counter g wraps around to 0, the pointer switches to 0, and the nodes
will output the counter value aq for 7 rounds.

3. Some correct nodes of block 1 may think that block 1 is counting correctly
for ©(7) rounds. While this is the case, all of them agree on a value oy that
increases by 1 in each round. This value is used to derive the leader pointer
of block 1. Once in 67 rounds, when the 67-counter «; wraps around to 0,
the pointer will switch to 0, and the nodes will output the value of ag for 37
rounds (as the leader pointer does not change for 37 rounds).

4. Some correct nodes of block 1 may detect that block 1 is faulty. Such nodes
will output the value of aq for ©(7) rounds.

5. In summary, eventually there will be 7 consecutive rounds during which all
correct nodes output the same counter value ag.

The other case (block 1 has at most f; faulty nodes) is analogous.

Using the Weak Counter.. Now we have constructed a counter that will eventually
produce a consistent output for at least 7 rounds. We leverage this property to execute
the phase king consensus protocol [6] to stabilise the output counters. The protocol
will have the following crucial property: if all nodes agree on the output, then even if
the round counter becomes inconsistent, the agreement on the output persists. Thus,
it suffices for us that 7 is large enough to enable the nodes to consistently execute the
phase king algorithm once to reach agreement; 7 = O(f) will do.

The stabilisation time on each level is the maximum of the stabilisation times
of counters A; plus O(7) = O(f); by choosing f1 =~ fo ~ f/2, we can thus ensure
an overall stabilisation time of O(f), irrespectively of the number of recursion levels.
Formally, we prove the following theorem:

THEOREM 4.1. Let ¢,n > 1 and f < n/3. Define ng = |[n/2], n1 = [n/2],
fo=1(f=1/2], i=T[(f—-1)/2], and 7 = 3(f +2). If for i € {0,1} there exist
synchronous counters A; € A(n;, fi,c;) such that ¢; = 3' - 27, then there exists a
synchronous c-counter B € A(n, f,c) that

o stabilises in T(B) = max{T(Ao),T(A1)} + O(f) rounds, and
o has state complezity of S(B) = max{S(Ao),S(A1)} + O(log f +logc) bits.

We fix the notation of this theorem for the remainder of this section. More-
over, for notational convenience we abbreviate T = max{T(Ay),T(A;1)} and S =
max{S(Aq), S(A1)}.

4.2. Agreeing on a Common Counter (Once in a While). In this part, we
construct a counter that will eventually count consistently at all nodes for 7 rounds.
The 7-counter then will be used as a common clock for executing the phase king
algorithm.

This manuscript is for review purposes only.

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 9

We partition the set of nodes V = V5 UV such that Vo N'Vy =0, [Vy| = ng and
|[Vi] = n1. We refer to the set V; as block i. For each i € {0,1}, the nodes in set V;
execute the algorithm A;. In case block 7 has more than f; faults, we call the block 4
faulty. Otherwise, we say that block 7 is correct. By construction, at least one of the
blocks is correct. Hence, there is a correct block ¢ for which A; stabilises within T
rounds, that is, nodes in block 7 output a consistent c;-counter in rounds r» > T.

LEMMA 4.2. For some i € {0,1}, block i is correct.

Proof. By choice of f;, we have f = fo + f1 + 1. Hence, at least one of the sets V;
will contain at most f; faults.]

Next, we apply the typical threshold voting mechanism employed by most Byzan-
tine tolerant algorithms in order to filter out differing views of counter values that are
believed to be consistent. This is achieved by broadcasting candidate counter values
and applying a threshold of n — f as a consistency check, which guarantees that at
most one candidate value from the set [c] can remain. In case the threshold check fails,
a fallback value L ¢ [c] is used to indicate an inconsistency. This voting scheme is
applied for both blocks concurrently, and all nodes participate in the process, so we
can be certain that fewer than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have
behaved consistently over a sufficient number of rounds; this is verified by the obvious
mechanism of testing whether the counter increases by 1 each round and counting the
number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast by each
node, and determine majority values. Note that Byzantine nodes may send different
values to different nodes, that is, it may happen that correct nodes output different
values from such a vote. We refer to a strong majority as at least n— f nodes supporting
the same value, which is then called the majority value. If a node does not see a strong
majority, it outputs the symbol | instead. Clearly, this procedure is well-defined for
f<n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation by
saying “majority vote” when, precisely, we should talk of “the output of the majority
vote at node v”. Since we require that f < n/3, the following standard argument
shows that for each vote, there is a unique value such that each node either outputs
this value or L.

LEMMA 4.3. Ifv,w € V \ F both observe a strong majority, they output the same
magjority value.

Proof. Fix any set A of n — f correct nodes. For v and w to observe strong
majorities for different values, for each value A must contain n — 2f nodes supporting
it. However, as correct nodes broadcast the same value to each node, this leads to the
contradiction that |A] >2(n—2f)=n—f+ (n—3f) >n—f=]A| d

We now put this principle to use. In the following, we will use the notation
z(v,7) to refer to the value of local variable z of node v in round r. As we consider
self-stabilising algorithms, the nodes themselves are not aware of what is the value of
r. We introduce the following local variables for each node v € V, block i € {0,1},
and round r > 0 (see Tables 2 and 3):

e m;(v,r) stores the most frequent counter value in block 7 in round r, which
is determined from the broadcasted output variables of A; with ties broken
arbitrarily,

e M;(v,r) stores the majority vote on m;(v,r — 1),

This manuscript is for review purposes only.

423
424
125
426
427
428
429

430

10 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

TABLE 2
The local state variables used in the boosting construction.

Variable Range Description

mi(v,) [ei] the most frequent value observed for the A; counter of block ¢
M;(v,r) [e;JU{L} the result of majority vote on m;(-,r — 1) values

wi(v,r) [e1+1] “cooldown counter” that is reset if block i behaved inconsistently
di(v,r) [e;JU{L} observation on what seems to be the counter output of block i

Li(v,r) {0,1,1} the value of the “leader pointer” for block i

L(v,T) {0,1,1} leader pointer used by node v

d(v,r) [7] once-in-a-while round counter for clocking phase king
a(v,r) [c]U{co} the output of the new c-counter we are constructing
b(v,r) {0,1} helper variable for the phase king algorithm

TABLE 3
Behaviour of local state variables; pointers switch once in 3*T rounds.

Variable Block ¢ is correct Block i is faulty

m; (U, 7“) consistent counter arbitrary values

M;(v,r) consistent counter L or some consistent value
di(v,r) consistent counter L or some consistent counter
Li(v,r) consistent pointer 1 or some consistent pointer

e w;(v,r) is a cooldown counter which is reset to 2¢; whenever the node perceives
the counter of block ¢ behaving inconsistently, that is, M;(v,r) # M;(v,r —
1) + 1 mod ¢;. Note that this test will automatically fail if either value is L.
Otherwise, if the counter behaves consistently, w;(v,) = max{w;(v,r — 1) —
1,0}.
Clearly, these variables can be updated based on the local values from the previous
round and the states broadcasted at the beginning of the current round. This requires
nodes to store O(log¢;) = O(log f) bits.
Furthermore, we define the following derived variables for each v € V, block
i € {0,1}, and round r (see Tables 2 and 3):
di(v,m) = M;(v,r) if w;(v,r) =0, otherwise d;(v,r) = L,
Gi(v,r) = |di(v,7)/(37)| if di(v,7) # L, otherwise £;(v,7) = L,
for v e Vi, L(v,r) = £;(v,r) if £;(v,r) # L, otherwise £(v,r) = £1_;(v,r), and
d(v,r) = dy(yr)(v,7) mod 7 if £(v,7) # L, otherwise d(v,r) = 0.
These can be computed locally, without storing or communicating additional values.
The variable ¢(v,r) indicates the block that node v currently considers leader. Note
that some nodes may use (-, 7) as the leader pointer while some other nodes may
use ¢1(-,7) as the leader pointer, but this is fine:
e all nodes v that use £(v,r) = £o(v,r) observe the same value £o(-,7) # L,
e all nodes w that use £(w,r) = ¢1(w,r) observe the same value ¢1(-,r) # L,
e cventually 4y(-,r) and ¢1(-,7) will point to the same correct block for 7 rounds.
We now verify that ¢(v,r) indeed has the desired properties. To this end, we
analyse d;(v,r). We start with a lemma showing that eventually a correct block’s
counter will be consistently observed by all correct nodes.

LEMMA 4.4. Suppose block i € {0,1} is correct. Then for all v,w € V\ F, and

This manuscript is for review purposes only.

131
432
433
134
435
436
437
438
439
440
441
442
443
444
145
446
447
448

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 11

rounds r > R =T + O(f) it holds that d;(v,r) = d;(w,r) and d;(v,r) = d;(v,r — 1) +
1 mod ¢;.

Proof. Since block i is correct, algorithm A; stabilises within T'(A;) rounds. As
fi < n;/3, we will observe correctly m; (v, r+1) = m;(v,7)+1 mod ¢; for all > T'(A;).
Consequently, M;(v,r + 1) = M;(v,r) + 1 mod ¢; for all r > T'(A;) + 1. Therefore,
w;(v,r) cannot be reset in rounds r > T(A;) + 2, yielding that w;(v,r) = 0 for all
r>T(A;)+2+42c; =T+ O(f). The claim follows from the definition of variable
d;(v,). 0

The following lemma states that if a correct node v does not detect an error in
a block’s counter, then any other correct node w that considers the block’s counter
correct in any of the last 2c; Tounds has a counter value that agrees with v.

LEMMA 4.5. Suppose fori € {0,1}, v € V\F, and r > 2¢1 = O(f) it holds that
di(v,r) # L. Then for each w € V\ F and each v’ € {r —2c1 +1,...,r} either
o di(w,r") =d;(v,r) — (r — ') mod ¢;, or
o di(w,r")=1.
Proof. Suppose d;(w,r’) # L. Thus, d;(w,r") = M;(w,r’") # L. By Lemma 4.3,
either M;(v,7’) = L or M;(v,r") = M;(w,r"). However, M;(v,r") = L would imply
that w;(v,r’) = 2¢; and thus

w;(v,r) > wi(v, ")+ 1" —r=2c; +7" —1 >0,

contradicting the assumption that d;(v,7) # L. Thus, M;(v,7") = M;(w,r’) =
d;(w,r"). More generally, we get from r —r' < 2¢; and w;(v,r) = 0 that w;(v,r") # 2¢;
for all ¥ € {r/,...,r}. Therefore, we have that M;(v,r"” +1) = M;(v,r"”) + 1 mod ¢
for all ¥ € {v',...,r — 1}, implying

di(v,r) = Mi(v,r) = M;(v,r") +r — 7" = di(w, ") + 7 =1/,

proving the claim of the lemma.]

The above properties allow us to prove a key lemma: within T+ O(f) rounds,
there will be 7 consecutive rounds during which the variable £(v, r) points to the same
correct block for all correct nodes.

LEMMA 4.6. Let R be as in Lemma 4.4. There is a roundr < R+O(f) = T+O(f)
and a correct block i so that for allv € V\F and v’ € {r,...,r+ 7 — 1} it holds that
L(v,7") =i

Proof. By Lemma 4.2, there exists a correct block ¢. Thus by Lemma 4.4, variable
d;(v,r) counts correctly during rounds r > R. If thereisnoround r € {R, ..., R+c¢;—1}
such that some v € V' \ F has ¢;_;(v,r) # L, then £(v,r) = ¢;(v,r) for all such v and
r and the claim of the lemma holds true by the definition of ¢;(v,r) and the fact that
d;(v,r) counts correctly and consistently.

Hence, assume that rg € {R,..., R+ ¢; — 1} is minimal with the property that
there is some v € V' \ F so that ¢;_;(v,79) # L. Therefore, dy_;(v,r9) # L and, by
Lemma 4.5, this implies for all w € V' \ F and all r € {ro,...,ro+2c; — 1} that either
di—;(w,r) = L or di_;(w,r) = d1_;(v,70) + r — ro. In other words, there is a “virtual
counter” that equals dy—;(v, rg) in round rg so that during rounds {ro,...,ro+2¢c; —1}
all dy_;(-,-) variables that are not L agree with this counter.

Consequently, it remains to show that both ¢; and the variable ¢;_; derived
from this virtual counter are equal to i for 7 consecutive rounds during the interval

This manuscript is for review purposes only.

516
517
518

519

12 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

I={rog,...,70 +2c1 — 1}, as then {(v,r") =i for v € V'\ F and all such rounds 7’.
Clearly, the c;-counter consecutively counts from 0 to ¢; — 1 at least once during
the interval I = {rg,..., 70 + 2¢1 — 1}. Recalling that ¢; = 67, we see that ¢1(v,r) =i
for all v € V \ F with ¢;(v,r) # L for some interval I; C I of 37 consecutive
rounds. As ¢y = 27, we have that {y(v,r) =i for all v € V' \ F with {y(v,r) # L
for 7 consecutive rounds during this subinterval I;. Thus, we have an interval
Io={r,...,r+7—1} C I; such that for all v’ € Iy we have {y(v,7"), l1(v,r") € {i, L}
and £o(v,r") # L or £1(v,7") # L yielding £(v,r’) = i for each correct node. Because
r<ro+2c —1<R+3c; =T+ O(f), this completes the proof.]

Using the above lemma, we get a counter where all nodes eventually count correctly
and consistently modulo 7 for at least 7 rounds.

COROLLARY 4.7. There is a round r =T + O(f) so that for all v,w € V\ F it
holds that
1. d(v,r) = d(w,r) and
2. forallr" € {r+1,...,7+7—1} we have d(v,r") =d(v,7" — 1)+ 1 mod 7.

Proof. By Lemma 4.6, there is a round » = 7'+ O(f) and a correct block ¢ such
that for all v € V'\ F we have £(v,r’") =i for all ¥’ € {r,...,r+ 7 —1}. Moreover, r is
sufficiently large to apply Lemma 4.4 to d;(v,r’) = d(v,r’) for ' € {r+1,...,r+7—1},
yielding the claim.]

4.3. Reaching Consensus. Corollary 4.7 guarantees that all correct nodes
eventually agree on a common counter for 7 rounds, i.e., we have a weak counter. We
will now use the weak counter to construct a strong counter.

Our construction uses a non-self-stabilising consensus algorithm. The basic idea
is that the weak counter serves as the “round counter” for the consensus algorithm.
Hence we will reach agreement as soon as the weak counter is counting correctly. The
key challenge is to make sure that agreement persists even if the counter starts to
misbehave. It turns out that a straightforward adaptation of the classic phase king
protocol [6] does the job. The algorithm has the following properties:

e the algorithm tolerates f < n/3 Byzantine failures,

e the running time of the algorithm is O(f) rounds and it uses O(log ¢) bits of
state,

e if node k is correct, then agreement is reached if all correct nodes execute
rounds 3k, 3k + 1, and 3k + 2 consecutively in this order,

e once agreement is reached, it will persist even if nodes execute different rounds
in arbitrary order.

We now describe the modified phase king algorithm that will yield a c-counting
algorithm. Denote by a(v,r) € [¢] U {oco} the output value of the algorithm at round
r. Here oo is used as a “reset state” similarly to L in the previous section. There is
also an auxiliary binary value b(v,r) € {0,1}. Define the following short-hand for the
increment operation modulo ¢:

@l — {z+1modc ?fx7éoo,
00 if x = 0.

For k € [f + 2|, we define the instruction sets listed in Table 4. Recall that in
the model of computation that we use in this work, in each round all nodes first
broadcast their current state (in particular, the current value of a), then they receive
the messages, and finally they update their local state. The instruction sets pertain to

This manuscript is for review purposes only.

v Ov Ot Ot Ot
RN
NGO R

~N O ot

NN NN

oo

ot Ot Ot ot
N
5 = R

(S BTSNV

33

=R W W W W W W W Ww W Ww
en)

N
N

Tt o= W

-3

o Ot Ot Ot QU QU Ot Ot Ot QU QU QO Ot Ot Ot QU Ot gt gt Ot

=
oo

Ut ot

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 13

TABLE 4
The instruction sets for node v € V in the phase king protocol.

Set Instructions for round r > 0

I3y Oa. If fewer than n — f nodes sent a(v,r — 1), set a(v,r) = oco.
Ob. Otherwise, a(v,r) = a(v,r — 1) & 1.

Isp+1: la. Let z; = [{u € V :a(u,r — 1) = j}| be the number of j values received.
1b. If zg(y,r—1) = n — f, set b(v,7) = 1. Otherwise, set b(v,7) = 0.
le. Let z =min{j: z; > f}.
1d. Set a(v,r) =z ® 1.

Ispy2: 2a. If a(v,r —1) = oo or b(v,r — 1) =0, set a(v,r) = min{c — 1,a(k,r — 1)} & 1.
2b. Otherwise, a(v,7) = a(v,7 — 1) ® 1.
2c. Set b(v,r) = 1.

the final part—how to update the local state variables a and b based on the messages
received from the other nodes.

First, we show that if the instruction sets are executed in the right order by all
correct nodes for a correct leader node k € [f + 2|, then agreement on a counter value
is established.

LEMMA 4.8. Suppose that for some correct node k € [f +2] and a round r > 2, all
non-faulty nodes execute instruction sets Isy, Ispy1, and Isgyo in roundsr —2, r—1,
and r, respectively. Then a(v,r) = a(u,r) # oo for any two correct nodes u,v € V.
Moreover, b(v,r+1) =1 at each correct node v € V.

Proof. This is essentially the correctness proof for the phase king algorithm.
Without loss of generality, we can assume that the number of faulty nodes is exactly
f. Since we have f < n/3, it is not possible that two correct nodes u,v € V \ F
both satisfy a(v,r — 2) # a(u,r — 2) and a(v,r — 2),a(u,r — 2) € [c]: otherwise, on
round r — 2, nodes u and v would have observed different majority values contradicting
Lemma 4.3. Therefore, there exists some x € [¢] such that a(v,r — 2) € {x, 00} for all
v € V\ F. Checking Is;4+1 we get that a(v,r —1) € {x+ 1 mod ¢, o0}, as no node can
see values other than x or co more than f times when executing instruction 1lc.

To prove the claim, it remains to consider two cases when executing instructions
in I3k4o. In the first case, all non-faulty nodes execute instruction 2a on round r.
Then a(u,r) = a(v,r) = min{c — 1,a(k,r — 1)} & 1 € [] for any u,v € V' \ F.

In the second case, there is some node v not executing instruction 2a. Hence,
a(v,r —1) # oo and b(v,r — 1) = 1, implying that v computed z4(y,,—2) > n — f on
round r — 1. Consequently, at least n — 2f > f correct nodes u satisfy a(u,r —2) =
a(v,r—2) # co. We can now infer that a(u,r—1) = a(v,r—1) = a(v,r—2)+1 mod c for
all correct nodes u: instruction lc must evaluate to a(v,r —1) € [c] at all correct nodes,
because we know that no correct node u satisfies that both a(u,r — 2) # a(v,r — 2)
and a(u,r — 2) # oo. This implies that a(u,r) = a(v,r) # oo for all correct nodes u,
regardless of whether they execute instruction 2a. Trivially, b(v,) = 1 at each correct
node v due to instruction 2c. 0

Next, we argue that once agreement is established, it persists—it does not matter
any more which instruction sets are executed.

LEMMA 4.9. Assume that a(v,r) = x € [¢] and b(v,r) =1 for all correct nodes v
in some round r. Then a(v,r + 1) = x + 1 mod ¢ and b(v,r + 1) = 1 for all correct

This manuscript is for review purposes only.

ot
ot
w

© 0 N O Ut e

Y Ot Ot Ot Ot Ut Ot

=}
S

[I G, BN, BN, e, BN B}

o

~N O

ot Ot Ot Ur Ut Ut Ut
=)

o9

v Ot Ot Ot Ot
S99 9 9 395
ot =W N = O O

o

o e I A B |

e}

14 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

nodes v.

Proof. Each node observes at least n — f nodes with counter value z € [¢], and
hence at most f nodes with some value y # x. Let v be a correct node and consider
all possible instruction sets it may execute.

First, consider the case where instruction set I3; is executed. In this case, v
increments z, resulting in a(v,r + 1) = + 1 mod ¢ and b(v,r + 1) = 1. Second,
executing Isr11, node v evaluates z, > n — f and z, < f for all y # x. Hence it sets
b(v,r+1) =1 and a(v,r + 1) = + 1 mod ¢. Finally, when executing I3;+2, node v
skips instruction 2a and sets a(v,r + 1) = £ + 1 mod ¢ and b(v,r + 1) = 1. 0

4.4. Proof of Theorem 4.1. We now have all the building blocks to devise
an f-resilient c-counter running on n nodes. The idea is as follows: first, we use
the construction given in Section 4.2 to get a weak 7T-counter that eventually counts
correctly for 7 = 3(f + 2) rounds. Concurrently, all nodes execute the modified phase
king algorithm given in Section 4.3 which by Lemma 4.8 and Lemma 4.9 guarantees
that all nodes will establish and maintain agreement on the output variable for the
c-counter.

THEOREM 4.1. Let ¢,n > 1 and f < n/3. Define no = [n/2], n1 = [n/2],
fo=1(f=1/2], 1i=T1(f-1)/2], and 7 = 3(f +2). If for i € {0,1} there exist
synchronous counters A; € A(n, fi,c;) such that ¢; = 3¢ . 27, then there exists a
synchronous c-counter B € A(n, f,c) that

o stabilises in T(B) = max{T(Ayp),T(A1)} + O(f) rounds, and
e has state complezity of S(B) = max{S(Ag), S(A1)} + O(log f + logc) bits.

Proof. First, we apply the construction underlying Corollary 4.7. Then we have
every node v € V in each round r execute the instructions for round d(v,r) of
the phase king algorithm from Section 4.3. It remains to show that this yields a
correct algorithm B with stabilisation time T'(B) = T'+ O(f) and state complexity
S(B) =S5+ 0O(log f +logc), where T = max{T'(A;)} and S = max{S(A;)}.

By Corollary 4.7, there exists a round r = T + O(f) so that the variables d(v,r)
behave as a consistent 7-counter during rounds {r,...,r+7 — 1} for all v € V' \ F.
As there are at most f faulty nodes, there exist at least two correct nodes v € [f + 2].
Since 7 = 3(f + 2), then for at least one correct node k € [f + 2] \ F, there is a
round 7 < r, < 7+ 7 — 3 such that d(w,rp + h) = 3k + h for all w € V \ F and
h € {0,1,2}. Therefore, by Lemma 4.8 and Lemma 4.9, the output variables satisfy
a(v,’) = a(w,r’) € [c] for all correct nodes and rounds ' > r; + 3. Thus, the
algorithm stabilises in r, + 3 <r+7=7r+4+ O(f) =T + O(f) rounds.

The bound for the state complexity follows from the facts that, at each node, we
need at most S bits to store the state of A; and O(log7 + logc) = O(log f + logc)
bits to store the variables listed in Table 2. |

5. Deterministic Counting. In this section, we use the construction given in
the previous section to obtain algorithms that only need a small number of state bits.
Essentially, all that remains is to recursively apply Theorem 4.1. Each step of the
recursion roughly doubles the resilience in an optimal manner: if we start with an
optimally resilient algorithm, we get a new algorithm with higher, but still optimal,
resilience. Therefore, to get any desired resilience of f > 0, it suffices to repeat the
recursion for ©(log f) many steps. Figure 1 illustrates how we can recursively apply
Theorem 4.1.

We now analyse the correctness, time and state complexity of the resulting
algorithms.

This manuscript is for review purposes only.

601
602
603
604
605

606

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

624

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 15

[(oo 00)(0000) A6, 2)]
[(oooo)(oooo A<8,2>j

A(16,5)

Fic. 1. An example on how to recursively construct a 5-resilient algorithm running on 16 nodes.
The small circles represent the nodes. Each group of four nodes runs a 1-resilient counter A(4,1).
On top of this, each larger group of 8 nodes runs a 2-resilient counter A(8,2) attained from the
first step of recursion. At the top-most layer, all of the 16 nodes run a 5-resilient counter A(16,5).
Faulty nodes are black and faulty blocks are gray.

THEOREM 1.1. For any integers c,n > 1 and f < n/3, there exists a deterministic
f-resilient synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
uses O(log® f + logc) bits to encode the state of a node.

Proof. We show the claim by induction on f. The induction hypothesis is that
forall f> f'>0,c>1,and n’ > 3f’, we can construct B € A(f’,n’,¢) with

[log f']
TB)<1+af Z (1/2)* and S(B) < B(log? f +logc),
k=0

where o and 3 are sufficiently large constants and for f’ = 0 the sum is empty, that is,
T(B) <1. As 372 ,(1/2)% = 2, the time bound will be O(f”).

Note that for f > 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can
easily generalise to any n > n(f) by running B on the first n(f) nodes and letting
the remaining nodes follow the majority counter value among the first n(f) nodes
executing the algorithm; this increases the stabilisation time by one round and induces
no memory overhead.

For the base case, observe that a O-resilient c-counter of n(0) = 1 node is trivially
given by the node having a local counter. It stabilises in 0 rounds and requires [log]
state bits. As pointed out above, this implies a O-resilient c-counter for any n with
stabilisation time 1 and [log c] bits of state.

For the inductive step to f, we apply Theorem 4.1 with the parameters ng = [n/2],
n1=[n/2], fo=(f—1)/2)], fi=[(f—-1)/2)], 7=3(f +2) and ¢; = 3" - 27. Since
fi < f/2 and n; > 3f;, for i € {0,1}, the induction hypothesis gives us algorithms
A;(n, fi,ci). Now by applying Theorem 4.1 we get an algorithm B with

T(B) = max{T(Aq), T(A1)} + O(f)
[log f/21 k
< 1+%f > <;) +0(f)
k=0

[log f1 1\ *
=l+af Y, <2> +O(f)

k=1

This manuscript is for review purposes only.

627
628
629

630

634

635

636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653

16 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

where in the second to last step we use that « is a sufficiently large constant. Since
the sum is at most 2, we get that T(B) = O(f). Moreover, the state complexity is
bounded by

S(B) = max{S(Ay), S(A1)} + O(log f + logc)

<p <log2) + log J;) + O(log f + logc)

<B (log2 f+logc),

where we exploit that 3 is a sufficiently large constant. Hence, S(B) = O(log? f+logc),
the induction step succeeds, and the proof is complete.]

6. Reducing the Number of Bits Communicated. In this section, we dis-
cuss how to reduce the number of bits broadcast by a node after stabilisation. We
consider the following extension of the model of computation: instead of a node always
broadcasting its current state, we allow it to broadcast an arbitrary message (including
an empty message) each round. Formally, this entails that we extend the definition of
an algorithm by (1) introducing a new function u: [n] x X — M that maps the current
state = to a message p(x) which is broadcast and (2) modify the state transition
function to map the old internal state and the vector of received messages to a new
state, that is, the new state transition function has the form ¢’ : [n] x X x M™ — X.

First, we show how to construct counters that only send O(1 + Blog B) bits every
k rounds, where B = O(log ¢/ log k), while increasing the stabilisation time only by
an additive O(k) term, where k = Q(f) is a parameter. In particular, we show that
for polynomial-sized counters with optimal resilience, the algorithm only needs to
communicate an asymptotically optimal number of bits after stabilisation:

COROLLARY 6.1. For any n > 1 and ¢ = n°W) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f=|(n—1)/3], stabilises in ©(n) rounds, requires O(log®n) bits to encode the state
of a node, and for which after stabilisation correct nodes broadcast aysmptotically
optimal O(1) bits per ©(n) rounds.

We start by outlining the high-level idea of the approach, then give a detailed
description of the construction we use, and finally prove the main results of this section.

6.1. High-Level Idea. The techniques we use are very similar to the ones we
used for deriving Theorem 1.1. Essentially, we devise a “silencing wrapper” for
algorithms given by Theorem 1.1. Let A be such a counting algorithm. The high-level
idea and the key ingredients are the following:

e The goal is that nodes eventually become happy: they assume stabilisation
has occured and check for counter consistency only every x rounds (as self-
stabilising algorithms always need to verify their output).

e Happy nodes do not execute the underlying algorithm A.

e Using a cooldown counter with similar effects as shown in Lemma 4.5, we
enforce that all happy nodes output consistent counters.

e We override the phase king instruction of A if at least n —2f > f + 1 nodes
claim to be happy and propose a counter value x. In that case nodes adjust
their counter output to match x. If there is no strong majority of happy nodes
supporting a counter value, either all nodes become unhappy or all correct
nodes reach agreement and start counting correctly.

This manuscript is for review purposes only.

672
673
674
675
676
677
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 17

e If all correct nodes are unhappy, they execute A “as is” reaching agreement
eventually.

e The counters are used to make all nodes concurrently switch their state to
being happy, in a way that does not interfere with the above stabilisation
process.

We will show that happy nodes can communicate their counter values very effi-
ciently in a manner that self-stabilises within x rounds. As their counter increases by
1 modulo ¢ every round (or they become unhappy), they can use multiple rounds to
encode a counter value; the recipient simply counts locally in the meantime.

6.2. The Silencing Wrapper. Let A € A(n, f,c) be an algorithm given by
Theorem 1.1 and let ¢ = jk for any j > 0 and x > T(A). We use the short-hand
T = T(A) throughout this section. Let a(v,r) be the output of the synchronous
counting algorithm for node v in round r. Recall that by a strong majority we mean
that at least n — f received messages support a value. We now modify A so that it
meets the additional requirement of little communication after stabilisation.

We introduce two new variables: a cooldown counter ¢(v,r) € [T + 1] and a
“happiness” indicator h(v,r) € {0,1}. These are updated according to the following
rules in every round r > 0:

1. Set t(v,r) = T if there was no strong majority of nodes w with a(w,r —1) =
a(v,r—1) or a(v,r) # a(v,r —1)+1 mod ¢. Otherwise, decrement the counter,
that is, ¢(v,r) = max{0,t(v,r — 1) — 1}.

2. Set h(v,r) = 0if h(v,r — 1) = 1, but there was no strong majority of nodes w
with A(w,r—1) = 1 and a(w,r—1) = a(v,r—1), orif t(v,r) > 0. Set h(v,r) =1
if t(v,r — 1) = 0 and a(v,r — 1) = 0 mod . Otherwise, h(v,r) = h(v,r — 1).

3. If h(v,r) = 0, execute a single step of A except for the phase king instructions
given in Table 4. The counter value a(v,r + 1) is updated according to the
next rule.

4. If received n — 2f times a value a(w,r) = z from nodes with h(w,r) = 1, set
a(v,r + 1) = 2 + 1 mod ¢; if there are two such values z, it does not matter
which is chosen. Otherwise, execute only the phase king instructions of A
given in Table 4 as indicated by the once-in-a-while round counter d(v,r) as
usual; in particular, this determines a(v,r + 1).

In the following, we say that a node v € V' \ F with value h(v,r) =1 is happy in
round r and unhappy if h(v,r) = 0. Moreover, the counters converge in round r if for
all v, w € V\ F, it holds that a(v,r) = a(w,). The idea is to show that not only do the
counters converge (and then count correctly), but also all correct nodes become happy.
As a happy node that remains happy simply increases its counter value by 1 modulo c,
there is no need to explicitly communicate this except for verification purposes. It is
straightforward to exploit this to ensure that the algorithm communicates very little
(explicitly) once all nodes are happy; we will discuss this after showing stabilisation of
the routine.

6.3. Proof of Stabilisation. Let us first establish that if the counters converge,
they will keep counting correctly and correct nodes will become happy within O(k +T)
additional rounds for any parameter x > T

LEMMA 6.2. If the counters converge in round r, then a(u,r’) = a(v,r") = a(u, r)+
(r —7") mod ¢ for all u,v € V\F and r' > r.

Proof. Since the counters have converged, there is a strong majority of nodes
supporting the same value. Hence, variable a(u,r’) is updated according to Rule 4.

This manuscript is for review purposes only.

N NN
© 00 N >

B BEES HEES BRI

W W N N
—

~N N N =
[S L B N
=

w N

b e e N N B |
ot ot ot Ot gt Ut
o = O Ut

O

760
761
762
763
764

765

18 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

As all counter values from correct nodes are identical, it does not matter whether
these nodes are happy or not; either way, the counters are increased by 1 modulo ¢
(cf. Lemma 4.9). |

LEMMA 6.3. If the counters converge in round r, then for all rounds v’ > r+T+k
and all nodes v € V'\ F we have h(v,r’") = 1.

Proof. By Lemma 6.2, the agreement on output values will persist once reached.
Hence, at all nodes v € V' \ F we have t(v,7') =0 in all rounds 7’ > r + T by Rule 1.
Therefore, there is a round " < r + T + & so that t(v,r") = 0 and a(v,r’) = 0 mod &
at all such v. Consequently, all correct nodes jointly set h(v,r’ + 1) = 1. By induction
on the round number, we see that no such node sets h(v,r”") =0 for v/ > 7'+ 1, as
there is always a strong majority of n — f happy and correct nodes supporting the
(joint) counter value. |

We now proceed to show that the counters converge within O(x + T') rounds.
The first step is to observe that if no correct node is happy, then algorithm A is run
without modification, and hence, the counters converge in 1" rounds.

LEMMA 6.4. Letr >T. If for allv e V\F and v’ € {r =T +1,...,r}, we have
h(v,r") = 0, then the counters converge in round r + 1.

Proof. Since h(v,r’) = 0, each node v applies Rule 3 in any such round /. As
there are no happy nodes in round 7/, a node can never receive the same counter value
from more than f nodes that (claim to be) happy. Hence, Rule 4 boils down to just
updating a(v,r’) according to the rules of A. As T'= T(A), algorithm A stabilises
and thus a(v,r) = a(w,r) for all v,w € V'\ F. ad

To deal with the case that some nodes may be happy (which entails that not all
nodes may execute A correctly, destroying its guarantees), we argue that ongoing
happiness also implies that the counters converge. To this end, we first show that
the cooldown counters ¢(v,r) ensure that correct nodes whose counters are 0 count
correctly and agree on their counter values. This is shown analogously to Lemma 4.5.

LEMMA 6.5. Let r > T and v,w € V\ F. If t(v,r) = t(w,r’) = 0 for v’ €
{r—=T+1,...,r}, then a(v,r) = a(w,r’) + r — 7’ mod c.

Proof. Since t(v,7) = 0, by Rule 1 it holds that t(v,r") < r —r’ < T. Hence,
both v and w saw a strong majority of nodes v with a(u,r — 1) = a(v,r’ — 1) and
a(u, 7 — 1) = a(w,r’ — 1), respectively. By Lemma 4.3, it follows that a(v,r’" —
1) = a(w,r" — 1). Likewise, t(v,7") # T for rounds ' < 7’ < r, implying that
a(v,r7) = a(v,r") +r — 1’ mod ¢, and a(w,r’) = a(w,r — 1) + 1 mod ¢ = a(v,r’). O

Except for the initial rounds, the above lemma implies that happy nodes always
have the same counter value: by Rule 2, a node v with h(v,r) = 1 must have ¢(v,r) = 0.
A node remaining happy thus entails that every node receives the same counter value
from at least n — 2f > f 4+ 1 happy nodes, and no other counter value with the same
property may be perceived. In other words, a node staying happy implies that the
counters converge.

LEMMA 6.6. If h(v,r —1) = h(v,r) =1 for some v € V\ F and r > 3, then the
counters converge in round r + 1.

Proof. By Rule 2, any node w with h(v,r) = 1 satisfies t(w,r) = 0. We apply
Lemma 6.5 to see that, for any w € V' \ F that is happy in round r — 1, we have
that a(v,r — 1) = a(w,r — 1). As h(v,r) = h(v,r — 1) = 1, node v observed a strong
majority of happy nodes w with a(v,r — 1) = a(w,r — 1) in round r — 1, implying

This manuscript is for review purposes only.

BN
=~
[\}

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 19

that all nodes received this counter value from at least n —2f > f + 1 happy nodes.
Together with Rule 4, these observations imply that a(u,r) = a(v,7 — 1) + 1 mod ¢
for all u € V'\ F. ad

Using these lemmas and the fact that nodes may become happy only after counting
consistently for sufficiently long and when their counters are 0 modulo x > T, we can
show that the counters converge in all cases.

LEMMA 6.7. Within O(k) rounds, the counters converge.

Proof. Either all v € V\F with h(v,3) = 1 set h(v,4) = 0 or Lemma 6.6 shows the
claim. If there are no nodes v with h(v,r) =1 for r € {4,...,T + 3}, then Lemma 6.4
shows the claim. Hence, assume that there is some node v with hA(v,r) =1 # h(v,r—1)
for some minimal r € {4,...,T + 3}. Again, either h(v,r + 1) = 0 for all such nodes
or we can apply Lemma 6.6; thus assume the former in the following.

Suppose for contradiction that there is a node w with hA(w,r’) = 1 for a minimal
r e {r+1,...,r+ T} As 7 is minimal and all nodes with h(v,7) = 1 have
h(v,r+1) =0, it must hold that h(w,r’ — 1) = 0. Hence, t(w,r' —1) =0 = t(v,r —1).
By Lemma 6.5, this implies that a(w,r’ — 1) = a(v,r — 1) + 7 — 7’ mod c. However,
k>T,0<r—r" <T, and a(v,r—1) = 0 mod &, implying that a(w,r’' —1) # 0 mod &,
which (by Rule 2) is a contradiction to h(w,r’) =1 # h(w,r’ — 1).

We conclude that h(v,7") = 0 for all v and ' € {r 4+ 1,...,7 + T}. The claim
follows by applying Lemma 6.4.]

We now can conclude that within O(k) rounds, the algorithm stabilises in the
sense that all nodes become happy and count correctly and consistently.

COROLLARY 6.8. There exists a round R = O(k) such that for allv e V\ F and
r > R, it holds that h(v,r) = 1, and a(v,r) = a(v,r—1)+1 mod ¢, and a(v,r) = a(w,r)
for allw e V\ F.

Proof. By Lemma 6.7 we get that there exists a round ' = O(k) in which the
counters converge. Since 7’ + T + k = O(k), happiness follows from Lemma 6.3 and
agreement follows from Lemma 6.2. 0

6.4. Reducing the Communication Complexity after Stabilisation. As
noted earlier, the counter variables for happy nodes count modulo ¢. Hence, it is trivial
to deduce the counter value of a happy node from its counter value in an earlier round.
Moreover, happy nodes do not execute algorithm A. Therefore, we can change the
encoding of the happy nodes’ counter values to reduce the communication complexity
after stabilisation.

COROLLARY 6.9. Suppose happy nodes communicate their counter values by any
method that stabilises in Kk rounds, then the algorithm presented in this section retains
its properties, except that its stabilisation time increases by an additive k rounds.

The above immediately implies that happy nodes v could simply transmit the
a(v,r) only in rounds r when a(v,r) mod £ = 0 and perform no other communication.
The fact that v does not transmit readily implies that it is happy, permitting to derive
its counter value by counting from the most recent value v transmitted. Moreover, by
Lemma 6.5 the output counters of happy nodes agree after O(1) rounds. Thus, a single
local counter suffices for verification yielding a cost of using only [logc] additional
bits of memory per node.

Clearly, this trivial encoding mechanism stabilises in x rounds. However, we can
do much better. For simplicity, we do not try to give a tight bound here.

This manuscript is for review purposes only.

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

836
837
838
839
840

841
842
843
844

845
846

847
848
849
850

851

852
853
854
855
856

857

20 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

LEMMA 6.10. Happy nodes can communicate their counter values by sending only
O(1 + Blog B) bits per k rounds, where B = O(logc/logk), in a way that stabilises
in Kk rounds.

Proof. First, we fix two unique bit strings HAPPY and UNHAPPY both having
a length of O(1) bits. We mark all messages from unhappy nodes with the header
UNHAPPY. Happy nodes v € V' \ F send the bit string HAPPY in rounds r when
a(v,7) mod £ = 0. In this and the subsequent k — 1 rounds, they furthermore send
up to b bits in order to encode the value of a(v,r) € [c], where they avoid the two
excluded unique bit strings HAPPY and UNHAPPY. Since we are only interested in the
asymptotic behaviour, we may neglect these possible collisions and determine how
large b must be so that in k rounds we can encode ¢ different values.

Since there are x rounds in which to broadcast a message, we can think each round
as being a bin containing the bits broadcast by a node. Suppose we have B = b/logb
uniquely labelled balls that we can place in k different bins. This way we can encode
B-length strings over an alphabet of size k by interpreting each ball in a bin i € [k] as
giving the indices for the symbol i. This allows us to encode a total of x? distinct
values.

Since encoding the unique label of a single ball takes O(log B) bits and we can
use constant-sized delimiters when encoding the set of balls in a single bin, we need
O(Blog B) bits to encode all the values. Thus, each node communicates a total of
O(Blog B) = O(b) bits during the course of x rounds. In order to encode ¢ different
values, it suffices to satisfy ¢ < xZ. This can be done by choosing B > log ¢/ log k.
Taking into account the bits for delimiters and the HAPPY string, the claim follows.O

Overall, we obtain the following theorem.

THEOREM 6.11. For any integers n > 1, f < n/3, k = Q(f), and ¢ = kj for
7 > 0, there exists an f-resilient synchronous c-counter that runs on n nodes, stabilises
in O(k) rounds, and requires O(log® f + logc) bits to encode the state of a node.
Moreover, once stabilised, nodes send only O(1 + Blog B) bits per k rounds, where
B =0O(logc/logk).

Proof. Let A € A(n, f,c) be an algorithm given by Theorem 1.1. As T(A) = O(f),
for any x > T(A), the claim now directly follows from Corollaries 6.8 and 6.9 and
Lemma 6.10, where we note that only a constant number of variables of size at most
max{7T(A), c} need to be encoded in the state of a node. O

We remark that since x > T(A) = O(f), in case of optimal resilience and ¢ = n®W) it
holds that B = O(1), and thus also, O(1 + Blog B) = O(1).

COROLLARY 6.12. For any n > 1 and ¢ = n°W) that is an integer multiple of
n, there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f=|(n—1)/3], stabilises in ©(n) rounds, requires O(log®n) bits to encode the state
of a node, and for which after stabilisation correct nodes broadcast aysmptotically
optimal O(1) bits per ©(n) rounds.

Proof. All properties except for the optimality of the last point follow from the
choice of parameters by picking x = ©(n) in Theorem 6.11. The claimed optimality
follows from the fact that in order to prove to a node that its counter value is
inconsistent with that of others, it must receive messages from at least f + 1 = O(n)
nodes; to guarantee stabilisation in O(n) rounds, this must happen every (n) rounds
for each correct node. O

This manuscript is for review purposes only.

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 21

7. Sending Fewer Messages. So far we have considered the size of messages
nodes need to broadcast every round. In the case of the algorithm given in Theorem 1.1,
every node will send S = O(log”® f + logc) bits in each round. As there are ©(n?)
communication links, the total number of communicated bits in each round is ©(S-n?).
In this section, we consider a randomised variant of the algorithm that achieves better
message and bit complexities in a slightly different communication model.

7.1. Pulling Model. Throughout this section we consider the following variant

of our communication model, where in every synchronous round ¢ each correct node v:

1. contacts a subset C'(v,t) C V of other nodes to pull information from,

2. pulls a response message r,, € M from every contacted node u € C(v,t),

3. updates its local state according to its current state and the responses it

received.

Thus, every round ¢t node v obtains a message vector m = (myg,...m,_1), where
My =1y if u € C(v,t) and m,, = L, otherwise. Besides this modification, the model of
computation is as before: node v updates its state using the state transition function
g: [n] x X x M™ — X and a correct node u in state z,, responds with the message
w(xy), where p: X — M maps the internal state of a node to a message. However
in the pulling model, the algorithm also needs to specify the set C(v,t) of nodes it
contacts every round. We assume that every correct node chooses this set randomly
independent of its internal state.

As before, faulty nodes may respond with arbitrary messages that can be different
for different pulling nodes. We define the (per-node) message and bit complexities of
the algorithm as the maximum number of messages and bits, respectively, pulled by a
non-faulty node in any round.

This model is motivated by the challenges of designing energy-limited fault-tolerant
circuits. We suggest the approach in which each node that makes a request for data
also has to provide the energy resources for processing and answering the request.
This way by limiting the energy supply of each individual node, we can also effectively
limit the total amount of energy wasted due to the actions of the Byzantine nodes.
However, to make this approach feasible, we have to design an algorithm in which
each non-faulty node needs to make only a few requests for data. In this section we
design a randomised algorithm that satisfies this property.

7.2. High-Level Idea of the Probabilistic Construction. To keep the num-
ber of pulls, and thus number of messages sent, small, we modify the construction of
Theorem 4.1 to use random sampling where useful. Essentially, the idea is to show that
with high probability a small set of sampled messages accurately represents the current
state of the system and the randomised algorithm will behave as the deterministic
one. There are two steps where the nodes rely on information broadcast by the all the
nodes: the majority voting scheme over the blocks and the variant of the phase king
algorithm. In the following, both are shown to work under the sampling scheme with
high probability by using concentration bound arguments.

More specifically, here with high probablity means that for any constant k£ > 1 the
probability of failure is bounded above by 7% when sampling K = O(log7) messages
(where the constants in the asymptotic notation may depend on k); here 7 denotes the
total number of nodes in the system after the recursive application of the resilience
boosting procedure described in Section 5. The idea is to use a union bound over all
levels of recursion, nodes, and considered rounds, to show that the sampling succeeds
with high probability in all cases. For the randomised variant of Theorem 1.1, we will
require the following additional constraint: when constructing a counter on n nodes,

This manuscript is for review purposes only.

907
908
909
910

911
912
913
914
915
916

917

918
919

921
922
923
924

925

926
927
928
929
930
931
932
933
934

939
940
941
942

22 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

the total number of failures is bounded by f < #, where v > 0 is constant.
This allows us to construct probabilistic synchronous c-counters in the sense that

we say that the counter stabilises in time T, if for each round ¢ > T all non-faulty

nodes count correctly with probability 1 — n=F.

7.3. Sampling Communication Channels. As discussed, there are two steps
in the construction of Theorem 4.1 where we rely on broadcasting: (1) the majority
voting scheme for electing a leader block and counter, and (2) the execution of the
phase king protocol. For the sake of clarity, we only focus on modifying the basic
algorithm, where the nodes broadcast their entire state each round. We start with a
sampling lemma we use for both steps. First, recall the following concentration bound
for the sum of independent random binary variables:

LEMMA 7.1 (Chernoff’s bound). Let X = > X; be a sum of independent random
variables X; € {0,1}. Then for 0 < § < 1,

Pr[X < (1 -6)E[X]] < exp <—522E[X]> .

LEMMA 7.2. Let U CV be a non-empty set of nodes such that the fraction of faulty
nodes in U is strictly less than 1/(3 + 7). Suppose we sample K nodes vy, ...,vx_1
uniformly at random from the set U. For a given local variable x(-,r) encoded in the
nodes’ local state on round r > 0 and a value y, define the random variable

X, = {1 if (v, r) =y and v; ¢ F,

0 otherwise

for each i € [K] and let X = Zfi_ol X; be the number of y values sampled from correct
nodes. There exists Ko(n,k,v) = O(logn) such that K > Ky implies the following
with high probability:

(a) If x(u,r) =y for allu € U\ F, then X > 2K/3.

(b) If a majority of nodes u € U\ F have z(u,r) =y, then X > K/3.

(c) If X > 2K/3, then |[{z(u,7) =y :uec U\ F} >|U\ F|/2.
' UProof. Define § =1 — % . ;)j% and let p < 1/(3+4+) be the fraction of faulty nodes
inU.

(a) If all correct nodes u € U \ F agree on value z(u,r) = y, then

247
EX|=1-p K> —K.
X =(-p) K>

As ¢ satisfies (1 — §) E[X] > 2K/3, it follows from Chernoff’s bound that

Pr {X < 25] < Pr[X < (1 - 8)E[X]]

<o (-5 BL])

247
< 52—)
_eXp(’ 2(3+7)K)

If Ko(n,k,v) = O(logn) is sufficiently large, K > Ky(n, k,~) implies that this proba-
bility is bounded by n~*.

This manuscript is for review purposes only.

943

944

946

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 23

(b) If a majority of non-faulty nodes u have value z(u,r) = y, then

1 2
(1—pK>=-. 2Tk

E[X] > .
2 3+v

M| —

As above, by picking the right constants and using concentration bounds, we get that
K
Pr|X < 3 <Pr[X < (1-4)E[X]]

< exp (-5 BLY])

2+~ -
< 21 Ky < k,
—e"p< 43 1) 0)—"

(c) Suppose the majority of correct nodes have values different from y. Define

o 1 if (v, r) #y and v; ¢ F,
" 10 otherwise.

and X = Zfigl X, as the random variable counting the number of samples with

values different from y and arguing as for (b), we see that

2K - K
Pr[XZ?)} :Pr{X<3} <nk

where again we assume that Ky(n, k,v) = ©(logn) is sufficiently large. Thus, X >
2K /3 implies with high probability that the majority of correct nodes have value y.0

Randomised Majority Voting.. Recall that in the majority voting scheme, there
are four local variables, two for each i € {0,1}, whose values depend directly on the
messages broadcast by all nodes:

e m;(v,r) stores the most frequent counter value in block 7 in round r, which
is determined from the broadcasted output variables of A; with ties broken
arbitrarily, and

e M;(v,r) stores the majority vote on m;(v,r — 1).

Throughout the remainder of this section, we let K = O(logn) such that K > Ky
as given by Lemma 7.2. Let m} (v,) be the sampled version of m; (v, r); here the value
is determined by taking a random sample of size K from the set V;. Analogously, the
variable M} (v,r) is determined by taking a random sample of size K from the set V
and taking the value that appears at least 2K /3 times in the sample.

Remark 7.3. Tt holds that f;/n; < 1/(3++) for i € {0,1}.
LEMMA 7.4. Suppose block i € {0,1} is correct. Then for all v € V \ F and
r>T(A;), we have

m;(v,r) = my(v,T)

M (v,r+1) = M;(v,r+1)
with high probability.

Proof. To show the claim, we will apply Lemma 7.2 with U =V and U = V.
Before this, note that the fraction of faulty nodes in both V and V; is less than 1/(3++):

This manuscript is for review purposes only.

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

994
995
996

997

998
999
1000
1001

1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

24 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

by assumption we have f/n < 1/(3 +) and by Remark 7.3 yields f;/n; < 1/(3 + 7).
Thus, in both cases, we satisfy the first condition of Lemma 7.2.

For the claim regarding variable m;, we apply Lemma 7.2 with U = V;, that
is, sample the subset V; C V consisting of nodes in block i. Since |V;| = n; and ¢
is a correct block, the set V; contains at most f; faulty nodes and all correct nodes
output the same value y € [¢;], as A; has stabilised by round r > T'(A;). Moreover,
fi/ni < ﬁ by Remark 7.3, so statement (a) of Lemma 7.2 yields that with high
probability at least a fraction of 2/3 of the sampled nodes output y.

To show the claim for variable M, note that by the previous case, m}(v,r) =
m;(v,r) holds for all correct nodes v with high probability. Applying Statement (a) of
Lemma 7.2 to the set V' and variable mj (v, r), we get that at least a fraction of 2/3 of
the samples have the same value. 0

From Lemma 7.4 it follows that we get probabilistic—in the sense that the claims
hold with high probability—variants of Lemma 4.4, Lemma 4.5, and Lemma 4.6.
These, in turn, yield the following probabilistic variant of Corollary 4.7.

COROLLARY 7.5. There is a round r =T + O(f) so that for all v,w € V' \ F with
high probability it holds that
1. d(v,r) = d(w,r) and
2. forallr € {r+1,...,r+7—1} we have d(v,7’) =d(v,r —1)+1 mod 7.

Randomised Phase King.. To obtain a randomised variant of the phase king
algorithm, we modify the threshold votes used in the algorithm as follows. Instead of
checking whether at least n — f of all messages have the same value, we check whether
at least a fraction of 2/3 of the sampled messages have the same value. Similarly, when
checking for at least f + 1 values, we check whether a fraction of 1/3 of the sampled
messages have this value.

As a corollary, we get that when using the sampling scheme in the pulling model,
the execution of the phase king essentially behaves as in the deterministic broadcast
model.

COROLLARY 7.6. When executing the randomised variant of the phase king protocol
from Section J for n°® rounds, the statements of Lemma 4.8 and Lemma 4.9 hold
with high probability.

Proof. The modified phase king algorithm given in Section 4.3 uses two thresholds,
n— f and f 4 1. As discussed, these are replaced with threshold values of 2K/3 and
K /3 when taking K > Ky(n, k,~) samples. Using the statements of Lemma 7.2, we
can argue analogously to the proofs of Lemma 4.8 and Lemma 4.9.

First, to see that Lemma 4.8 holds with high probability, note that from statements
(b) and (c) of Lemma 7.2, it follows that if a node samples 2K/3 times value y, then
w.h.p. other nodes sample at least K/3 times the same value (that is, we get the
probabilistic version of Lemma 4.3). Now we can follow the same reasoning as in
Lemma 4.8.

Similarly, it is straightforward to check that Lemma 4.9 holds with high probability:
if all correct nodes agree on a(-), then all correct nodes sample at least 2K/3 times
the same value w.h.p. by statement (a) of Lemma 7.2. Thus, analogously as in the
proof of Lemma 4.9, we get that the agreement persists when executing Isy, Isk41, Or
I3p42 with high probability.

Finally, we can apply the union bound over all n°() rounds and samples taken by
correct nodes (n — f < n per round), that is, in total over () events. By choosing
large enough k = O(1), we get that the claim holds with probability 1 —n~*. d

This manuscript is for review purposes only.

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059
1060
1061
1062
1063

1064
1065
1066
1067
1068

1069
1070
1071
1072
1073
1074

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 25

7.4. Randomised Resilience Boosting. It remains to formulate the proba-
bilistic variant of Theorem 4.1. To this end, define P(n, f,c,n, k) as the family of
probabilistic synchronous c-counters on n nodes of resilience f. Here, probabilistic
means that an algorithm P € P(n, f,c,n, k) with stabilisation time T'(P) merely
guarantees that it counts correctly with probability 1 — ™" in any given round
t>T(P).

Let P(P) denote the number of messages pulled per node by a probabilistic
counter P € P(n, f,c,n, k). For any deterministic algorithm A € A(n, f, c), we define
P(A) =n.

THEOREM 7.7. Let ¢,n > 1 and f < n/(3+7), where v > 0 and n < 7. Define
no = [n/2), m = /2], fo= L(f — 1)/2), f = [(f ~ 1)/2] and 7 =3(f +2). If for
i € {0,1} there exist synchronous counters A; € A(n;, fi,c;) such that c; = 3'- 27, then
for any sufficiently large k = O(1), there exists a probabilistic synchronous c-counter
B e P(n, f,e,n, k) that

o stabilises in T(B) = max{T(Ag),T(A1)} + O(f) rounds,

e has state complexity of S(B) = max{S(Ag),S(A1)} + O(log f + logc) bits,
and

e each node pulls at most P(B) = max{P(Ay), P(A1)}+ O(logn) messages per
round.

Proof. The proof proceeds analogously to the proof of Theorem 4.1. First, we
apply Corollary 7.5 to get a round counter that works once in a while with high
probability. We can then use this to clock the randomised phase king and Corollary 7.6
implies that the new output counter will reach agreement in O(f) rounds with high
probability. The time and state complexities are as in the proof of Theorem 4.1.

To analyse the number of pulls, observe that in Lemma 7.4 each node samples
twice K = O(logn) messages (from both V; and ;) and Corollary 7.6 samples O(logn)
messages from all the nodes. Thus, in total, a node v € V; samples O(logn) messages
in addition to the messages pulled when executing A;. 0

Note that we can choose to replace A € A(n, f,c) by Q € P(n, f,¢,n, k) when
applying this theorem, arguing that with high probability it behaves like a corresponding
algorithm A € A(n, f,c) for polynomially many rounds. Furthermore, note that it is
also possible to boost the probability of success, and thus the period of stability, by
simply increasing the sample size. For instance, sampling polylogn messages yields
an error probability of n~P°V1°8" in each round, whereas in the extreme case, by
“sampling” all nodes the algorithm reduces to the deterministic case.

Using Theorem 7.7 recursively as in Section 5 for O(log f) steps, we get the
following result.

THEOREM 7.8. For any integers c,n > 1, f < n/(3+47), there exists an f-resilient
probabilistic synchronous c-counter that runs on n nodes, requires O(log2 f+loge) bits
to encode the state of a node, has each node pull O(log f logn) messages per round,
and stabilises in O(f) rounds with probability 1 — n=% where k > 0 is a freely chosen
constant.

7.5. Oblivious Adversary. Finally, we remark that under an oblivious adver-
sary, that is, an adversary that picks the set of faulty nodes independently of the
randomness used by the non-faulty nodes, we get pseudorandom synchronous counters
satisfying the following: (1) the execution stabilises with high probability and (2) if
the execution stabilises, then all non-faulty nodes will deterministically count correctly.
Put otherwise, we can fix the random bits used by the nodes to sample the communica-

This manuscript is for review purposes only.

1075
1076
1077
1078
1079
1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

26 CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

tion links once, and with high probability we sample sufficiently many communication
links to non-faulty nodes for the algorithm to (deterministically) stabilise. This gives
us the following result.

COROLLARY 7.9. For any integers c,n > 1, f <n/(3+ 1), there exists a pseudo-
random synchronous c-counter with resilience f against an oblivious fault pattern that
runs on n nodes, requires O(log‘2 f +logc) bits to encode the state of a node, has each
node pull O(log f logn) messages per round, and stabilises in O(f) rounds.

8. Conclusions. In this work, we showed that there exist algorithms for syn-
chronous counting that (1) are deterministic, (2) tolerate the optimal number of
faults, (3) have asymptotically optimal stabilisation time, and (4) need to store and
communicate a very small number of bits between consecutive rounds—something no
prior algorithms have been able to do.

In addition, we discussed two complementary approaches on how to further reduce
the total number of communicated bits in the network. The first one is a deterministic
construction that lets the nodes communicate only few bits after stabilisation, in order
to verify that stabilisation has occurred and that the counters agree. The construction
retains all properties (1)—(4), and in particular, when constructing polynomially-sized
counters with linear resilience, the algorithm communicates an asymptotically optimal
number of bits after stabilisation.

The second technique for reducing the amount of communication is based on
random sampling of communication channels. Here, we employed randomisation so
that each node needs to communicate only with polylogn instead of n — 1 other nodes
in the system, thus reducing the number of messages sent from ©(n?) to ©(n polylog n).
The trade-off here is that the resulting algorithm has slightly suboptimal resilience
of f <n/(3++), where v > 0 is a constant, and is merely guaranteed to work for
polynomially many rounds with high probability before a new stabilisation phase is
required. The latter issue disappears when employing pseudorandomness. In this case,
one may simply fix a random topology and the algorithm will not fail again after
stabilisation; naturally, this necessitates that the Byzantine faulty nodes are chosen in
an oblivious manner, i.e., independently of the topology.

We can also combine both techniques to attain probabilistic counters that dur-
ing stabilisation communicate ©(n polylogn) bits each round and after stabilisation
asymptotically optimal O(1) bits every ©(n) rounds.

To conclude the paper, we now wish to highlight some interesting problems that
still remain open:

Q1. Our solutions are not adaptive (as defined in [23]), as their stabilisation time
is not bounded by a function of the number of actual permanent faults. Can
this be achieved?

Q2. Are there algorithms that satisfy (1)—(3), but need to store and communicate
substantially fewer than log? f bits? This question has been partially answered
in follow-up work [25], showing that O(log f) bits suffice. However, no non-
trivial lower bound is known, so it remains open whether o(log f) bits suffice.

Q3. Can the ideas presented in this paper be applied to randomised consensus
routines in order to achieve sublinear stabilisation time with high resilience
and small communication overhead? Again, a partial answer is provied in [25]:
this is possible, but the given solutions may still fail after stabilisation (with
a very small probability per round). The question thus remains open w.r.t.
the original problem definition, which requires that after stabilisation the
algorithm keeps counting correctly.

This manuscript is for review purposes only.

1124
1125
1126
1127
1128
1129
1130
1131

1132
1133

1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

EFFICIENT COUNTING WITH OPTIMAL RESILIENCE 27

Finally, we point out that the recursive approach we employ in this paper can be
interpreted as an extension of its similar use in synchronous consensus routines [5, 6],
where the shared round counter is implicitly given by the synchronous start.

Q4. Can a similar recursive approach also be used for deriving improved pulse

synchronisation [14,18] algorithms?
Interestingly, no reduction from consensus to pulse synchronisation is known, so there
is still hope for efficient deterministic pulse synchronisation algorithms that stabilise
in sublinear time.

Acknowledgements. We thank all the anonymous reviewers for helpful com-
ments.

REFERENCES

[1] M. Ajtal AND N. LINIAL, The influence of large coalitions, Combinatorica, 13 (1993), pp. 129-145.

doi:10.1007/BF01303199.

[2] A. ARORA, S. DOLEV, AND M. G. GOUDA, Maintaining digital clocks in step, Parallel Processing

Letters, 1 (1991), pp. 11-18.

[3] B. AWERBUCH, S. KUTTEN, Y. MANSOUR, B. PATT-SHAMIR, AND G. VARGHESE, A time-optimal

self-stabilizing synchronizer using a phase clock, IEEE Transactions on Dependable and

Secure Computing, 4 (2007), pp. 180-190.

BEN-OR, D. DoLEV, AND E. N. HocH, Fast self-stabilizing Byzantine tolerant digital clock

synchronization, in Proc. 27th Annual ACM Symposium on Principles of Distributed

Computing (PODC 2008), ACM Press, 2008, pp. 385-394. doi:10.1145/1400751.1400802.

[5] P. BERMAN, J. A. GARAY, AND K. J. PERRY, Bit optimal distributed consensus, in Computer
Science: Research and Applications, Springer, pp. 313-321. doi:10.1007/978-1-4615-3422-8_
27.

[6] P. BERMAN, J. A. GARAY, AND K. J. PERRY, Towards optimal distributed consensus, in Proc.
30th Annual Symposium on Foundations of Computer Science (FOCS 1989), IEEE, 1989,
pp. 410-415. doi:10.1109/SFCS.1989.63511.

[7] L. BoozkowsKl, A. KORMAN, AND E. NATALE, Minimizing message size in stochastic com-
munication patterns: Fast self-stabilizing protocols with 3 bits, in Proc. 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), SIAM, 2017, pp. 2540-2559.
doi:10.1137/1.9781611974782.168.

[8] C. BOULINIER, F. PETIT, AND V. VILLAIN, Synchronous vs. asynchronous unison, Algorithmica,
51 (2008), pp. 61-80. doi:10.1007/s00453-007-9066-x.

[9] C. DELPORTE-GALLET, S. DEVISMES, AND H. FAUCONNIER, Robust stabilizing leader election, in
Proc. 9th Symposium on Stabilization, Safety, and Security of Distributed Systems, 2007,
pp. 219-233.

[10] S. DEVISMES, T. MASUZAWA, AND S. TIXEUIL, Communication efficiency in self-stabilizing silent
protocols, in Proc. 29th Conference on Distributed Computing Systems (ICDCS), 2009,
pp- 474-481.

[11] D. DoLEV, The Byzantine generals strike again, Journal of Algorithms, 3 (1982), pp. 14-30.

[12] D. DoLEV, M. FUGGER, C. LENZEN, U. SCHMID, AND A. STEININGER, Fault-tolerant distributed
systems in hardware, Bulletin of the EATCS, (2015). http://bulletin.eatcs.org/index.php/
beatcs/issue/view/18.

[13] D. DoLEv, K. HELJANKO, M. JARvVISALO, J. H. KORHONEN, C. LENZEN, J. RYBICKI, J. SUOMELA
AND S. WIERINGA, Synchronous counting and computational algorithm design, 2015. arXiv:
1304.5719v2.

[14] D. DoLEv AND E. N. HocH, On self-stabilizing synchronous actions despite Byzantine at-
tacks, in Proc. 21st International Symposium on Distributed Computing (DISC 2007),
vol. 4731 of Lecture Notes in Computer Science, Springer, 2007, pp. 193-207. doi:
10.1007/978-3-540-75142-7_17.

[15] D. DoLEv, J. H. KORHONEN, C. LENZEN, J. RYBICKI, AND J. SUOMELA, Synchronous counting
and computational algorithm design, in Proc. 15th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS 2013), vol. 8255 of Lecture Notes in
Computer Science, Springer, 2013, pp. 237-250. doi:10.1007/978-3-319-03089-0_17. arXiv:
1304.5719v1.

[16] D. DoLEV AND R. REISCHUK, Bounds on information exchange for Byzantine agreement, Journal

=

[4] M.

This manuscript is for review purposes only.

http://dx.doi.org/10.1007/BF01303199
http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1007/978-1-4615-3422-8_27
http://dx.doi.org/10.1007/978-1-4615-3422-8_27
http://dx.doi.org/10.1007/978-1-4615-3422-8_27
http://dx.doi.org/10.1109/SFCS.1989.63511
http://dx.doi.org/10.1137/1.9781611974782.168
http://dx.doi.org/10.1007/s00453-007-9066-x
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
http://bulletin.eatcs.org/index.php/beatcs/issue/view/18
http://arxiv.org/abs/1304.5719v2
http://arxiv.org/abs/1304.5719v2
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://arxiv.org/abs/1304.5719v1
http://arxiv.org/abs/1304.5719v1
http://arxiv.org/abs/1304.5719v1

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

28

CHRISTOPH LENZEN, JOEL RYBICKI, JUKKA SUOMELA

of the ACM, 32 (1985), pp. 191-204. doi:10.1145/2455.214112.

S. DoLEvV, Self-Stabilization, The MIT Press, Cambridge, MA, 2000.

S. DOLEV AND J. L. WELCH, Self-stabilizing clock synchronization in the presence of Byzantine
faults, Journal of the ACM, 51 (2004), pp. 780-799. d0i:10.1145/1017460.1017463.

S. DuBois, M. PoTorP-BUTUCARU, M. NESTERENKO, AND S. TIXEUIL, Self-stabilizing byzantine
asynchronous unison, Journal of Parallel and Distributed Computing, 72 (2012), pp. 917—
923.

M. J. FiscHER AND N. A. LyNcH, A lower bound for the time to assure interactive consistency,
Information Processing Letters, 14 (1982), pp. 183-186. do0i:10.1016,/0020-0190(82)90033-3.

M. G. Goupa AND T. HERMAN, Stabilizing unison, Information Processing Letters, 35 (1990),
pp. 171-175.

E. HocH, D. DOLEV, AND A. DALIOT, Self-stabilizing Byzantine digital clock synchronization,
in Proc. 8th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS 2006), vol. 4280, 2006, pp. 350-362.

S. KUTTEN AND B. PATT-SHAMIR, Adaptive stabilization of reactive protocols, in Proc. 24th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 2005, pp. 396-407.

C. LENZEN AND J. RYBICKI, Efficient counting with optimal resilience, in Proc. 29th International
Symposium on Distributed Computing (DISC 2015), Springer, 2015, pp. 16-30. doi:
10.1007/978-3-662-48653-5_2.

C. LENZEN AND J. RYBICKI, Near-optimal self-stabilising counting and firing squads, in Proc.
18th Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2016,
pp- 263-280.

LENZEN, J. RYBICKI, AND J. SUOMELA, Towards optimal synchronous counting, in Proc. 34th
Annual ACM Symposium on Principles of Distributed Computing (PODC 2015), ACM
Press, 2015, pp. 441-450. doi:10.1145/2767386.2767423.

M. C. PEASE, R. E. SHOSTAK, AND L. LAMPORT, Reaching agreement in the presence of faults,

Journal of the ACM, 27 (1980), pp. 228-234. doi:10.1145/322186.322188.

T. TakimMoTO, F. OosHITA, H. KAKUGAWA, AND T. MASUzZAWA, Communication-efficient self-
stabilization in wireless networks, in Proc. 14th Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), 2012, pp. 1-15.

a

This manuscript is for review purposes only.

http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1007/978-3-662-48653-5_2
http://dx.doi.org/10.1007/978-3-662-48653-5_2
http://dx.doi.org/10.1007/978-3-662-48653-5_2
http://dx.doi.org/10.1145/2767386.2767423
http://dx.doi.org/10.1145/322186.322188

	Introduction
	Contributions
	Our Approach
	Structure

	Related Work
	Preliminaries
	Model of Computation
	Synchronous Counters and Complexity Measures

	Boosting Resilience
	Road Map
	Agreeing on a Common Counter (Once in a While)
	Reaching Consensus
	Proof of Theorem 4.1

	Deterministic Counting
	Reducing the Number of Bits Communicated
	High-Level Idea
	The Silencing Wrapper
	Proof of Stabilisation
	Reducing the Communication Complexity after Stabilisation

	Sending Fewer Messages
	Pulling Model
	High-Level Idea of the Probabilistic Construction
	Sampling Communication Channels
	Randomised Resilience Boosting
	Oblivious Adversary

	Conclusions
	References

