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Abstract. The minimum directed spanning tree (MDST) problem has
until recently not been studied in distributed computing models. This
fundamental task generalizes the well-studied minimum spanning tree
problem, by asking for a minimum weight spanning tree rooted at some
specified node of a directed network. In their DISC 2019 paper [99], Fischer
and Oshman reduce the MDST problem to the single-source shortest
path (SSSP) problem, with a polylogarithmic increase in running time.
This holds both in the Congest and Congested Clique models.
Fischer and Oshman further suggest the possibility that an approximate
SSSP algorithm could be leveraged in computing an approximate MDST.
We extend their analysis to show that this is indeed the case: For ε > 0,
using a (1 + ε)-approximation to SSSP running in R rounds we can
compute a (1 + ε)-approximate MDST in Õ(R) rounds.33 In particular,
this implies the following improvements in the state of the art for (1 +
o(1))-approximation of MDST.

– An Õ(n1−2/ω+o(1)) ⊂ Õ(n0.158)-round Congested Clique algorithm,
where ω < 2.373 is the fast matrix multiplication exponent [33].

– An Õ(λ2)-round Congested Clique algorithm in graphs where each
edge has an at most factor λ ≥ 1 heavier reverse edge [11].

– An Õ(λ2(
√
n+D))-round Congest algorithm in the same family of

graphs [11]. For λ ∈ logO(1) n, the resulting running time of Õ(
√
n+D)

is unconditionally tight up to a polylogarithmic factor [2121].

1 Introduction

Finding the minimum-weight spanning tree (MST) of a weighted undirected
graph is a fundamental problem, which is well-studied in both sequential and dis-
tributed settings. In the more general minimum directed spanning tree (MDST)
problem, we are given a weighted directed graph G = (V,E,w) and a node
r ∈ V . The goal is to determine a minimum-weight spanning tree rooted at r.

In this work, we study the task of finding a directed spanning tree (DST)
rooted at r whose weight is at most by a factor of 1+ε larger than the optimum,
or solving (1 + ε)-approximate MDST for short, in the Congest and Congested
Clique models.

3 Õ-notation neglects polylogarithmic factors in the number n of nodes in the graph.
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The Congest and Congested Clique models. In the Congest model, the network
is represented by a weighted n-node graph G = (V,E,w), where each node
v ∈ V has a unique O(log n)-bit identifier. Initially, each node knows only its
identifier and the weights of its incident edges, and it must determine which
of its incident edges belong to the DST the algorithm chooses. Computation
proceeds in synchronous compute-send-receive rounds, and we seek to minimize
the number of communication rounds until all nodes have determined their local
output and terminated. Message size is restricted to O(log n) bits, where each
node may send a different message to each of its neighbors in each round. To
avoid the complication that distances cannot be encoded by a single message,
we follow the common convention to assume that edge weights are integers from
a range that is polynomially bounded in n. The Congested Clique model is
identical, except that each node may send an O(log n)-bit message to each other
node, not just its neighbors.

State of the art. While both the MST and the MDST problem have been ex-
tensively studied in the sequential setting, there is a surprising disparity in the
distributed context. In all likelihood, the MST problem is the most well-studied
task in the Congest model, and it received substantial attention in the Con-
gested Clique as well. In contrast, despite its many applications, the community
completely ignored the MDST problem until recently. Drawing inspiration from
sequential [77, 1010] and PRAM algorithms [1717], Fischer and Oshman [99] presented
a reduction of MDST to single-source shortest path in directed graphs (SSSP),
the task of computing a shortest path tree with given root s. Their reduction
incurs a round overhead of logO(1) n. Plugging in the currently best known algo-
rithms for SSSP, one obtains a randomized Õ(

√
nD1/4 + D)-round Congest [44]

and a deterministic Õ(n1/3)-round Congested Clique [33] algorithm, respectively.
Moreover, Fischer and Oshman show that in both models, MDST is at least

as hard as finding a shortest path between two designated nodes s, t ∈ V . Thus,
the round complexity of MDST is wedged in between those of SSSP and s-t path
in both models. In Congest, even approximating s-t path in undirected graphs
or an MST require Ω̃(

√
n + D) rounds [88, 2020, 2121]. In the Congested Clique, no

non-trivial lower bounds are known, and finding even slightly super-constant
such bounds would imply long-sought statements on circuit complexity [66].

However, the complexity of (directed) SSSP and s-t path are incompletely
understood in either model, with polynomial gaps between upper and lower
bounds. In addition, it is an open question whether approximation is easier.
Currently, faster (1 + ε)-approximate SSSP algorithms for non-negative weights
are known for the Congested Clique [33] and for special cases in Congest [11].
Thus, a reduction based on SSSP approximation is of interest. Indeed, Fischer
and Oshman conjecture that a (1 + ε)-approximation to SSSP can be leveraged
in their reduction to obtain a (1 + ε)dlogne-approximation to MDST [99].

Our contribution. We prove the stronger result that using a (1+ε)-approximate
SSSP algorithm in the Fischer-Oshman framework, without modification, results
in a (1 + ε)-approximation to MDST. This implies the following theorems.
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Theorem 1. For ε > 0, denote by TSSSP(n,D, ε) the round complexity of a
(1 + ε)-approximate SSSP Congest algorithm on directed n-node graphs with
non-negative weights and (undirected) diameter D. Then a (1 + ε)-approximate
MDST can be computed in Õ(TSSSP(n,D, ε)) rounds in the Congest model.

Theorem 2. For ε > 0, denote by TSSSP(n,D, ε) the round complexity of a (1+
ε)-approximate SSSP Congested Clique algorithm on directed n-node graphs with
non-negative weights and (undirected) diameter D. Then a (1 + ε)-approximate
MDST can be computed in Õ(TSSSP(n,D, ε)) rounds in the Congested Clique.

We note that the restriction to non-negative edge weights is natural when using
approximation algorithms, as negative edge weights could cancel out with pos-
itive weights to result in a very light MDST despite heavy edges. This would
decouple the notions of SSSP and MDST approximation to the point of mean-
inglessness, where, e.g., only an exact MDST has a negative total weight. Thus,
any multiplicative MDST approximation would have to be an exact solution.

The above results are derived by generalizing the analysis of Fischer and
Oshman in a model-independent way. Thus, whenever their framework can be
applied, the same holds for our generalization.44 However, for the sake of con-
ciseness we confine the presentation to these two prominent models. In these
models, pluggin in the most recent SSSP approximations yields the following.

Corollary 1 ([33, 1111]). For ε > 0, in the Congested Clique a (1+ε)-approxima-
te MDST with non-negative weights can be found in n1−2/ω+o(1) ⊂ O(n0.158)
rounds, where ω is the matrix multiplication exponent in the Congested Clique.

Corollary 2 ([11]). Suppose G = (V,E,w) satisfies that for each (u, v) ∈ E,
it holds that (v, u) ∈ E and 0 ≤ w(u, v) ≤ λw(v, u). Then, for ε > 0, in the
Congested Clique a (1+ε)-approximate MDST can be found in Õ(λ2/ε2) rounds.

Corollary 3 ([11]). Suppose G = (V,E,w) satisfies that for each (u, v) ∈ E, it
holds that (v, u) ∈ E and 0 ≤ w(u, v) ≤ λw(v, u). Then, for ε > 0, in the Congest
model a (1+ε)-approximate MDST can be found in Õ((

√
n+D)λ2/ε3/2) rounds

w.h.p.55 Deterministic correctness (i.e., only the running time bound could be
violated) can be achieved in Õ((

√
n+D)λ2/ε3) rounds w.h.p.

Note that for λ ∈ logO(1) n this matches the lower bound of Ω̃(
√
n + D) for

shortest s-t path approximation from [2121] up to a polylogarithmic factor.
On the technical level, we obtain our results by generalizing the analysis of the

Fischer-Oshman framework. Intuitively, one might expect that it is sufficient to
plug in the approximate SSSP algorithm instead of an exact routine. This turns
out to be correct, but proving it requires to overcome a technical hurdle.

4 For example, [99] also discusses a modification to the Congest model in which directed
edges enable communication in one direction only. Similarly, we expect that the
approach is efficient in the k-machine and semi-streaming models.

5 W.h.p. stands for with high probability, which means with probability at least 1 −
1/nc for a freely chosen, but fixed constant c > 0.
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The exact MDST algorithm by Edmonds [77] heavily exploits that the graph
manipulations it performs do not change the “remaining” MDST. More precisely,
it first computes an edge set that may contain cycles, contracting these cycles
whenever they are formed. It then updates edge weights in such a way that the
set of MDST edges that are still to be selected are not affected by such changes.
Once the selected subgraph is spanning, i.e., all nodes can be reached from r,
Edmonds iteratively uncontracts all selected cycles and determines for each of
them which edge has to be removed to obtain an MDST.

Fischer and Oshman simulate Edmonds algorithm in a manner that paral-
lelizes well, yet can be efficiently implemented in distributed models. As their
algorithm computes the same MDST as the one by Edmonds, the main challenge
they face is efficient implementation. In contrast, our main obstacle is to relate
the computed DST to an optimal MDST. Since we do not solve SSSP exactly, we
choose different edges as Edmonds’ algorithm, which in turn means that future
SSSP instances might differ wildly from those in the exact algorithm. Hence,
while we can build on [99] for an efficient implementation, our challenge is to
argue that the computed DST is actually a good approximation to an MDST.

Facing this challenge from scratch would be a difficult task. As the immediate
connection to an MDST breaks down, it is unclear how the complex evolution of
the intermediate subgraphs could be tied to an MDST by an ad hoc argument.
Even if one could be found, it would likely result in a proof repeating many of
the steps for the exact setting.

We follow a different route, by re-interpreting the run of the approximation
algorithm as a run of the exact algorithm on an approximation of the input graph.
The effect of the modifications of the graph on the weight of an MDST can be
easily bounded. The modifications of the graph are limited to scaling all edge
weights by factor 1+ε and performing some simple changes to the graph forcing
the exact algorithm to contract the exact same regions as the approximation
algorithm. This also means that the exact algorithm incurs the same cost as the
approximation algorithm on the original graph. Since the MDST of the modified
graph is at most by factor 1 + ε more costly than the original graph (as the
original edge set is still present, albeit with factor 1 + ε larger cost), the same
follows for the approximate solution on the original graph. Overall, this results
in a proof of the conjecture by Fischer and Oshman, without the need for any
non-trivial modification to their algorithmic framework.

Further Related Work

Sequential MDST computation. Gabow et al. [1010] provided an efficient imple-
mentation of an approach proposed independently by Edmonds [77], Bock [22]
and, Chu and Liu [55], with step complexity O(m+ n log n). The algorithm goes
through a series of steps, also called Edmonds steps, and at each step, every ver-
tex (except the root r) selects the lightest incoming edge, remembers its weight,
and subtracts it from the weight of all the incoming edges. The idea is that to
reach a vertex, we need to pay at least as much as its lightest incoming edge.
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Then, all zero-weight cycles are contracted and we continue these steps recur-
sively until there is only one component left. The sum of the weights subtracted
by vertices through these steps is equal to the cost of an MDST of the graph.
Finding an MDST requires a careful but simple unpacking of the contractions.

Lovasz’ algorithm. The framework by Fischer and Oshman can be seen as a
less aggressive way of parallelizing Edmonds steps than in Lovasz’ PRAM al-
gorithm [1717]. For dlog ne iterations, Lovasz performs an all-pairs shortest paths
computation to find shortest paths that, similar to Edmonds approach, could
be selected sequentially into an MDST. As in each of the iterations, each of the
components induced by the currently selected edges but the one containing r
is guaranteed to connect to another component, in the end only a single com-
ponent remains. Then a similar unpacking procedure yields an MDST. The key
observation by Fischer and Oshman is that it is perfectly sufficient to find for
each component the shortest path leaving it (when flipping the directions of all
edges). This more conservative approach avoids that the computations of differ-
ent components “overlap,” which causes the need for an all-pairs shortest path
algorithm for Lovasz, yet also ensures termination within dlog ne iterations.

MST in Congest. While the MDST problem has been the neglected child in
the family of global Congest problems, its little brother, finding an MST in an
undirected graph, has been showered with attention; we make no attempt at
covering these results here, see [1919] for a recent survey. In part, this is likely due
to habit, as MST is a canonical global problem that lends itself well to studying
new models and complexity measures. On the other hand, the problem is closely
related to testing whether a given subgraph is connected. Any MST algorithm
can solve this task, and the lower bound bound of Ω̃(

√
n + D) due to Das

Sarma et al. [2121] applies to both tasks. Due to the Õ(
√
n+D)-round algorithm

by Kutten and Peleg [1515], this implies that there appears to be virtually no
difference between the two problems. As many Congest algorithms for global
problems need to test subgraphs for connectivity, this close connection means
that insights on MST construction frequently transfer to tasks which appear
unrelated at first sight. It also explains why so many problems turn out to have
round complexity Θ̃(

√
n+D).

We remark that for MST, it is known that allowing approximate solutions or
randomization does not make the job easier [88, 2121]. As discussed above, for the
MDST problem this will depend on whether either makes SSSP (or possibly s-t
path) easier in the considered models, with remains open to date.

MST in the Congested Clique. The Congested Clique was introduced by Lotker
et al. in 2003 [1616].66 Naturally, the MST problem served as their guinea pig,
and they provided an O(log log n)-round algorithm. After more than a decade
of silence, a flurry of results [1212, 1313, 1414] culminated in a deterministic constant-
round solution [1818].

6 In the MST problem, heavy edges can be added without changing the solution.
Hence, decoupling problem and communication graph was formalized only later.
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2 Preliminaries

Let G = (V,E,w) be an n-node directed graph with edge weight function w.
Let S ⊆ V (G) be a vertex set. Then, the corresponding induced subgraph in G
is denoted by G[S] = (S,E′), where E′ = {(u, v) | u, v ∈ S and (u, v) ∈ E(G)}.
Moreover, the weight of subgraph H ⊆ G, denoted by wG(H), is the sum of the
weight of its edges. For any graph H, V (H) and E(H) denote its vertex and edge
set, respectively, and wH its weight function. A subgraph is weakly connected, if
its underlying undirected graph is connected. Weakly connected components are
defined accordingly. For u, v ∈ V , let distG(u, v) be the weight of the shortest
path from u to v in G. Denote by BG(v, r) the ball of radius r around node v,
i.e., {u | distG(u, v) ≤ r}. An s-t path P can be represented as a tuple of its
vertices in the order of appearance, e.g., P = (s, v1, . . . , vk, t).

Contraction of an edge e = (u, v) is the following operation. We combine u
and v into a supernode x that keeps all the incident edges of u and v. Then, self-
loops are removed and in the case of parallel edges between two nodes we only
keep the lightest edge. Contracting a ball BG(v, r) is similar, in that all nodes
inside the ball are merged into a supernode x. However, an edge (u, u′) ∈ (G \
BG(v, r))×BG(v, r) gives rise to edge (u, x) of weight wG(u, u′)+distG(u′, v)−r.
Analogously, outgoing edge (u, u′) ∈ BG(v, r) × (G \ BG(v, r)) results in edge
(x, u′) of weight wG(u, u′) + distG(v, u) − r. Again, self-loops are removed and
only the lightest edge is kept. Finally, we will need to contract “approximate”
balls, where we consider BT (v, r) in a graph G, with T being a tree. In such a
case, we replace the distG terms by distT , even for edges that are present in G,
but not in T . Note that this can result in negative edge weights. In such a case,
the resulting contracted edge will be assigned weight 0.

When referring to an uncontraction, this means to reverse the above process.
If we uncontract a graph with a selected spanning tree T that resulted from
contraction of G, each edge of T induces a marked edge in G, which caused it
to be assigned its weight. For convenience, we refer to this as uncontracting T .

3 Exact MDST Computation

We will modify the Fischer-Oshman approach [99] to provably work with approx-
imate SSSP computations. For an intuitive understanding as well as a formal
proof, it is instructive to revisit their technique.

In the following and throughout this paper, w.l.o.g. let us make the following
assumptions. First, the input graph G = (V,E,w) has indeed a spanning tree
rooted at r, i.e., an MDST rooted at r exists. Otherwise the algorithm will
simply fail to compute such an MDST, and this can be verified fast enough in
the considered models. Second, we assume that there is no edge with endpoint
r, as no DST with root r contains such an edge. Finally, we assume that all edge
weights are different; any kind of consistent tie-breaking mechanism results in
equivalent behavior.
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A variant of Edmonds’ algorithm. In MST construction, it is commonly ex-
ploited that the lightest edge of a cut, and in particular the lightest incident
edge to each node, are part of the MST. Crucially, these statements assume a
consistent tie-breaking mechanism in place, which ensures that no cycle can be
closed when selecting all such edges concurrently: it does not matter which edge
of a cycle in which all edges have the same weight is selected, but one edge
must be excluded. In the directed setting, it is no longer arbitrary which edge
of a directed cycle of “candidate edges” is excluded, as for reachability it now
matters at which node the path from the root to the cycle in the MDST ends.
Lemma 11 provides a highly useful structural property of MDSTs corresponding
to these observations.

Lemma 1 (implicit in [77]). Define G′ = (V,E,w′) by setting w′(u, v) :=
w(u, v) − min(u′,v)∈E{w(u′, v)} for all (u, v) ∈ E. Then an MDST T of G is
also an MDST of G′, where w(T ) = w′(T ) +

∑
v∈V \{r}min(u′,v)∈E{w(u′, v)}.

Moreover, let E0 := {(u, v) ∈ E |w′(u, v) = 0} denote the pseudo-forest77 given
by the 0-weight edges of G′. Then for each cycle C in E0 there is a unique edge
(u, v) ∈ C \ T .

Proof. Each non-root node has exactly one incoming edge in any DST, so the
weight of each DST rooted at r changes by

∑
v∈V \{r}min(u′,v)∈E{w(u′, v)} when

replacing w by w′. For the second claim, observe that any cycle C in E0 must have
at least one of its edges not be part of T . So assume for contradiction that there is
a cycle C such that |T∩(V \C×C)| > 1. Let (u, v) ∈ T∩(V \C×C) and denote by
(u′, v) ∈ E0 the unique edge in E0 with endpoint v. Then T ′ := T \(u, v)∪(u′, v)
is a DST: there is still some node in C reachable from r in T \ (u, v), which then
inductively applies to all its successors in C, including u′. However, w′(u, v) > 0
and w′(u′, v) = 0 by choice of E0, implying that w′(T ′) < w′(T ), a contradiction
to the already established claim that T is an MDST of G′. ut

Lemma 11 suggests the following procedure to compute an MDST. For each
non-root node select the cheapest incoming edge and subtract its weight from all
incoming edges of the node. Contract the resulting 0-weight cycles and repeat
the process on all the newly created supernodes until no non-root node without
a selected incoming edge remains. At this point, the 0-weight edges form an
MDST of the current graph (this will be shown in the proof of Lemma 22). To
get an MDST of the original graph, we go in the reverse order, uncontracting
the 0-weight cycles of the previous step, and adjusting the MDST to the graph
resulting from uncontraction. To achieve the latter, for each new node without
an incoming edge in the old MDST, we pick a 0-weight incoming edge from the
uncontracted cycle. Lemma 22 shows that this procedure, whose pseudocode is
given in Algorithm 11, indeed yields an MDST of G.

7 By the above assumptions, each non-root node has exactly one 0-weight incoming
edge, while the root has none. However, E0 might contain cycles.
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Algorithm 1 Finding an MDST of a Graph

1: procedure Edmonds(G = (V,E,w))
2: i := 0, G(0) := (V (0), E(0), w(0)) := G

3: while (V (i), {e(i)v | v ∈ V (i)}) is not a DST of G(i) do
4: i← i+ 1
5: Each node v ∈ V (i−1) \ {r} sets e

(i)
v := argmin(u,v)∈E(i−1){w(i−1)(u, v)}

6: For each (u, v) ∈ E(i−1), set w(i)(u, v) := w(i−1)(u, v)− w(i−1)(e
(i)
v )

7: Contract all 0-weight cycles, resulting in G(i) = (V (i), E(i), w(i))

8: Set T (i) := {e(i)v | v ∈ V (i)} . uncontraction phase
9: while i > 0 do

10: Initialize T (i−1) by the set of edges obtained by uncontracting G(i) to G(i−1)

11: Let X be the set of nodes that have been in a zero-cycle before contraction
12: for each v ∈ X without an incoming edge in T (i) do
13: T (i−1) ← T (i−1) ∪ {e(i−1)

v } . add its incoming zero-weight edge

14: i← i− 1

15: return T (0)

Lemma 2 (implicit in [77]). Algorithm 11 computes an MDST of G. Denot-
ing by imax the maximum value of i throughout the procedure, its weight equals∑imax

i=1

∑
v∈V (i−1)\{r} w

(i−1)(e
(i)
v ).

Proof. Observe that contracting a cycle of weight 0 in a graph without negative
edge weights cannot change the cost of an MDST: Regardless of how an MDST
of the graph after contraction looks like, we can connect all nodes in the cycle at
cost 0 in the original graph, and we can delete a non-cycle edge (of cost at least
0) for each cycle this closes. Because Lines 55 and 66 ensure that the new weights
satisfy this property, applying Lemma 11 inductively to the first while loop shows

that
∑imax

i=1

∑
v∈V (i−1)\{r} w

(i−1)(e
(i)
v ) is precisely the cost of an MDST of G.

Hence, it remains to show that the computed edge set T (0) is indeed an
MDST. To this end, we show by induction that T (i) is an MDST of G(i) for all
i ∈ {0, . . . , imax}. To anchor the induction at i = imax, note that by Lines 55 and

66, it holds that w(imax)(e
(i)
v ) = 0 for all v ∈ V (imax) and w(imax)(u, v) ≥ 0 for

all (u, v) ∈ E(imax). Hence, by the halting criterion of the first loop, T (imax) is
indeed an MDST of G(imax). Assuming that the claim holds for i > 0, Line 1313
and the fact that T (i) is a tree ensure that each non-root node has indegree 1.
Moreover, as T (i) is spanning, we can reach each node v ∈ V (i) from r by taking
the edges in E(i−1) corresponding to the respective path in T (i) and, wherever
a path node gets uncontracted into a cycle C, adding the path in C connecting
the endpoint of the incoming edge to the node with the outgoing edge (or v if
it is on the cycle). Thus, T (i−1) is a spanning pseudo-forest, implying that it
must be a DST. The minimality of w(T (i−1)) follows from the fact that T (i) is
an MDST of G(i), the weight changes of Line 1313, and Lemma 11. ut

The Fischer-Oshman framework. The above observations are promising in that
in each iteration, all (weakly) connected components can operate concurrently.
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Despite the technical obstacle that cycle contraction is problematic in Congest,
because the communication graph does not change, Fischer and Oshman show
how to perform all operations with sufficient efficiency. However, a second, more
important hurdle is that the above procedure might require a lot of iterations.
In the worst case, each added edge closes another cycle rather than reducing the
number of connected components. This means that Ω(n) contractions could be
performed sequentially, resulting in a slow algorithm.

More concretely, note that after selecting the lightest incoming edges, the
resulting subgraph has exactly one cycle in each weakly connected non-root
component. After contraction, we get a forest whose roots are the nodes result-
ing from cycle contraction. These roots are exactly the “new” nodes selecting
new edges, while all other nodes stick to their previously selected edges whose
reduced weight is 0. Such a node selecting a new edge and immediately contract-
ing the resulting cycle is referred to as an Edmonds step. If both endpoints of
the edge selected by an Edmonds step are in the same weakly connected compo-
nent, another cycle within this component is formed, whose contraction might
eliminate no more than a few nodes.

Let H be a non-root component formed by the currently selected edges and
let CH be the unique cycle at the heart of H. The crucial insight Fischer and
Oshman exploit is the following. The iterations of the above Algorithm 11 on H
until an edge into the component is selected are equivalent to running Dijkstra’s
algorithm on the component, where the contracted cycle, CH , is the source, and
we reverse edges. Thus, the selected edges contain a shortest path P of weight
βH from outside the connected component to the (original) cycle. Equivalently,
we can find βH and contract BH(CH , βH), i.e., a ball of radius βH centered at
CH , where edges that are only partially inside the ball lose a respective share
of their weight. Note that this does not affect other components, until the re-
sulting 0-weight edge connecting to another component is contracted. Hence,
this operation can be performed on all weakly connected non-root components
concurrently, and Fisher and Oshman formalize how to achieve this using a call
to a single, globally operating SSSP instance. Doing so constitutes a mega-step
in the Fischer-Oshman terminology. As each component gets merged with at
least one other component in a mega-step, the process terminates after at most
dlog ne mega-steps.

Fischer and Oshman prove that the necessary bookkeeping and the later un-
contractions can be efficiently implemented in both the Congest and Congested
Clique models, rendering the SSSP algorithm the subroutine that dominates
the round complexity. In Congest this implementation is rather involved. Fortu-
nately, as we will show that we can replace the exact SSSP computation with an
approximate one in a blackbox fashion, we can confine our presentation to the
abstract viewpoint of explicitly performing contractions and uncontractions. We
summarize the relevant structural results by Fischer and Oshman as follows.

Lemma 3 (Fischer and Oshman [99]). Denote by G(i) = (V (i), E(i), w(i))
the graph after i mega-steps. Denote by H 63 {r} a weakly connected component
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of the selected edges and by CH its unique node with indegree 0. Then contracting
BG(i)(CH , βH) simulates multiple Edmonds steps on H.

A mega-step is performed by executing these operations on each weakly con-
nected non-root component and then contracting 0-weight cycles. We stress that,
while the intuition as to why the algorithm is correct remains the same as for
Algorithm 11 – both can be decomposed into a sequence of Edmonds steps –
the iterations of the first loop of Algorithm 11 cannot be consistently mapped to
mega-steps.

Nonetheless, constructing an MDST after contracting the graph into a root
component is done in a similar fashion. One uncontracts in reverse order of the
mega-steps, operating on all components in parallel. In this process, one main-
tains the invariant that the current tree T (i) is an MDST of the current graph
G(i), starting with G(imax). After uncontracting to G(i−1), we need to connect
to the cycle of each component H, which is done by selecting the computed
shortest path πH from outside of H to its cycle. Finally, the remaining nodes
without incoming edge add their previosly selected edge of weight 0. This ensures
reachability of all nodes in the component, as (i) all path nodes are reachable
from the “parent” component, (ii) all nodes on the cycle are reachable from the
endpoint of the path along the cycle edges, and (iii) the remaining nodes are
attached to the path and cycle nodes by a forest of 0-weight edges. Because T (i)

was a DST, so is T (i−1), and as the weight of the added edges in G(i−1) sums
up to

∑
H∈H w

(i−1)(πH), T (i−1) is an MDST of G(i−1).

Lemma 4 (follows from Lemma 8 in [99]). Let G(i−1) be a graph with a set
of 0-weight components H in accordance with Lemma 33 after i − 1 ≥ 0 mega-
steps. Let G(i) be the graph obtained by contracting for each H ∈ H the ball
BH(CH , βH), where βH is the length of a shortest path πH that has only its first
node outside H and ends in CH . Let T (i) be an MDST of G(i).

Then setting T (i−1) to the edge set resulting from uncontraction of T (i) and
performing the following operation for each H ∈ H yields an MDST:

– uncontract CH (into a 0-weight cycle),
– add the edges of πH inside H (the first edge of πH has been selected in the

uncontraction of T (i)), and
– add each 0-weight edge of H and CH whose endpoint is not a node of πH .

We stress that the proof from [99] requires that the paths πH are shortest paths
only to establish that the cost of the weight of the constructed DST is minimal.
Thus, we have the following corollary.

Corollary 4. Assume the same setting as in Lemma 44, except that the paths
πH are not necessarily shortest paths. Then the construction of the lemma yields
a DST of weight equal to w(i)(T (i)) +

∑
H∈H w

(i−1)(πH).

In summary, the challenge for obtaining an approximation algorithm lies in re-
lating the weight of Corollary 44 to the weight of an MDST.
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4 (1 + ε)-approximate MDST from SSSP Approximation

Throughout this section, we assume that all edge weights are non-negative. The
algorithm maintains this invariant when modifying edge weights. Hence, we can
rely on SSSP approximation algorithms that assume non-negative edge weights
as well. Formally, such an algorithm provides the following output.

Definition 1 ((1 + ε)-approximate SSSP). For a given graph G and root r,
a (1 + ε)-approximate directed SSSP algorithm returns a DST T of G such that
distT (r, v) ≤ (1 + ε) · distG(r, v) for all v ∈ V (G). The output is given by each
v ∈ V (G) \ {r} learning about its parent and distT (r, v).

For the remainder of the section, A denotes an algorithm following the Fischer-
Oshman framework [99] for computing an MDST, while A′ denotes our approx-
imate version, which is obtained by replacing the exact directed SSSP solution
by a (1 + ε)-approximation and using the distances in the tree(s) instead of the
exact ones. Recall that we enforce that the minimum edge weight resulting from
a contraction is 0, cf. Section 22, so the approximate SSSP algorithm will always
operate on graphs with non-negative weights.

In this section, we will establish the following theorem.

Theorem 3. If w(u, v) ≥ 0 for all (u, v) ∈ E, A′ computes a (1+ε)-approximate
MDST.

Theorems 11 and 22 readily follow from this theorem and the running time bounds
from [99]. In more detail, besides calling the SSSP subroutine, their framework

uses Õ(
√
n + D) and logO(1) n rounds per mega-step in Congest and the Con-

gested Clique, respectively, yielding running times of Õ(TSSSP(n,D, ε)+
√
n+D)

in Congest and Õ(TSSSP(n,D, ε) in the Congested Clique. In Congest, the lower
bound of Ω̃(

√
n + D) on any polynomial approximation to SSSP [2121] implies

that Õ(TSSSP(n,D, ε) +
√
n+D) = Õ(TSSSP(n,D, ε)).

Why analyzing the use of approximate SSSP is challenging. We would like to
replace the exact SSSP computation in the Fischer-Oshman framework with an
approximate one, assuming that the graph has non-negative weights. The trouble
with that lies in the analysis of the algorithm. Where Fischer and Oshman
argue that they simulate Edmonds steps, we run into the obstacle of relating
the computed solution to an optimal one. The sequence of contractions and,
accordingly, uncontractions performed can be vastly different even with only
minor changes in the outcome of the SSSP computation.

A simple attempt at fixing this issue could be to modify the graph to enforce
that the approximately shortest paths found by the subroutine become actual
shortest paths in a slightly distorted topology. Unfortunately, simply scaling
down the edge weights of such paths (or scaling up the non-path edges’ weights)
might not achieve this. A tree that approximates distances to the source up to
factor 1 + ε can still contain edges (p, c) for which parent p and child c satisfy
that distG(p, c)� w(p, c) – the local error can be amortized over a much larger
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distance to the root. This means that we do not have enough information to
adjust edge lengths such that (i) the computed paths become shortest paths and
(ii) the weight of an MDST changes little.

We overcome the above obstacle by modifying both the topology and, at
least on a formal level, also generalizing the solved problem. Intuitively, we still
follow the strategy given above, but we accept that we introduce additional edges
and nodes into the graph. Fortunately, these modifications are necessary only
to create an execution of the Fischer-Oshman algorithm that we can compare
to in order to establish the approximation guarantee; no change whatsoever is
needed in the actual algorithm beyond the discussed replacement of the SSSP
subroutine and performing contractions of the resulting “approximate” balls.

4.1 Shortcuts and Dummy Nodes

The modifications we make to the graph used by the exact algorithm require

some bookkeeping. Denote for each node u ∈ V and each mega-step i by S
(i)
u

the total amount that node u (or the supernodes resulting from it) would sub-
tract from each of its incoming edges from outside the contracted balls during

contractions up to and including mega-step i.88 In other words, adding S
(i)
u to

the current weight of an incoming edge restores its weight in the original graph.
Similarly, we apply this to the shortcut edges. We only ever need to add edges
(u, v) that have residual weight β > 0 after the first i−1 mega-steps. To generate
a corresponding edge for U (i), we pick arbitrary nodes u′, v′ ∈ V that ultimately
get contracted into u and v, respectively, and set the weight of (u′, v′) in U (i) to

β + S
(i−1)
v′ .

Simply put, our construction first stretches all edges by factor 1 + ε for A
to obtain U (0), so that opt(U (0)) = (1 + ε) opt(G).99 Then, in mega-step i, we
add “shortcuts” to obtain U (i) from U (i−1). These shortcuts satisfy that (i) they
do not affect any already performed mega-steps when using U (i) as input rather
than U (i−1) and (ii) A performs the same contractions (i.e., with the same ball
centers and radii) on U (i) as A′ on G(i−1) in mega-step i. Thus, after the last
iteration imax, we have a one-on-one mapping of the sequence of contractions of
both algorithms.

Recall that the ball radii are also the cost the exact algorithm charges to its
contractions (cf. Lemma 33), summing up to the weight of the computed MDST
(cf. Lemma 44). A′ charges the same cost to its contractions, corresponding to
the weights of the approximately shortest paths its SSSP subroutine found. As
these weights add up to the cost of the computed DST in the same way as for
A, the weight of the DST of G computed by A′ equals the weight of an MDST
of U (imax). Finally, we show that going from U (i−1) to U (i) can only decrease the
weight of an MDST, implying that opt(U (imax)) ≤ opt(U (0)) = (1 + ε) opt(G).

8 “Would” here indicates that nodes might be inside a contracted region without edges
to the outside.

9 While this may result in non-integral edge weights, they can still be easily represented
with O(logn) bits.
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uu′

v

sβv − dist(u′, v) dist(u, v)− βv

βv

(a)

uu′

v

s
βv

βv

B(v, βv)

(b)

Fig. 1: Dashed red edges represent gadget replacement at a boundary edge and
dash dotted blue edges represent shortcut edges. Note that the contraction of
B(v, βv) eliminates all the added edges and nodes again; the construction merely
ensures that the exact algorithm contracts exactly B(v, βv). Note that to obtain
the graph before contractions, the introduced edges will be connected to some
nodes inside the contracted supernodes (see Definition 22).

Meeting the requirements (i) and (ii) concurrently is tricky. We achieve this
by introducing a gadget that subdivides boundary edges according to our needs,
without affecting the weight of an MDST.1010 Together with the right shortcut
edges, the resulting gadget shapes BU(i)(v, βv) in the right way without inter-
fering with the algorithm’s prior execution or the weight of an MDST.

Definition 2 (Shortcuts with Dummy Nodes). Consider the graph G(i−1)

after i− 1 mega-steps of the exact algorithm on U (i−1). For each v 6= r without
selected incoming edge denote by βv the ball radius computed using the approx-
imate SSSP algorithm (i.e., the distance for leaving the weakly connected com-
ponent in the tree computed by the SSSP approximation algorithm). For each
edge (u, u′) ∈ (V (G(i−1)) \ BG(i−1)(v, βv)) × BG(i−1)(v, βv), we replace the edge
in G(i−1) by the following gadget (see Figure 11):

– A new dummy node s.
– An edge (u, s) of weight distG(i−1)(u, v)− βv.
– An edge (s, u′) of weight βv − distG(i−1)(u′, v).
– An edge (s, v) of weight βv.

We then obtain U (i) from U (i−1) by adding the dummy nodes and changing the
edge set of U (i) as follows.

10 This holds true under the assumptions that the spanning tree needs not contain the
added vertices, which is sufficient for our purposes.
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– Remove all edges from nodes that are contracted into u to nodes that are
contracted into u′.

– For each new node s and each of its edges, denote by x the endpoint that is
not s and by w its weight. Choose an arbitrary node y ∈ V that got contracted
into x (or x itself if x ∈ V ). Add an edge with endpoints s and y of matching

orientation and weight w + S
(i−1)
y to U (i).

– For each u ∈ BG(i−1)(v, βv), denote by x, y ∈ V nodes that got contracted

into u and v, respectively. Add (x, y) with weight βv + S
(i−1)
y to U (i).

Dummy nodes need not be spanned by a DST, i.e., opt(U (i)) denotes the
minimum cost of a tree rooted at r spanning V (G). To match our needs, A is a
slighty different version of the Fischer-Oshman algorithm, where dummy nodes
do not seek to select edges “on their own.” However, they can take part in the
shortest paths the algorithm selects. These changes are exactly those that make
the algorithm “behave the same way” on U (i) and U (i−1) until mega-step i.

Corollary 5. A computes a lightest tree that is rooted at r and spans V (G).

Proof (sketch). A simple check of the arguments in Section 33 shows that a tree
spanning all non-dummy nodes is computed. To see optimality, note that it still
holds that if a dummy node takes part in the tree, we need to pay at least the
weight of its lightest incoming edge to include it (cf. Lemma 11). Thus, for each
0-degree non-root regular node we must pay at least as much as the weight of the
shortest path connecting to it from outside its weakly connected component, as
it needs to get connected to the root component in some way (cf. Lemma 33). ut

To relate opt(U (i)) to opt(G), we first show that the replacement of Defini-
tion 22 does not introduce negative cycles or otherwise unduly distort the distance
structure of the graph.

Lemma 5. For any i ≥ 0, in the graph resulting from applying gadgets of Defi-
nition 22 to G(i) the following holds:

1. no negative-weight cycle exists,
2. for each edge (u, u′) ∈ (V (G(i)) \ BG(i)(v, βv)) × BG(i)(v, βv), the distance

from u to v does not change,
3. for each u′ ∈ BG(i)(v, βv) the distance from u′ to v does not change.

Proof. The proof is by induction on i. Note that initially all edges have non-
negative weight, so no negative-weight cycle is present. Let Ei = {e1, . . . , em}
be the set of boundary edges that need to be replaced by a gadget according to
Definition 22. We perform an induction over the individual replacements, where
we maintain the above invariants. For j ∈ [m], let Ĝj be the graph resulting

from replacement of the first j edges of Ei in G(i) (in particular, Ĝ0 = G(i)).
Observe that, after replacement of ej = (u, u′), any cycle involving s con-

tains (u, s) and either (s, u′) or (s, v). By definition 22, we have that wĜj
(u, s) +

wĜj
(s, v) = distG(i)(u, v) ≥ 0, so no negative cycle can be formed containing
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(u, s) and (s, v). By the induction hypothesis, in Ĝj−1 distances are well-defined
(i.e., non-negative and satisfying the triangle inequality). Therefore, any cycle
involving (u, s) and (s, u′) is of weight at least

wĜj
(u, s) + wĜj

(s, u′) + distĜj−1
(u′, u)

= distG(i)(u, v)− distG(i)(u′, v) + distĜj−1
(u′, u) Definition 22

≥ distG(i)(u, v)− distG(i)(u′, v) + distĜj−1
(u′, v)− distĜj−1

(u, v) ∆-inequality

= 0 I.H.

This shows the first part of the invariant for index j. In particular, w.l.o.g. we
may consider only simple path for the remainder of the proof.

For the second part, it is sufficient to show that the distance from u to v
does not change, as then the same follows for all other considered edges by the
induction hypothesis. To see that this holds true, observe first that the path
(u, s, v) has weight distG(i)(u, v) by construction, implying that distĜj

(u, v) ≤
distG(i)(u, v). To prove that also distĜj

(u, v) ≥ distG(i)(u, v), consider the simple

paths from u to v. If they do not contain s, the induction hypothesis implies that
they are not too light. The remaining paths are (u, s, v) (which we considered)
and simple paths containing (u, s, u′). Any of the latter has weight at least

wĜj
(u, s) + wĜj

(s, u′) + distĜj−1
(u′, v)

= distG(i)(u, v)− distG(i)(u′, v) + distĜj−1
(u′, v) = distĜj−1

(u, v) I.H.

Thus, the second part of the invariant holds for index j.

It remains to show the third part of the invariant. Since the gadget re-
placement does not affect paths within BG(i)(v, βv), for each u′ ∈ BG(i)(v, βv)
we have that distĜ(j)(u′, v) ≤ dist ˆG(j−1)(u

′, v). Assuming for contradiction that
distĜ(j)(u′, v) < dist ˆG(j−1)(u

′, v), this must be due to a (simple) path containing
s. By the already established second part of the invariant for index j, such a path
cannot contain both u and u′, as the subpath from u to u′ would have weight at
least distĜj−1

(u, u′), i.e., the invariant would be violated for index j − 1. How-

ever, by Definition 22 the edge (s, v) has weight βv, which equals the weight of
(s, u′) plus distG(i)(u′, v). Thus, if (u, s, v) would be too light, so would be some
path involving both u and u′. The third part of the invariant follows. ut

4.2 Proving Theorem 33

Denote by G(i)′ the graph algorithm A′ computed after i mega-steps. Denote

by T
(i)
v an approximate shortest path tree of G(i−1)′ rooted at v returned by

approximate SSSP algorithm. For each v ∈ V \ {r} with indegree 0, let βv be
the cost of minimum approximate shortest path entering the weakly connected

component of v, according to T
(i)
v . We first prove a one-to-one correspondence

between the mega-steps of A and A′.
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Lemma 6. The gadget construction from Definition 22 ensures that after i mega-
steps, V (G(i)) = V (G(i)′), E(G(i)) = E(G(i)′), and distG(i) ≥ (1 + ε)distG(i)′ .
Moreover, each contraction uses the same value of βv in A and A′.

Proof. We prove the claim by induction, where the base case of i = 0 is trivial.
For the step from i−1 to i, we first note that (i) changing U (i−1) to U (i) does not
affect which balls are contracted during the first i− 1 mega-steps and (ii) after
i−1 megasteps, results in the graph created from G(i−1) by applying the gadget
construction and adding for each r 6= v ∈ V (G(i−1)) of indegree 0 and each
u ∈ B

T
(i)
v

(v, βv) an edge (u, v) of weight βv. This holds true, because the edges

that are added due to the gadget construction were not inside any previously

contracted balls, and the values S
(i)
x are chosen precisely such that they account

for any weight loss of the new edges during the first i− 1 mega-steps.
Hence, denote the graph resulting from applying the gadget construction

and adding the above edges to G(i−1) by Ĝ, and fix some r 6= v ∈ V (G(i−1)) of
indegree 0. Observe first that B

T
(i)
v

(v, βv) ⊆ BĜ(v, βv), as each u ∈ B
T

(i)
v

(v, βv)

has an edge (u, v) of weight βv. In particular, this includes the endpoint of the
path of length βv giving rise to the contraction performed by A′ on G(i−1)′ ,
implying that A will contract a ball of radius at most βv around v. Moreover,
for any dummy node s that has been introduced when replacing an edge (u, u′)
with u′ ∈ B

T
(i)
v

(v, βv), there is an edge (s, v) of weight βv. Hence s ∈ BĜ(v, βv).

By the induction hypothesis, it holds that distG(i−1) ≥ (1+ε)distG(i−1)′ , yield-
ing BG(i−1)(v, βv) ≤ BG(i−1)′ (v, βv/(1 + ε)). Due to the approximation gurantee
of the SSSP algorithm, there can be no path shorter than βv/(1 + ε) reaching v
from outside its weakly connected component. By Lemma 55, each node outside
BG(i−1)(v, βv) satisfies that its distance to v is not changed by the gadget con-
struction. Thus, A must contract exactly BG(i−1)(v, βv) = BĜ(v, βv). Moreover,
any edge resulting from (u, u′) and the contraction of BG(i−1)(v, βv) 3 u′ will
satisfy that its weight is at least distG(i−1)(u, v) − βv, implying that distances
in the graph after contraction are at least as large as if we performed the con-
tractions in G(i−1). Hence, distG(i) ≥ (1 + ε)distG(i)′ follows from the facts that
distG(i−1) ≥ (1 + ε)distG(i−1)′ ≥ dist

T
(i)
v

and that A′ setting a negative edge

weight to 0 can only happen for edges at the boundary of the contracted balls,
which in A are assigned a positive weight. ut

This establishes the desired relation between the weight of the trees constructed
by A and A′, respectively. Denote by imax the number of mega-steps A′ performs
on G.

Corollary 6. A′ on G constructs a DST of the same weight as A on U (imax).

Proof. By Lemma 66, A on U (imax) and A′ on G perform the same sequence of
contractions with the same ball radii. By inductive application of Corollary 44,
they hence compute DSTs of the same weight. ut

Hence, it remains to show that the gadget replacements do not increase the
weight of a tree spanning all (non-dummy) nodes.



Lemma 7. For all i, opt(U (i)) ≤ (1 + ε) opt(G).

Proof. As U (0) = (V,E, (1 + ε)wG), we have that opt(U (0)) = (1 + ε) opt(G).
Thus, it is sufficient to show that opt(U (i)) ≤ opt(U (i−1)) for all i > 0. We show
first that in the graph G(i−1), the modifications by introducing the gadgets do
not increase the weight of the MDST. To see this, consider an MDST T of G(i−1).
If a gadget removes an edge (u, u′) of T , we replace it by the edges (u, s) and
(s, u′) of the corresponding gadget. By Lemma 55, distances in G(i−1) are well-
defined. Hence, we can apply the triangle inequality to see that the combined
weight of these edges satisfies

wG(i−1)(u, s) + wG(i−1)(s, u′) = distG(i−1)(u, v)− distG(i−1)(u′, v)

≤ distG(i−1)(u, u′) ≤ wG(i−1)(u, u′).

Thus, we obtain a tree T ′ of weight at most wG(i−1)(T ) spanning all but pos-
sibly some of the dummy nodes introduced by the gadgets. Recalling that we
are not required to span dummy nodes, denoting by Ĝ the graph after gadget
replacement we conclude that opt(Ĝ) ≤ opt(G(i−1)).

To complete the proof, we invoke Lemma 66, showing that A performs the
same sequence of contractions with the same ball radii in both U (i−1) and U (i).
By inductively applying Corollary 44, we conclude that

opt(U (i−1))− opt(U (i)) = opt(Ĝ)− opt(G(i−1)) ≥ 0,

i.e., opt(U (i)) ≤ opt(U (i−1)). ut

By Lemma 44, the DST computed byA is actually an MDST of U (imax). Hence,
by Lemma 77, its weight is opt(U (imax)) ≤ (1 + ε) opt(G). Thus, this completes
the proof of Theorem 33.
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